1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 197 // Register the target 198 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 199 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 200 201 PassRegistry *PR = PassRegistry::getPassRegistry(); 202 initializeR600ClauseMergePassPass(*PR); 203 initializeR600ControlFlowFinalizerPass(*PR); 204 initializeR600PacketizerPass(*PR); 205 initializeR600ExpandSpecialInstrsPassPass(*PR); 206 initializeR600VectorRegMergerPass(*PR); 207 initializeGlobalISel(*PR); 208 initializeAMDGPUDAGToDAGISelPass(*PR); 209 initializeGCNDPPCombinePass(*PR); 210 initializeSILowerI1CopiesPass(*PR); 211 initializeSILowerSGPRSpillsPass(*PR); 212 initializeSIFixSGPRCopiesPass(*PR); 213 initializeSIFixVGPRCopiesPass(*PR); 214 initializeSIFoldOperandsPass(*PR); 215 initializeSIPeepholeSDWAPass(*PR); 216 initializeSIShrinkInstructionsPass(*PR); 217 initializeSIOptimizeExecMaskingPreRAPass(*PR); 218 initializeSILoadStoreOptimizerPass(*PR); 219 initializeAMDGPUFixFunctionBitcastsPass(*PR); 220 initializeAMDGPUAlwaysInlinePass(*PR); 221 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 222 initializeAMDGPUAnnotateUniformValuesPass(*PR); 223 initializeAMDGPUArgumentUsageInfoPass(*PR); 224 initializeAMDGPUAtomicOptimizerPass(*PR); 225 initializeAMDGPULowerKernelArgumentsPass(*PR); 226 initializeAMDGPULowerKernelAttributesPass(*PR); 227 initializeAMDGPULowerIntrinsicsPass(*PR); 228 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 229 initializeAMDGPUPostLegalizerCombinerPass(*PR); 230 initializeAMDGPUPreLegalizerCombinerPass(*PR); 231 initializeAMDGPUPromoteAllocaPass(*PR); 232 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 233 initializeAMDGPUCodeGenPreparePass(*PR); 234 initializeAMDGPULateCodeGenPreparePass(*PR); 235 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 236 initializeAMDGPUPropagateAttributesLatePass(*PR); 237 initializeAMDGPURewriteOutArgumentsPass(*PR); 238 initializeAMDGPUUnifyMetadataPass(*PR); 239 initializeSIAnnotateControlFlowPass(*PR); 240 initializeSIInsertHardClausesPass(*PR); 241 initializeSIInsertWaitcntsPass(*PR); 242 initializeSIModeRegisterPass(*PR); 243 initializeSIWholeQuadModePass(*PR); 244 initializeSILowerControlFlowPass(*PR); 245 initializeSIRemoveShortExecBranchesPass(*PR); 246 initializeSIPreEmitPeepholePass(*PR); 247 initializeSIInsertSkipsPass(*PR); 248 initializeSIMemoryLegalizerPass(*PR); 249 initializeSIOptimizeExecMaskingPass(*PR); 250 initializeSIPreAllocateWWMRegsPass(*PR); 251 initializeSIFormMemoryClausesPass(*PR); 252 initializeSIPostRABundlerPass(*PR); 253 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 254 initializeAMDGPUAAWrapperPassPass(*PR); 255 initializeAMDGPUExternalAAWrapperPass(*PR); 256 initializeAMDGPUUseNativeCallsPass(*PR); 257 initializeAMDGPUSimplifyLibCallsPass(*PR); 258 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 259 initializeGCNRegBankReassignPass(*PR); 260 initializeGCNNSAReassignPass(*PR); 261 initializeSIAddIMGInitPass(*PR); 262 } 263 264 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 265 return std::make_unique<AMDGPUTargetObjectFile>(); 266 } 267 268 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 269 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 270 } 271 272 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 273 return new SIScheduleDAGMI(C); 274 } 275 276 static ScheduleDAGInstrs * 277 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 278 ScheduleDAGMILive *DAG = 279 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 280 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 281 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 282 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 283 return DAG; 284 } 285 286 static ScheduleDAGInstrs * 287 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 288 auto DAG = new GCNIterativeScheduler(C, 289 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 290 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 291 return DAG; 292 } 293 294 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 295 return new GCNIterativeScheduler(C, 296 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 297 } 298 299 static ScheduleDAGInstrs * 300 createIterativeILPMachineScheduler(MachineSchedContext *C) { 301 auto DAG = new GCNIterativeScheduler(C, 302 GCNIterativeScheduler::SCHEDULE_ILP); 303 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 304 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 305 return DAG; 306 } 307 308 static MachineSchedRegistry 309 R600SchedRegistry("r600", "Run R600's custom scheduler", 310 createR600MachineScheduler); 311 312 static MachineSchedRegistry 313 SISchedRegistry("si", "Run SI's custom scheduler", 314 createSIMachineScheduler); 315 316 static MachineSchedRegistry 317 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 318 "Run GCN scheduler to maximize occupancy", 319 createGCNMaxOccupancyMachineScheduler); 320 321 static MachineSchedRegistry 322 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 323 "Run GCN scheduler to maximize occupancy (experimental)", 324 createIterativeGCNMaxOccupancyMachineScheduler); 325 326 static MachineSchedRegistry 327 GCNMinRegSchedRegistry("gcn-minreg", 328 "Run GCN iterative scheduler for minimal register usage (experimental)", 329 createMinRegScheduler); 330 331 static MachineSchedRegistry 332 GCNILPSchedRegistry("gcn-ilp", 333 "Run GCN iterative scheduler for ILP scheduling (experimental)", 334 createIterativeILPMachineScheduler); 335 336 static StringRef computeDataLayout(const Triple &TT) { 337 if (TT.getArch() == Triple::r600) { 338 // 32-bit pointers. 