1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Utils.h" 49 #include "llvm/Transforms/Vectorize.h" 50 #include <memory> 51 52 using namespace llvm; 53 54 static cl::opt<bool> EnableR600StructurizeCFG( 55 "r600-ir-structurize", 56 cl::desc("Use StructurizeCFG IR pass"), 57 cl::init(true)); 58 59 static cl::opt<bool> EnableSROA( 60 "amdgpu-sroa", 61 cl::desc("Run SROA after promote alloca pass"), 62 cl::ReallyHidden, 63 cl::init(true)); 64 65 static cl::opt<bool> 66 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 67 cl::desc("Run early if-conversion"), 68 cl::init(false)); 69 70 static cl::opt<bool> EnableR600IfConvert( 71 "r600-if-convert", 72 cl::desc("Use if conversion pass"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Option to disable vectorizer for tests. 77 static cl::opt<bool> EnableLoadStoreVectorizer( 78 "amdgpu-load-store-vectorizer", 79 cl::desc("Enable load store vectorizer"), 80 cl::init(true), 81 cl::Hidden); 82 83 // Option to control global loads scalarization 84 static cl::opt<bool> ScalarizeGlobal( 85 "amdgpu-scalarize-global-loads", 86 cl::desc("Enable global load scalarization"), 87 cl::init(true), 88 cl::Hidden); 89 90 // Option to run internalize pass. 91 static cl::opt<bool> InternalizeSymbols( 92 "amdgpu-internalize-symbols", 93 cl::desc("Enable elimination of non-kernel functions and unused globals"), 94 cl::init(false), 95 cl::Hidden); 96 97 // Option to inline all early. 98 static cl::opt<bool> EarlyInlineAll( 99 "amdgpu-early-inline-all", 100 cl::desc("Inline all functions early"), 101 cl::init(false), 102 cl::Hidden); 103 104 static cl::opt<bool> EnableSDWAPeephole( 105 "amdgpu-sdwa-peephole", 106 cl::desc("Enable SDWA peepholer"), 107 cl::init(true)); 108 109 static cl::opt<bool> EnableDPPCombine( 110 "amdgpu-dpp-combine", 111 cl::desc("Enable DPP combiner"), 112 cl::init(false)); 113 114 // Enable address space based alias analysis 115 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 116 cl::desc("Enable AMDGPU Alias Analysis"), 117 cl::init(true)); 118 119 // Option to run late CFG structurizer 120 static cl::opt<bool, true> LateCFGStructurize( 121 "amdgpu-late-structurize", 122 cl::desc("Enable late CFG structurization"), 123 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 124 cl::Hidden); 125 126 static cl::opt<bool, true> EnableAMDGPUFunctionCalls( 127 "amdgpu-function-calls", 128 cl::desc("Enable AMDGPU function call support"), 129 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 130 cl::init(false), 131 cl::Hidden); 132 133 // Enable lib calls simplifications 134 static cl::opt<bool> EnableLibCallSimplify( 135 "amdgpu-simplify-libcall", 136 cl::desc("Enable amdgpu library simplifications"), 137 cl::init(true), 138 cl::Hidden); 139 140 static cl::opt<bool> EnableLowerKernelArguments( 141 "amdgpu-ir-lower-kernel-arguments", 142 cl::desc("Lower kernel argument loads in IR pass"), 143 cl::init(true), 144 cl::Hidden); 145 146 // Enable atomic optimization 147 static cl::opt<bool> EnableAtomicOptimizations( 148 "amdgpu-atomic-optimizations", 149 cl::desc("Enable atomic optimizations"), 150 cl::init(false), 151 cl::Hidden); 152 153 // Enable Mode register optimization 154 static cl::opt<bool> EnableSIModeRegisterPass( 155 "amdgpu-mode-register", 156 cl::desc("Enable mode register pass"), 157 cl::init(true), 158 cl::Hidden); 159 160 extern "C" void LLVMInitializeAMDGPUTarget() { 161 // Register the target 162 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 163 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 164 165 PassRegistry *PR = PassRegistry::getPassRegistry(); 166 initializeR600ClauseMergePassPass(*PR); 167 initializeR600ControlFlowFinalizerPass(*PR); 168 initializeR600PacketizerPass(*PR); 169 initializeR600ExpandSpecialInstrsPassPass(*PR); 170 initializeR600VectorRegMergerPass(*PR); 171 initializeGlobalISel(*PR); 172 initializeAMDGPUDAGToDAGISelPass(*PR); 173 initializeGCNDPPCombinePass(*PR); 174 initializeSILowerI1CopiesPass(*PR); 175 initializeSIFixSGPRCopiesPass(*PR); 176 initializeSIFixVGPRCopiesPass(*PR); 177 initializeSIFixupVectorISelPass(*PR); 178 initializeSIFoldOperandsPass(*PR); 179 initializeSIPeepholeSDWAPass(*PR); 180 initializeSIShrinkInstructionsPass(*PR); 181 