339 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 340 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 341 } 342 343 // 32-bit private, local, and region pointers. 64-bit global, constant and 344 // flat, non-integral buffer fat pointers. 345 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 346 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 347 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 348 "-ni:7"; 349 } 350 351 LLVM_READNONE 352 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 353 if (!GPU.empty()) 354 return GPU; 355 356 // Need to default to a target with flat support for HSA. 357 if (TT.getArch() == Triple::amdgcn) 358 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 359 360 return "r600"; 361 } 362 363 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 364 // The AMDGPU toolchain only supports generating shared objects, so we 365 // must always use PIC. 366 return Reloc::PIC_; 367 } 368 369 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 370 StringRef CPU, StringRef FS, 371 TargetOptions Options, 372 Optional<Reloc::Model> RM, 373 Optional<CodeModel::Model> CM, 374 CodeGenOpt::Level OptLevel) 375 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 376 FS, Options, getEffectiveRelocModel(RM), 377 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 378 TLOF(createTLOF(getTargetTriple())) { 379 initAsmInfo(); 380 if (TT.getArch() == Triple::amdgcn) { 381 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 382 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 383 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 384 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 385 } 386 // Set -fixed-function-abi to true if not provided.. 387 if (TT.getOS() == Triple::AMDHSA && 388 EnableAMDGPUFixedFunctionABIOpt.getNumOccurrences() == 0) 389 EnableFixedFunctionABI = true; 390 } 391 392 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 393 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 394 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 395 396 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 397 398 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 399 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 400 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 401 } 402 403 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 404 Attribute FSAttr = F.getFnAttribute("target-features"); 405 406 return FSAttr.isValid() ? FSAttr.getValueAsString() 407 : getTargetFeatureString(); 408 } 409 410 /// Predicate for Internalize pass. 411 static bool mustPreserveGV(const GlobalValue &GV) { 412 if (const Function *F = dyn_cast<Function>(&GV)) 413 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 414 415 return !GV.use_empty(); 416 } 417 418 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 419 Builder.DivergentTarget = true; 420 421 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 422 bool Internalize = InternalizeSymbols; 423 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 424 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 425 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 426 427 if (EnableFunctionCalls) { 428 delete Builder.Inliner; 429 Builder.Inliner = createFunctionInliningPass(); 430 } 431 432 Builder.addExtension( 433 PassManagerBuilder::EP_ModuleOptimizerEarly, 434 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 435 legacy::PassManagerBase &PM) { 436 if (AMDGPUAA) { 437 PM.add(createAMDGPUAAWrapperPass()); 438 PM.add(createAMDGPUExternalAAWrapperPass()); 439 } 440 PM.add(createAMDGPUUnifyMetadataPass()); 441 PM.add(createAMDGPUPrintfRuntimeBinding()); 442 if (Internalize) 443 PM.add(createInternalizePass(mustPreserveGV)); 444 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 445 if (Internalize) 446 PM.add(createGlobalDCEPass()); 447 if (EarlyInline) 448 PM.add(createAMDGPUAlwaysInlinePass(false)); 449 }); 450 451 Builder.addExtension( 452 PassManagerBuilder::EP_EarlyAsPossible, 453 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 454 legacy::PassManagerBase &PM) { 455 if (AMDGPUAA) { 456 PM.add(createAMDGPUAAWrapperPass()); 457 PM.add(createAMDGPUExternalAAWrapperPass()); 458 } 459 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 460 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 461 if (LibCallSimplify) 462 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 463 }); 464 465 Builder.addExtension( 466 PassManagerBuilder::EP_CGSCCOptimizerLate, 467 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 468 // Add infer address spaces pass to the opt pipeline after inlining 469 // but before SROA to increase SROA opportunities. 470 PM.add(createInferAddressSpacesPass()); 471 472 // This should run after inlining to have any chance of doing anything, 473 // and before other cleanup optimizations. 