initializeSIOptimizeExecMaskingPreRAPass(*PR); 182 initializeSILoadStoreOptimizerPass(*PR); 183 initializeAMDGPUFixFunctionBitcastsPass(*PR); 184 initializeAMDGPUAlwaysInlinePass(*PR); 185 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 186 initializeAMDGPUAnnotateUniformValuesPass(*PR); 187 initializeAMDGPUArgumentUsageInfoPass(*PR); 188 initializeAMDGPUAtomicOptimizerPass(*PR); 189 initializeAMDGPULowerKernelArgumentsPass(*PR); 190 initializeAMDGPULowerKernelAttributesPass(*PR); 191 initializeAMDGPULowerIntrinsicsPass(*PR); 192 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 193 initializeAMDGPUPromoteAllocaPass(*PR); 194 initializeAMDGPUCodeGenPreparePass(*PR); 195 initializeAMDGPURewriteOutArgumentsPass(*PR); 196 initializeAMDGPUUnifyMetadataPass(*PR); 197 initializeSIAnnotateControlFlowPass(*PR); 198 initializeSIInsertWaitcntsPass(*PR); 199 initializeSIModeRegisterPass(*PR); 200 initializeSIWholeQuadModePass(*PR); 201 initializeSILowerControlFlowPass(*PR); 202 initializeSIInsertSkipsPass(*PR); 203 initializeSIMemoryLegalizerPass(*PR); 204 initializeSIDebuggerInsertNopsPass(*PR); 205 initializeSIOptimizeExecMaskingPass(*PR); 206 initializeSIFixWWMLivenessPass(*PR); 207 initializeSIFormMemoryClausesPass(*PR); 208 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 209 initializeAMDGPUAAWrapperPassPass(*PR); 210 initializeAMDGPUExternalAAWrapperPass(*PR); 211 initializeAMDGPUUseNativeCallsPass(*PR); 212 initializeAMDGPUSimplifyLibCallsPass(*PR); 213 initializeAMDGPUInlinerPass(*PR); 214 } 215 216 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 217 return llvm::make_unique<AMDGPUTargetObjectFile>(); 218 } 219 220 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 221 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 222 } 223 224 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 225 return new SIScheduleDAGMI(C); 226 } 227 228 static ScheduleDAGInstrs * 229 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 230 ScheduleDAGMILive *DAG = 231 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 232 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 233 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 234 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 235 return DAG; 236 } 237 238 static ScheduleDAGInstrs * 239 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 240 auto DAG = new GCNIterativeScheduler(C, 241 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 242 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 243 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 244 return DAG; 245 } 246 247 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 248 return new GCNIterativeScheduler(C, 249 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 250 } 251 252 static ScheduleDAGInstrs * 253 createIterativeILPMachineScheduler(MachineSchedContext *C) { 254 auto DAG = new GCNIterativeScheduler(C, 255 GCNIterativeScheduler::SCHEDULE_ILP); 256 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 257 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 258 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 259 return DAG; 260 } 261 262 static MachineSchedRegistry 263 R600SchedRegistry("r600", "Run R600's custom scheduler", 264 createR600MachineScheduler); 265 266 static MachineSchedRegistry 267 SISchedRegistry("si", "Run SI's custom scheduler", 268 createSIMachineScheduler); 269 270 static MachineSchedRegistry 271 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 272 "Run GCN scheduler to maximize occupancy", 273 createGCNMaxOccupancyMachineScheduler); 274 275 static MachineSchedRegistry 276 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 277 "Run GCN scheduler to maximize occupancy (experimental)", 278 createIterativeGCNMaxOccupancyMachineScheduler); 279 280 static MachineSchedRegistry 281 GCNMinRegSchedRegistry("gcn-minreg", 282 "Run GCN iterative scheduler for minimal register usage (experimental)", 283 createMinRegScheduler); 284 285 static MachineSchedRegistry 286 GCNILPSchedRegistry("gcn-ilp", 287 "Run GCN iterative scheduler for ILP scheduling (experimental)", 288 createIterativeILPMachineScheduler); 289 290 static StringRef computeDataLayout(const Triple &TT) { 291 if (TT.getArch() == Triple::r600) { 292 // 32-bit pointers. 