474 PM.add(createAMDGPULowerKernelAttributesPass()); 475 476 // Promote alloca to vector before SROA and loop unroll. If we manage 477 // to eliminate allocas before unroll we may choose to unroll less. 478 if (EnableOpt) 479 PM.add(createAMDGPUPromoteAllocaToVector()); 480 }); 481 } 482 483 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 484 AAM.registerFunctionAnalysis<AMDGPUAA>(); 485 } 486 487 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 488 bool DebugPassManager) { 489 PB.registerPipelineParsingCallback( 490 [this](StringRef PassName, ModulePassManager &PM, 491 ArrayRef<PassBuilder::PipelineElement>) { 492 if (PassName == "amdgpu-propagate-attributes-late") { 493 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 494 return true; 495 } 496 if (PassName == "amdgpu-unify-metadata") { 497 PM.addPass(AMDGPUUnifyMetadataPass()); 498 return true; 499 } 500 if (PassName == "amdgpu-printf-runtime-binding") { 501 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 502 return true; 503 } 504 if (PassName == "amdgpu-always-inline") { 505 PM.addPass(AMDGPUAlwaysInlinePass()); 506 return true; 507 } 508 return false; 509 }); 510 PB.registerPipelineParsingCallback( 511 [this](StringRef PassName, FunctionPassManager &PM, 512 ArrayRef<PassBuilder::PipelineElement>) { 513 if (PassName == "amdgpu-simplifylib") { 514 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 515 return true; 516 } 517 if (PassName == "amdgpu-usenative") { 518 PM.addPass(AMDGPUUseNativeCallsPass()); 519 return true; 520 } 521 if (PassName == "amdgpu-promote-alloca") { 522 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 523 return true; 524 } 525 if (PassName == "amdgpu-promote-alloca-to-vector") { 526 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 527 return true; 528 } 529 if (PassName == "amdgpu-lower-kernel-attributes") { 530 PM.addPass(AMDGPULowerKernelAttributesPass()); 531 return true; 532 } 533 if (PassName == "amdgpu-propagate-attributes-early") { 534 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 535 return true; 536 } 537 538 return false; 539 }); 540 541 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 542 FAM.registerPass([&] { return AMDGPUAA(); }); 543 }); 544 545 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 546 if (AAName == "amdgpu-aa") { 547 AAM.registerFunctionAnalysis<AMDGPUAA>(); 548 return true; 549 } 550 return false; 551 }); 552 553 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 554 ModulePassManager &PM, 555 PassBuilder::OptimizationLevel Level) { 556 FunctionPassManager FPM(DebugPassManager); 557 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 558 FPM.addPass(AMDGPUUseNativeCallsPass()); 559 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 560 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 561 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 562 }); 563 564 PB.registerPipelineEarlySimplificationEPCallback( 565 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 566 if (Level == PassBuilder::OptimizationLevel::O0) 567 return; 568 569 PM.addPass(AMDGPUUnifyMetadataPass()); 570 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 571 572 if (InternalizeSymbols) { 573 PM.addPass(InternalizePass(mustPreserveGV)); 574 } 575 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 576 if (InternalizeSymbols) { 577 PM.addPass(GlobalDCEPass()); 578 } 579 if (EarlyInlineAll && !EnableFunctionCalls) 580 PM.addPass(AMDGPUAlwaysInlinePass()); 581 }); 582 583 PB.registerCGSCCOptimizerLateEPCallback( 584 [this, DebugPassManager](CGSCCPassManager &PM, 585 PassBuilder::OptimizationLevel Level) { 586 if (Level == PassBuilder::OptimizationLevel::O0) 587 return; 588 589 FunctionPassManager FPM(DebugPassManager); 590 591 // Add infer address spaces pass to the opt pipeline after inlining 592 // but before SROA to increase SROA opportunities. 593 FPM.addPass(InferAddressSpacesPass()); 594 595 // This should run after inlining to have any chance of doing 596 // anything, and before other cleanup optimizations. 597 FPM.addPass(AMDGPULowerKernelAttributesPass()); 598 599 if (Level != PassBuilder::OptimizationLevel::O0) { 600 // Promote alloca to vector before SROA and loop unroll. If we 601 // manage to eliminate allocas before unroll we may choose to unroll 602 // less. 603 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 604 } 605 606 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 607 }); 608 } 609 610 //===----------------------------------------------------------------------===// 611 // R600 Target Machine (R600 -> Cayman) 612 //===----------------------------------------------------------------------===// 613 614 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 615 StringRef CPU, StringRef FS, 616 TargetOptions Options, 617 Optional<Reloc::Model> RM, 618 Optional<CodeModel::Model> CM, 619 CodeGenOpt::Level OL, bool JIT) 620 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 621 setRequiresStructuredCFG(true); 622 623 // Override the default since calls aren't supported for r600. 