293 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 294 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 295 } 296 297 // 32-bit private, local, and region pointers. 64-bit global, constant and 298 // flat. 299 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 300 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 301 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 302 } 303 304 LLVM_READNONE 305 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 306 if (!GPU.empty()) 307 return GPU; 308 309 if (TT.getArch() == Triple::amdgcn) 310 return "generic"; 311 312 return "r600"; 313 } 314 315 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 316 // The AMDGPU toolchain only supports generating shared objects, so we 317 // must always use PIC. 318 return Reloc::PIC_; 319 } 320 321 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 322 StringRef CPU, StringRef FS, 323 TargetOptions Options, 324 Optional<Reloc::Model> RM, 325 Optional<CodeModel::Model> CM, 326 CodeGenOpt::Level OptLevel) 327 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 328 FS, Options, getEffectiveRelocModel(RM), 329 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 330 TLOF(createTLOF(getTargetTriple())) { 331 initAsmInfo(); 332 } 333 334 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 335 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 336 337 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 338 339 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 340 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 341 return GPUAttr.hasAttribute(Attribute::None) ? 342 getTargetCPU() : GPUAttr.getValueAsString(); 343 } 344 345 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 346 Attribute FSAttr = F.getFnAttribute("target-features"); 347 348 return FSAttr.hasAttribute(Attribute::None) ? 349 getTargetFeatureString() : 350 FSAttr.getValueAsString(); 351 } 352 353 /// Predicate for Internalize pass. 354 static bool mustPreserveGV(const GlobalValue &GV) { 355 if (const Function *F = dyn_cast<Function>(&GV)) 356 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 357 358 return !GV.use_empty(); 359 } 360 361 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 362 Builder.DivergentTarget = true; 363 364 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 365 bool Internalize = InternalizeSymbols; 366 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; 367 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 368 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 369 370 if (EnableAMDGPUFunctionCalls) { 371 delete Builder.Inliner; 372 Builder.Inliner = createAMDGPUFunctionInliningPass(); 373 } 374 375 Builder.addExtension( 376 PassManagerBuilder::EP_ModuleOptimizerEarly, 377 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 378 legacy::PassManagerBase &PM) { 379 if (AMDGPUAA) { 380 PM.add(createAMDGPUAAWrapperPass()); 381 PM.add(createAMDGPUExternalAAWrapperPass()); 382 } 383 PM.add(createAMDGPUUnifyMetadataPass()); 384 if (Internalize) { 385 PM.add(createInternalizePass(mustPreserveGV)); 386 PM.add(createGlobalDCEPass()); 387 } 388 if (EarlyInline) 389 PM.add(createAMDGPUAlwaysInlinePass(false)); 390 }); 391 392 const auto &Opt = Options; 393 Builder.addExtension( 394 PassManagerBuilder::EP_EarlyAsPossible, 395 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 396 legacy::PassManagerBase &PM) { 397 if (AMDGPUAA) { 398 PM.add(createAMDGPUAAWrapperPass()); 399 PM.add(createAMDGPUExternalAAWrapperPass()); 400 } 401 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 402 if (LibCallSimplify) 403 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 404 }); 405 406 Builder.addExtension( 407 PassManagerBuilder::EP_CGSCCOptimizerLate, 408 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 409 // Add infer address spaces pass to the opt pipeline after inlining 410 // but before SROA to increase SROA opportunities. 411 PM.add(createInferAddressSpacesPass()); 412 413 // This should run after inlining to have any chance of doing anything, 414 // and before other cleanup optimizations. 415 PM.add(createAMDGPULowerKernelAttributesPass()); 416 }); 417 } 418 419 //===----------------------------------------------------------------------===// 420 // R600 Target Machine (R600 -> Cayman) 421 //===----------------------------------------------------------------------===// 422 423 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 424 StringRef CPU, StringRef FS, 425 TargetOptions Options, 426 Optional<Reloc::Model> RM, 427 Optional<CodeModel::Model> CM, 428 CodeGenOpt::Level OL, bool JIT) 429 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 430 setRequiresStructuredCFG(true); 431 } 432 433 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 434 const Function &F) const { 435 StringRef GPU = getGPUName(F); 436 StringRef FS = getFeatureString(F); 437 438 SmallString<128> SubtargetKey(GPU); 439 SubtargetKey.append(FS); 440 441 auto &I = SubtargetMap[SubtargetKey]; 442 if (!I) { 443 // This needs to be done before we create a new subtarget since any 444 // creation will depend on the TM and the code generation flags on the 445 // function that reside in TargetOptions. 446 resetTargetOptions(F); 447 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 448 } 449 450 return I.get(); 451 } 452 453 TargetTransformInfo 454 R600TargetMachine::getTargetTransformInfo(const Function &F) { 455 return TargetTransformInfo(R600TTIImpl(this, F)); 456 } 457 458 //===----------------------------------------------------------------------===// 459 // GCN Target Machine (SI+) 460 //===----------------------------------------------------------------------===// 461 462 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 463 StringRef CPU, StringRef FS, 464 TargetOptions Options, 465 Optional<Reloc::Model> RM, 466 Optional<CodeModel::Model> CM, 467 CodeGenOpt::Level OL, bool JIT) 468 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 469 470 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 471 StringRef GPU = getGPUName(F); 472 StringRef FS = getFeatureString(F); 473 474 SmallString<128> SubtargetKey(GPU); 475 SubtargetKey.append(FS); 476 477 auto &I = SubtargetMap[SubtargetKey]; 478 if (!I) { 479 // This needs to be done before we create a new subtarget since any 480 // creation will depend on the TM and the code generation flags on the 481 // function that reside in TargetOptions. 482 resetTargetOptions(F); 483 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 484 } 485 486 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 487 488 return I.get(); 489 } 490 491 TargetTransformInfo 492 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 493 return TargetTransformInfo(GCNTTIImpl(this, F)); 494 } 495 496 //===----------------------------------------------------------------------===// 497 // AMDGPU Pass Setup 498 //===----------------------------------------------------------------------===// 499 500 namespace { 501 502 class AMDGPUPassConfig : public TargetPassConfig { 503 public: 504 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 505 : TargetPassConfig(TM, PM) { 506 // Exceptions and StackMaps are not supported, so these passes will never do 507 // anything. 508 disablePass(&StackMapLivenessID); 509 disablePass(&FuncletLayoutID); 510 } 511 512 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 513 return getTM<AMDGPUTargetMachine>(); 514 } 515 516 ScheduleDAGInstrs * 517 createMachineScheduler(MachineSchedContext *C) const override { 518 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 519 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 520 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 521 return DAG; 522 } 523 524 void addEarlyCSEOrGVNPass(); 525 void addStraightLineScalarOptimizationPasses(); 526 void addIRPasses() override; 527 void addCodeGenPrepare() override; 528 bool addPreISel() override; 529 bool addInstSelector() override; 530 bool addGCPasses() override; 531 }; 532 533 class R600PassConfig final : public AMDGPUPassConfig { 534 public: 535 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 536 : AMDGPUPassConfig(TM, PM) {} 537 538 ScheduleDAGInstrs *createMachineScheduler( 539 MachineSchedContext *C) const override { 540 return createR600MachineScheduler(C); 541 } 542 543 bool addPreISel() override; 544 bool addInstSelector() override; 545 void addPreRegAlloc() override; 546 void addPreSched2() override; 547 void addPreEmitPass() override; 548 }; 549 550 class GCNPassConfig final : public AMDGPUPassConfig { 551 public: 552 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 553 : AMDGPUPassConfig(TM, PM) { 554 // It is necessary to know the register usage of the entire call graph. We 555 // allow calls without EnableAMDGPUFunctionCalls if they are marked 556 // noinline, so this is always required. 