624 if (EnableFunctionCalls && 625 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 626 EnableFunctionCalls = false; 627 } 628 629 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 630 const Function &F) const { 631 StringRef GPU = getGPUName(F); 632 StringRef FS = getFeatureString(F); 633 634 SmallString<128> SubtargetKey(GPU); 635 SubtargetKey.append(FS); 636 637 auto &I = SubtargetMap[SubtargetKey]; 638 if (!I) { 639 // This needs to be done before we create a new subtarget since any 640 // creation will depend on the TM and the code generation flags on the 641 // function that reside in TargetOptions. 642 resetTargetOptions(F); 643 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 644 } 645 646 return I.get(); 647 } 648 649 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 650 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 651 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 652 AddrSpace == AMDGPUAS::REGION_ADDRESS) 653 ? -1 654 : 0; 655 } 656 657 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 658 unsigned DestAS) const { 659 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 660 AMDGPU::isFlatGlobalAddrSpace(DestAS); 661 } 662 663 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 664 const auto *LD = dyn_cast<LoadInst>(V); 665 if (!LD) 666 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 667 668 // It must be a generic pointer loaded. 669 assert(V->getType()->isPointerTy() && 670 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 671 672 const auto *Ptr = LD->getPointerOperand(); 673 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 674 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 675 // For a generic pointer loaded from the constant memory, it could be assumed 676 // as a global pointer since the constant memory is only populated on the 677 // host side. As implied by the offload programming model, only global 678 // pointers could be referenced on the host side. 679 return AMDGPUAS::GLOBAL_ADDRESS; 680 } 681 682 TargetTransformInfo 683 R600TargetMachine::getTargetTransformInfo(const Function &F) { 684 return TargetTransformInfo(R600TTIImpl(this, F)); 685 } 686 687 //===----------------------------------------------------------------------===// 688 // GCN Target Machine (SI+) 689 //===----------------------------------------------------------------------===// 690 691 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 692 StringRef CPU, StringRef FS, 693 TargetOptions Options, 694 Optional<Reloc::Model> RM, 695 Optional<CodeModel::Model> CM, 696 CodeGenOpt::Level OL, bool JIT) 697 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 698 699 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 700 StringRef GPU = getGPUName(F); 701 StringRef FS = getFeatureString(F); 702 703 SmallString<128> SubtargetKey(GPU); 704 SubtargetKey.append(FS); 705 706 auto &I = SubtargetMap[SubtargetKey]; 707 if (!I) { 708 // This needs to be done before we create a new subtarget since any 709 // creation will depend on the TM and the code generation flags on the 710 // function that reside in TargetOptions. 711 resetTargetOptions(F); 712 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 713 } 714 715 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 716 717 return I.get(); 718 } 719 720 TargetTransformInfo 721 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 722 return TargetTransformInfo(GCNTTIImpl(this, F)); 723 } 724 725 //===----------------------------------------------------------------------===// 726 // AMDGPU Pass Setup 727 //===----------------------------------------------------------------------===// 728 729 namespace { 730 731 class AMDGPUPassConfig : public TargetPassConfig { 732 public: 733 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 734 : TargetPassConfig(TM, PM) { 735 // Exceptions and StackMaps are not supported, so these passes will never do 736 // anything. 737 disablePass(&StackMapLivenessID); 738 disablePass(&FuncletLayoutID); 739 } 740 741 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 742 return getTM<AMDGPUTargetMachine>(); 743 } 744 745 ScheduleDAGInstrs * 746 createMachineScheduler(MachineSchedContext *C) const override { 747 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 748 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 749 return DAG; 750 } 751 752 void addEarlyCSEOrGVNPass(); 753 void addStraightLineScalarOptimizationPasses(); 754 void addIRPasses() override; 755 void addCodeGenPrepare() override; 756 bool addPreISel() override; 757 bool addInstSelector() override; 758 bool addGCPasses() override; 759 760 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 761 }; 762 763 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 764 return getStandardCSEConfigForOpt(TM->getOptLevel()); 765 } 766 767 class R600PassConfig final : public AMDGPUPassConfig { 768 public: 769 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 770 : AMDGPUPassConfig(TM, PM) {} 771 772 ScheduleDAGInstrs *createMachineScheduler( 773 MachineSchedContext *C) const override { 774 return createR600MachineScheduler(C); 775 } 776 777 bool addPreISel() override; 778 bool addInstSelector() override; 779 void addPreRegAlloc() override; 780 void addPreSched2() override; 781 void addPreEmitPass() override; 782 }; 783 784 class GCNPassConfig final : public AMDGPUPassConfig { 785 public: 786 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 787 : AMDGPUPassConfig(TM, PM) { 788 // It is necessary to know the register usage of the entire call graph. We 789 // allow calls without EnableAMDGPUFunctionCalls if they are marked 790 // noinline, so this is always required. 