557 setRequiresCodeGenSCCOrder(true); 558 } 559 560 GCNTargetMachine &getGCNTargetMachine() const { 561 return getTM<GCNTargetMachine>(); 562 } 563 564 ScheduleDAGInstrs * 565 createMachineScheduler(MachineSchedContext *C) const override; 566 567 bool addPreISel() override; 568 void addMachineSSAOptimization() override; 569 bool addILPOpts() override; 570 bool addInstSelector() override; 571 bool addIRTranslator() override; 572 bool addLegalizeMachineIR() override; 573 bool addRegBankSelect() override; 574 bool addGlobalInstructionSelect() override; 575 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 576 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 577 void addPreRegAlloc() override; 578 void addPostRegAlloc() override; 579 void addPreSched2() override; 580 void addPreEmitPass() override; 581 }; 582 583 } // end anonymous namespace 584 585 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 586 if (getOptLevel() == CodeGenOpt::Aggressive) 587 addPass(createGVNPass()); 588 else 589 addPass(createEarlyCSEPass()); 590 } 591 592 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 593 addPass(createLICMPass()); 594 addPass(createSeparateConstOffsetFromGEPPass()); 595 addPass(createSpeculativeExecutionPass()); 596 // ReassociateGEPs exposes more opportunites for SLSR. See 597 // the example in reassociate-geps-and-slsr.ll. 598 addPass(createStraightLineStrengthReducePass()); 599 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 600 // EarlyCSE can reuse. 601 addEarlyCSEOrGVNPass(); 602 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 603 addPass(createNaryReassociatePass()); 604 // NaryReassociate on GEPs creates redundant common expressions, so run 605 // EarlyCSE after it. 606 addPass(createEarlyCSEPass()); 607 } 608 609 void AMDGPUPassConfig::addIRPasses() { 610 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 611 612 // There is no reason to run these. 613 disablePass(&StackMapLivenessID); 614 disablePass(&FuncletLayoutID); 615 disablePass(&PatchableFunctionID); 616 617 addPass(createAtomicExpandPass()); 618 619 // This must occur before inlining, as the inliner will not look through 620 // bitcast calls. 621 addPass(createAMDGPUFixFunctionBitcastsPass()); 622 623 addPass(createAMDGPULowerIntrinsicsPass()); 624 625 // Function calls are not supported, so make sure we inline everything. 626 addPass(createAMDGPUAlwaysInlinePass()); 627 addPass(createAlwaysInlinerLegacyPass()); 628 // We need to add the barrier noop pass, otherwise adding the function 629 // inlining pass will cause all of the PassConfigs passes to be run 630 // one function at a time, which means if we have a nodule with two 631 // functions, then we will generate code for the first function 632 // without ever running any passes on the second. 633 addPass(createBarrierNoopPass()); 634 635 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 636 // TODO: May want to move later or split into an early and late one. 637 638 addPass(createAMDGPUCodeGenPreparePass()); 639 } 640 641 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 642 if (TM.getTargetTriple().getArch() == Triple::r600) 643 addPass(createR600OpenCLImageTypeLoweringPass()); 644 645 // Replace OpenCL enqueued block function pointers with global variables. 