791 setRequiresCodeGenSCCOrder(true); 792 } 793 794 GCNTargetMachine &getGCNTargetMachine() const { 795 return getTM<GCNTargetMachine>(); 796 } 797 798 ScheduleDAGInstrs * 799 createMachineScheduler(MachineSchedContext *C) const override; 800 801 bool addPreISel() override; 802 void addMachineSSAOptimization() override; 803 bool addILPOpts() override; 804 bool addInstSelector() override; 805 bool addIRTranslator() override; 806 void addPreLegalizeMachineIR() override; 807 bool addLegalizeMachineIR() override; 808 void addPreRegBankSelect() override; 809 bool addRegBankSelect() override; 810 bool addGlobalInstructionSelect() override; 811 void addFastRegAlloc() override; 812 void addOptimizedRegAlloc() override; 813 void addPreRegAlloc() override; 814 bool addPreRewrite() override; 815 void addPostRegAlloc() override; 816 void addPreSched2() override; 817 void addPreEmitPass() override; 818 }; 819 820 } // end anonymous namespace 821 822 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 823 if (getOptLevel() == CodeGenOpt::Aggressive) 824 addPass(createGVNPass()); 825 else 826 addPass(createEarlyCSEPass()); 827 } 828 829 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 830 addPass(createLICMPass()); 831 addPass(createSeparateConstOffsetFromGEPPass()); 832 addPass(createSpeculativeExecutionPass()); 833 // ReassociateGEPs exposes more opportunites for SLSR. See 834 // the example in reassociate-geps-and-slsr.ll. 835 addPass(createStraightLineStrengthReducePass()); 836 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 837 // EarlyCSE can reuse. 838 addEarlyCSEOrGVNPass(); 839 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 840 addPass(createNaryReassociatePass()); 841 // NaryReassociate on GEPs creates redundant common expressions, so run 842 // EarlyCSE after it. 843 addPass(createEarlyCSEPass()); 844 } 845 846 void AMDGPUPassConfig::addIRPasses() { 847 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 848 849 // There is no reason to run these. 850 disablePass(&StackMapLivenessID); 851 disablePass(&FuncletLayoutID); 852 disablePass(&PatchableFunctionID); 853 854 addPass(createAMDGPUPrintfRuntimeBinding()); 855 856 // This must occur before inlining, as the inliner will not look through 857 // bitcast calls. 858 addPass(createAMDGPUFixFunctionBitcastsPass()); 859 860 // A call to propagate attributes pass in the backend in case opt was not run. 861 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 862 863 addPass(createAtomicExpandPass()); 864 865 866 addPass(createAMDGPULowerIntrinsicsPass()); 867 868 // Function calls are not supported, so make sure we inline everything. 869 addPass(createAMDGPUAlwaysInlinePass()); 870 addPass(createAlwaysInlinerLegacyPass()); 871 // We need to add the barrier noop pass, otherwise adding the function 872 // inlining pass will cause all of the PassConfigs passes to be run 873 // one function at a time, which means if we have a nodule with two 874 // functions, then we will generate code for the first function 875 // without ever running any passes on the second. 876 addPass(createBarrierNoopPass()); 877 878 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 879 if (TM.getTargetTriple().getArch() == Triple::r600) 880 addPass(createR600OpenCLImageTypeLoweringPass()); 881 882 // Replace OpenCL enqueued block function pointers with global variables. 883 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 884 885 if (TM.getOptLevel() > CodeGenOpt::None) { 886 addPass(createInferAddressSpacesPass()); 887 addPass(createAMDGPUPromoteAlloca()); 888 889 if (EnableSROA) 890 addPass(createSROAPass()); 891 892 if (EnableScalarIRPasses) 893 addStraightLineScalarOptimizationPasses(); 894 895 if (EnableAMDGPUAliasAnalysis) { 896 addPass(createAMDGPUAAWrapperPass()); 897 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 898 AAResults &AAR) { 899 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 900 AAR.addAAResult(WrapperPass->getResult()); 901 })); 902 } 903 } 904 905 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 906 // TODO: May want to move later or split into an early and late one. 907 addPass(createAMDGPUCodeGenPreparePass()); 908 } 909 910 TargetPassConfig::addIRPasses(); 911 912 // EarlyCSE is not always strong enough to clean up what LSR produces. For 913 // example, GVN can combine 914 // 915 // %0 = add %a, %b 916 // %1 = add %b, %a 917 // 918 // and 919 // 920 // %0 = shl nsw %a, 2 921 // %1 = shl %a, 2 922 // 923 // but EarlyCSE can do neither of them. 924 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 925 addEarlyCSEOrGVNPass(); 926 } 927 928 void AMDGPUPassConfig::addCodeGenPrepare() { 929 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 930 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 931 932 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 933 EnableLowerKernelArguments) 934 addPass(createAMDGPULowerKernelArgumentsPass()); 935 936 addPass(&AMDGPUPerfHintAnalysisID); 937 938 TargetPassConfig::addCodeGenPrepare(); 939 940 if (EnableLoadStoreVectorizer) 941 addPass(createLoadStoreVectorizerPass()); 942 943 // LowerSwitch pass may introduce unreachable blocks that can 944 // cause unexpected behavior for subsequent passes. Placing it 945 // here seems better that these blocks would get cleaned up by 946 // UnreachableBlockElim inserted next in the pass flow. 947 addPass(createLowerSwitchPass()); 948 } 949 950 bool AMDGPUPassConfig::addPreISel() { 951 addPass(createFlattenCFGPass()); 952 return false; 953 } 954 955 bool AMDGPUPassConfig::addInstSelector() { 956 // Defer the verifier until FinalizeISel. 957 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 958 return false; 959 } 960 961 bool AMDGPUPassConfig::addGCPasses() { 962 // Do nothing. GC is not supported. 963 return false; 964 } 965 966 //===----------------------------------------------------------------------===// 967 // R600 Pass Setup 968 //===----------------------------------------------------------------------===// 969 970 bool R600PassConfig::addPreISel() { 971 AMDGPUPassConfig::addPreISel(); 972 973 if (EnableR600StructurizeCFG) 974 addPass(createStructurizeCFGPass()); 975 return false; 976 } 977 978 bool R600PassConfig::addInstSelector() { 979 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 980 return false; 981 } 982 983 void R600PassConfig::addPreRegAlloc() { 984 addPass(createR600VectorRegMerger()); 985 } 986 987 void R600PassConfig::addPreSched2() { 988 addPass(createR600EmitClauseMarkers(), false); 989 if (EnableR600IfConvert) 990 addPass(&IfConverterID, false); 991 addPass(createR600ClauseMergePass(), false); 992 } 993 994 void R600PassConfig::addPreEmitPass() { 995 addPass(createAMDGPUCFGStructurizerPass(), false); 996 addPass(createR600ExpandSpecialInstrsPass(), false); 997 addPass(&FinalizeMachineBundlesID, false); 998 addPass(createR600Packetizer(), false); 999 addPass(createR600ControlFlowFinalizer(), false); 1000 } 1001 1002 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1003 return new R600PassConfig(*this, PM); 1004 } 1005 1006 //===----------------------------------------------------------------------===// 1007 // GCN Pass Setup 1008 //===----------------------------------------------------------------------===// 1009 1010 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1011 MachineSchedContext *C) const { 1012 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1013 if (ST.enableSIScheduler()) 1014 return createSIMachineScheduler(C); 1015 return createGCNMaxOccupancyMachineScheduler(C); 1016 } 1017 1018 bool GCNPassConfig::addPreISel() { 1019 AMDGPUPassConfig::addPreISel(); 1020 1021 addPass(createAMDGPULateCodeGenPreparePass()); 1022 if (EnableAtomicOptimizations) { 1023 addPass(createAMDGPUAtomicOptimizerPass()); 1024 } 1025 1026 // FIXME: We need to run a pass to propagate the attributes when calls are 1027 // supported. 1028 1029 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1030 // regions formed by them. 1031 addPass(&AMDGPUUnifyDivergentExitNodesID); 1032 if (!LateCFGStructurize) { 1033 if (EnableStructurizerWorkarounds) { 1034 addPass(createFixIrreduciblePass()); 1035 addPass(createUnifyLoopExitsPass()); 1036 } 1037 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1038 } 1039 addPass(createSinkingPass()); 1040 addPass(createAMDGPUAnnotateUniformValues()); 1041 if (!LateCFGStructurize) { 1042 addPass(createSIAnnotateControlFlowPass()); 1043 } 1044 addPass(createLCSSAPass()); 1045 1046 return false; 1047 } 1048 1049 void GCNPassConfig::addMachineSSAOptimization() { 1050 TargetPassConfig::addMachineSSAOptimization(); 1051 1052 // We want to fold operands after PeepholeOptimizer has run (or as part of 1053 // it), because it will eliminate extra copies making it easier to fold the 1054 // real source operand. We want to eliminate dead instructions after, so that 1055 // we see fewer uses of the copies. We then need to clean up the dead 1056 // instructions leftover after the operands are folded as well. 1057 // 1058 // XXX - Can we get away without running DeadMachineInstructionElim again? 1059 addPass(&SIFoldOperandsID); 1060 if (EnableDPPCombine) 1061 addPass(&GCNDPPCombineID); 1062 addPass(&DeadMachineInstructionElimID); 1063 addPass(&SILoadStoreOptimizerID); 1064 if (EnableSDWAPeephole) { 1065 addPass(&SIPeepholeSDWAID); 1066 addPass(&EarlyMachineLICMID); 1067 addPass(&MachineCSEID); 1068 addPass(&SIFoldOperandsID); 1069 addPass(&DeadMachineInstructionElimID); 1070 } 1071 addPass(createSIShrinkInstructionsPass()); 1072 } 1073 1074 bool GCNPassConfig::addILPOpts() { 1075 if (EnableEarlyIfConversion) 1076 addPass(&EarlyIfConverterID); 1077 1078 TargetPassConfig::addILPOpts(); 1079 return false; 1080 } 1081 1082 bool GCNPassConfig::addInstSelector() { 1083 AMDGPUPassConfig::addInstSelector(); 1084 addPass(&SIFixSGPRCopiesID); 1085 addPass(createSILowerI1CopiesPass()); 1086 addPass(createSIAddIMGInitPass()); 1087 return false; 1088 } 1089 1090 bool GCNPassConfig::addIRTranslator() { 1091 addPass(new IRTranslator(getOptLevel())); 1092 return false; 1093 } 1094 1095 void