646 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 647 648 if (TM.getOptLevel() > CodeGenOpt::None) { 649 addPass(createInferAddressSpacesPass()); 650 addPass(createAMDGPUPromoteAlloca()); 651 652 if (EnableSROA) 653 addPass(createSROAPass()); 654 655 addStraightLineScalarOptimizationPasses(); 656 657 if (EnableAMDGPUAliasAnalysis) { 658 addPass(createAMDGPUAAWrapperPass()); 659 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 660 AAResults &AAR) { 661 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 662 AAR.addAAResult(WrapperPass->getResult()); 663 })); 664 } 665 } 666 667 TargetPassConfig::addIRPasses(); 668 669 // EarlyCSE is not always strong enough to clean up what LSR produces. For 670 // example, GVN can combine 671 // 672 // %0 = add %a, %b 673 // %1 = add %b, %a 674 // 675 // and 676 // 677 // %0 = shl nsw %a, 2 678 // %1 = shl %a, 2 679 // 680 // but EarlyCSE can do neither of them. 681 if (getOptLevel() != CodeGenOpt::None) 682 addEarlyCSEOrGVNPass(); 683 } 684 685 void AMDGPUPassConfig::addCodeGenPrepare() { 686 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 687 EnableLowerKernelArguments) 688 addPass(createAMDGPULowerKernelArgumentsPass()); 689 690 TargetPassConfig::addCodeGenPrepare(); 691 692 if (EnableLoadStoreVectorizer) 693 addPass(createLoadStoreVectorizerPass()); 694 } 695 696 bool AMDGPUPassConfig::addPreISel() { 697 addPass(createLowerSwitchPass()); 698 addPass(createFlattenCFGPass()); 699 return false; 700 } 701 702 bool AMDGPUPassConfig::addInstSelector() { 703 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 704 return false; 705 } 706 707 bool AMDGPUPassConfig::addGCPasses() { 708 // Do nothing. GC is not supported. 709 return false; 710 } 711 712 //===----------------------------------------------------------------------===// 713 // R600 Pass Setup 714 //===----------------------------------------------------------------------===// 715 716 bool R600PassConfig::addPreISel() { 717 AMDGPUPassConfig::addPreISel(); 718 719 if (EnableR600StructurizeCFG) 720 addPass(createStructurizeCFGPass()); 721 return false; 722 } 723 724 bool R600PassConfig::addInstSelector() { 725 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 726 return false; 727 } 728 729 void R600PassConfig::addPreRegAlloc() { 730 addPass(createR600VectorRegMerger()); 731 } 732 733 void R600PassConfig::addPreSched2() { 734 addPass(createR600EmitClauseMarkers(), false); 735 if (EnableR600IfConvert) 736 addPass(&IfConverterID, false); 737 addPass(createR600ClauseMergePass(), false); 738 } 739 740 void R600PassConfig::addPreEmitPass() { 741 addPass(createAMDGPUCFGStructurizerPass(), false); 742 addPass(createR600ExpandSpecialInstrsPass(), false); 743 addPass(&FinalizeMachineBundlesID, false); 744 addPass(createR600Packetizer(), false); 745 addPass(createR600ControlFlowFinalizer(), false); 746 } 747 748 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 749 return new R600PassConfig(*this, PM); 750 } 751 752 //===----------------------------------------------------------------------===// 753 // GCN Pass Setup 754 //===----------------------------------------------------------------------===// 755 756 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 757 MachineSchedContext *C) const { 758 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 759 if (ST.enableSIScheduler()) 760 return createSIMachineScheduler(C); 761 return createGCNMaxOccupancyMachineScheduler(C); 762 } 763 764 bool GCNPassConfig::addPreISel() { 765 AMDGPUPassConfig::addPreISel(); 766 767 if (EnableAtomicOptimizations) { 768 addPass(createAMDGPUAtomicOptimizerPass()); 769 } 770 771 // FIXME: We need to run a pass to propagate the attributes when calls are 772 // supported. 773 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 774 775 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 776 // regions formed by them. 777 addPass(&AMDGPUUnifyDivergentExitNodesID); 778 if (!LateCFGStructurize) { 779 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 780 } 781 addPass(createSinkingPass()); 782 addPass(createAMDGPUAnnotateUniformValues()); 783 if (!LateCFGStructurize) { 784 addPass(createSIAnnotateControlFlowPass()); 785 } 786 787 return false; 788 } 789 790 void GCNPassConfig::addMachineSSAOptimization() { 791 TargetPassConfig::addMachineSSAOptimization(); 792 793 // We want to fold operands after PeepholeOptimizer has run (or as part of 794 // it), because it will eliminate extra copies making it easier to fold the 795 // real source operand. We want to eliminate dead instructions after, so that 796 // we see fewer uses of the copies. We then need to clean up the dead 797 // instructions leftover after the operands are folded as well. 798 // 799 // XXX - Can we get away without running DeadMachineInstructionElim again? 