GCNPassConfig::addPreLegalizeMachineIR() { 1096 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1097 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1098 addPass(new Localizer()); 1099 } 1100 1101 bool GCNPassConfig::addLegalizeMachineIR() { 1102 addPass(new Legalizer()); 1103 return false; 1104 } 1105 1106 void GCNPassConfig::addPreRegBankSelect() { 1107 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1108 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1109 } 1110 1111 bool GCNPassConfig::addRegBankSelect() { 1112 addPass(new RegBankSelect()); 1113 return false; 1114 } 1115 1116 bool GCNPassConfig::addGlobalInstructionSelect() { 1117 addPass(new InstructionSelect(getOptLevel())); 1118 // TODO: Fix instruction selection to do the right thing for image 1119 // instructions with tfe or lwe in the first place, instead of running a 1120 // separate pass to fix them up? 1121 addPass(createSIAddIMGInitPass()); 1122 return false; 1123 } 1124 1125 void GCNPassConfig::addPreRegAlloc() { 1126 if (LateCFGStructurize) { 1127 addPass(createAMDGPUMachineCFGStructurizerPass()); 1128 } 1129 } 1130 1131 void GCNPassConfig::addFastRegAlloc() { 1132 // FIXME: We have to disable the verifier here because of PHIElimination + 1133 // TwoAddressInstructions disabling it. 1134 1135 // This must be run immediately after phi elimination and before 1136 // TwoAddressInstructions, otherwise the processing of the tied operand of 1137 // SI_ELSE will introduce a copy of the tied operand source after the else. 1138 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1139 1140 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1141 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1142 1143 TargetPassConfig::addFastRegAlloc(); 1144 } 1145 1146 void GCNPassConfig::addOptimizedRegAlloc() { 1147 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1148 // instructions that cause scheduling barriers. 1149 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1150 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1151 1152 if (OptExecMaskPreRA) 1153 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1154 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1155 1156 // This must be run immediately after phi elimination and before 1157 // TwoAddressInstructions, otherwise the processing of the tied operand of 1158 // SI_ELSE will introduce a copy of the tied operand source after the else. 1159 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1160 1161 if (EnableDCEInRA) 1162 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1163 1164 TargetPassConfig::addOptimizedRegAlloc(); 1165 } 1166 1167 bool GCNPassConfig::addPreRewrite() { 1168 if (EnableRegReassign) { 1169 addPass(&GCNNSAReassignID); 1170 addPass(&GCNRegBankReassignID); 1171 } 1172 return true; 1173 } 1174 1175 void GCNPassConfig::addPostRegAlloc() { 1176 addPass(&SIFixVGPRCopiesID); 1177 if (getOptLevel() > CodeGenOpt::None) 1178 addPass(&SIOptimizeExecMaskingID); 1179 TargetPassConfig::addPostRegAlloc(); 1180 1181 // Equivalent of PEI for SGPRs. 1182 addPass(&SILowerSGPRSpillsID); 1183 } 1184 1185 void GCNPassConfig::addPreSched2() { 1186 addPass(&SIPostRABundlerID); 1187 } 1188 1189 void GCNPassConfig::addPreEmitPass() { 1190 addPass(createSIMemoryLegalizerPass()); 1191 addPass(createSIInsertWaitcntsPass()); 1192 addPass(createSIShrinkInstructionsPass()); 1193 addPass(createSIModeRegisterPass()); 1194 1195 if (getOptLevel() > CodeGenOpt::None) 1196 addPass(&SIInsertHardClausesID); 1197 1198 addPass(&SIRemoveShortExecBranchesID); 1199 addPass(&SIInsertSkipsPassID); 1200 addPass(&SIPreEmitPeepholeID); 1201 // The hazard recognizer that runs as part of the post-ra scheduler does not 1202 // guarantee to be able handle all hazards correctly. This is because if there 1203 // are multiple scheduling regions in a basic block, the regions are scheduled 1204 // bottom up, so when we begin to schedule a region we don't know what 1205 // instructions were emitted directly before it. 1206 // 1207 // Here we add a stand-alone hazard recognizer pass which can handle all 1208 // cases. 1209 addPass(&PostRAHazardRecognizerID); 1210 addPass(&BranchRelaxationPassID); 1211 } 1212 1213 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1214 return new GCNPassConfig(*this, PM); 1215 } 1216 1217 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1218 return new yaml::SIMachineFunctionInfo(); 1219 } 1220 1221 yaml::MachineFunctionInfo * 1222 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1223 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1224 return new yaml::SIMachineFunctionInfo(*MFI, 1225 *MF.getSubtarget().getRegisterInfo()); 1226 } 1227 1228 bool GCNTargetMachine::parseMachineFunctionInfo( 1229 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1230 SMDiagnostic &Error, SMRange &SourceRange) const { 1231 const yaml::SIMachineFunctionInfo &YamlMFI = 1232 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1233 MachineFunction &MF = PFS.MF; 1234 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1235 1236 MFI->initializeBaseYamlFields(YamlMFI); 1237 1238 if (MFI->Occupancy == 0) { 1239 // Fixup the subtarget dependent default value. 