800 addPass(&SIFoldOperandsID); 801 if (EnableDPPCombine) 802 addPass(&GCNDPPCombineID); 803 addPass(&DeadMachineInstructionElimID); 804 addPass(&SILoadStoreOptimizerID); 805 if (EnableSDWAPeephole) { 806 addPass(&SIPeepholeSDWAID); 807 addPass(&EarlyMachineLICMID); 808 addPass(&MachineCSEID); 809 addPass(&SIFoldOperandsID); 810 addPass(&DeadMachineInstructionElimID); 811 } 812 addPass(createSIShrinkInstructionsPass()); 813 } 814 815 bool GCNPassConfig::addILPOpts() { 816 if (EnableEarlyIfConversion) 817 addPass(&EarlyIfConverterID); 818 819 TargetPassConfig::addILPOpts(); 820 return false; 821 } 822 823 bool GCNPassConfig::addInstSelector() { 824 AMDGPUPassConfig::addInstSelector(); 825 addPass(&SIFixSGPRCopiesID); 826 addPass(createSILowerI1CopiesPass()); 827 addPass(createSIFixupVectorISelPass()); 828 return false; 829 } 830 831 bool GCNPassConfig::addIRTranslator() { 832 addPass(new IRTranslator()); 833 return false; 834 } 835 836 bool GCNPassConfig::addLegalizeMachineIR() { 837 addPass(new Legalizer()); 838 return false; 839 } 840 841 bool GCNPassConfig::addRegBankSelect() { 842 addPass(new RegBankSelect()); 843 return false; 844 } 845 846 bool GCNPassConfig::addGlobalInstructionSelect() { 847 addPass(new InstructionSelect()); 848 return false; 849 } 850 851 void GCNPassConfig::addPreRegAlloc() { 852 if (LateCFGStructurize) { 853 addPass(createAMDGPUMachineCFGStructurizerPass()); 854 } 855 addPass(createSIWholeQuadModePass()); 856 } 857 858 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 859 // FIXME: We have to disable the verifier here because of PHIElimination + 860 // TwoAddressInstructions disabling it. 861 862 // This must be run immediately after phi elimination and before 863 // TwoAddressInstructions, otherwise the processing of the tied operand of 864 // SI_ELSE will introduce a copy of the tied operand source after the else. 865 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 866 867 // This must be run after SILowerControlFlow, since it needs to use the 868 // machine-level CFG, but before register allocation. 869 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 870 871 TargetPassConfig::addFastRegAlloc(RegAllocPass); 872 } 873 874 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 875 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 876 877 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 878 879 // This must be run immediately after phi elimination and before 880 // TwoAddressInstructions, otherwise the processing of the tied operand of 881 // SI_ELSE will introduce a copy of the tied operand source after the else. 882 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 883 884 // This must be run after SILowerControlFlow, since it needs to use the 885 // machine-level CFG, but before register allocation. 886 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 887 888 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 889 } 890 891 void GCNPassConfig::addPostRegAlloc() { 892 addPass(&SIFixVGPRCopiesID); 893 if (getOptLevel() > CodeGenOpt::None) 894 addPass(&SIOptimizeExecMaskingID); 895 TargetPassConfig::addPostRegAlloc(); 896 } 897 898 void GCNPassConfig::addPreSched2() { 899 } 900 901 void GCNPassConfig::addPreEmitPass() { 902 addPass(createSIMemoryLegalizerPass()); 903 addPass(createSIInsertWaitcntsPass()); 904 addPass(createSIShrinkInstructionsPass()); 905 addPass(createSIModeRegisterPass()); 906 907 // The hazard recognizer that runs as part of the post-ra scheduler does not 908 // guarantee to be able handle all hazards correctly. This is because if there 909 // are multiple scheduling regions in a basic block, the regions are scheduled 910 // bottom up, so when we begin to schedule a region we don't know what 911 // instructions were emitted directly before it. 912 // 913 // Here we add a stand-alone hazard recognizer pass which can handle all 914 // cases. 915 // 916 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 917 // be better for it to emit S_NOP <N> when possible. 918 addPass(&PostRAHazardRecognizerID); 919 920 addPass(&SIInsertSkipsPassID); 921 addPass(createSIDebuggerInsertNopsPass()); 922 addPass(&BranchRelaxationPassID); 923 } 924 925 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 926 return new GCNPassConfig(*this, PM); 927 } 928