1240 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1241 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1242 } 1243 1244 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1245 Register TempReg; 1246 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1247 SourceRange = RegName.SourceRange; 1248 return true; 1249 } 1250 RegVal = TempReg; 1251 1252 return false; 1253 }; 1254 1255 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1256 // Create a diagnostic for a the register string literal. 1257 const MemoryBuffer &Buffer = 1258 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1259 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1260 RegName.Value.size(), SourceMgr::DK_Error, 1261 "incorrect register class for field", RegName.Value, 1262 None, None); 1263 SourceRange = RegName.SourceRange; 1264 return true; 1265 }; 1266 1267 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1268 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1269 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1270 return true; 1271 1272 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1273 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1274 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1275 } 1276 1277 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1278 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1279 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1280 } 1281 1282 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1283 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1284 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1285 } 1286 1287 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1288 const TargetRegisterClass &RC, 1289 ArgDescriptor &Arg, unsigned UserSGPRs, 1290 unsigned SystemSGPRs) { 1291 // Skip parsing if it's not present. 1292 if (!A) 1293 return false; 1294 1295 if (A->IsRegister) { 1296 Register Reg; 1297 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1298 SourceRange = A->RegisterName.SourceRange; 1299 return true; 1300 } 1301 if (!RC.contains(Reg)) 1302 return diagnoseRegisterClass(A->RegisterName); 1303 Arg = ArgDescriptor::createRegister(Reg); 1304 } else 1305 Arg = ArgDescriptor::createStack(A->StackOffset); 1306 // Check and apply the optional mask. 1307 if (A->Mask) 1308 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1309 1310 MFI->NumUserSGPRs += UserSGPRs; 1311 MFI->NumSystemSGPRs += SystemSGPRs; 1312 return false; 1313 }; 1314 1315 if (YamlMFI.ArgInfo && 1316 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1317 AMDGPU::SGPR_128RegClass, 1318 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1319 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1320 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1321 2, 0) || 1322 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1323 MFI->ArgInfo.QueuePtr, 2, 0) || 1324 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1325 AMDGPU::SReg_64RegClass, 1326 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1327 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1328 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1329 2, 0) || 1330 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1331 AMDGPU::SReg_64RegClass, 1332 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1333 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1334 AMDGPU::SGPR_32RegClass, 1335 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1336 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1337 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1338 0, 1) || 1339 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1340 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1341 0, 1) || 1342 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1343 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1344 0, 1) || 1345 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1346 AMDGPU::SGPR_32RegClass, 1347 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1348 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1349 AMDGPU::SGPR_32RegClass, 1350 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1351 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1352 AMDGPU::SReg_64RegClass, 1353 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1354 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1355 AMDGPU::SReg_64RegClass, 1356 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1357 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1358 AMDGPU::VGPR_32RegClass, 1359 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1360 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1361 AMDGPU::VGPR_32RegClass, 1362 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1363 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1364 AMDGPU::VGPR_32RegClass, 1365 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1366 return true; 1367 1368 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1369 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1370 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1371 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1372 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1373 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1374 1375 return false; 1376 } 1377