1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <memory> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableR600StructurizeCFG( 54 "r600-ir-structurize", 55 cl::desc("Use StructurizeCFG IR pass"), 56 cl::init(true)); 57 58 static cl::opt<bool> EnableSROA( 59 "amdgpu-sroa", 60 cl::desc("Run SROA after promote alloca pass"), 61 cl::ReallyHidden, 62 cl::init(true)); 63 64 static cl::opt<bool> 65 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 66 cl::desc("Run early if-conversion"), 67 cl::init(false)); 68 69 static cl::opt<bool> EnableR600IfConvert( 70 "r600-if-convert", 71 cl::desc("Use if conversion pass"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Option to disable vectorizer for tests. 76 static cl::opt<bool> EnableLoadStoreVectorizer( 77 "amdgpu-load-store-vectorizer", 78 cl::desc("Enable load store vectorizer"), 79 cl::init(true), 80 cl::Hidden); 81 82 // Option to control global loads scalarization 83 static cl::opt<bool> ScalarizeGlobal( 84 "amdgpu-scalarize-global-loads", 85 cl::desc("Enable global load scalarization"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to run internalize pass. 90 static cl::opt<bool> InternalizeSymbols( 91 "amdgpu-internalize-symbols", 92 cl::desc("Enable elimination of non-kernel functions and unused globals"), 93 cl::init(false), 94 cl::Hidden); 95 96 // Option to inline all early. 97 static cl::opt<bool> EarlyInlineAll( 98 "amdgpu-early-inline-all", 99 cl::desc("Inline all functions early"), 100 cl::init(false), 101 cl::Hidden); 102 103 static cl::opt<bool> EnableSDWAPeephole( 104 "amdgpu-sdwa-peephole", 105 cl::desc("Enable SDWA peepholer"), 106 cl::init(true)); 107 108 // Enable address space based alias analysis 109 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 110 cl::desc("Enable AMDGPU Alias Analysis"), 111 cl::init(true)); 112 113 // Option to run late CFG structurizer 114 static cl::opt<bool, true> LateCFGStructurize( 115 "amdgpu-late-structurize", 116 cl::desc("Enable late CFG structurization"), 117 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 118 cl::Hidden); 119 120 static cl::opt<bool, true> EnableAMDGPUFunctionCalls( 121 "amdgpu-function-calls", 122 cl::desc("Enable AMDGPU function call support"), 123 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 124 cl::init(false), 125 cl::Hidden); 126 127 // Enable lib calls simplifications 128 static cl::opt<bool> EnableLibCallSimplify( 129 "amdgpu-simplify-libcall", 130 cl::desc("Enable amdgpu library simplifications"), 131 cl::init(true), 132 cl::Hidden); 133 134 static cl::opt<bool> EnableLowerKernelArguments( 135 "amdgpu-ir-lower-kernel-arguments", 136 cl::desc("Lower kernel argument loads in IR pass"), 137 cl::init(true), 138 cl::Hidden); 139 140 extern "C" void LLVMInitializeAMDGPUTarget() { 141 // Register the target 142 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 143 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 144 145 PassRegistry *PR = PassRegistry::getPassRegistry(); 146 initializeR600ClauseMergePassPass(*PR); 147 initializeR600ControlFlowFinalizerPass(*PR); 148 initializeR600PacketizerPass(*PR); 149 initializeR600ExpandSpecialInstrsPassPass(*PR); 150 initializeR600VectorRegMergerPass(*PR); 151 initializeGlobalISel(*PR); 152 initializeAMDGPUDAGToDAGISelPass(*PR); 153 initializeSILowerI1CopiesPass(*PR); 154 initializeSIFixSGPRCopiesPass(*PR); 155 initializeSIFixVGPRCopiesPass(*PR); 156 initializeSIFoldOperandsPass(*PR); 157 initializeSIPeepholeSDWAPass(*PR); 158 initializeSIShrinkInstructionsPass(*PR); 159 initializeSIOptimizeExecMaskingPreRAPass(*PR); 160 initializeSILoadStoreOptimizerPass(*PR); 161 initializeAMDGPUAlwaysInlinePass(*PR); 162 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 163 initializeAMDGPUAnnotateUniformValuesPass(*PR); 164 initializeAMDGPUArgumentUsageInfoPass(*PR); 165 initializeAMDGPULowerKernelArgumentsPass(*PR); 166 initializeAMDGPULowerKernelAttributesPass(*PR); 167 initializeAMDGPULowerIntrinsicsPass(*PR); 168 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 169 initializeAMDGPUPromoteAllocaPass(*PR); 170 initializeAMDGPUCodeGenPreparePass(*PR); 171 initializeAMDGPURewriteOutArgumentsPass(*PR); 172 initializeAMDGPUUnifyMetadataPass(*PR); 173 initializeSIAnnotateControlFlowPass(*PR); 174 initializeSIInsertWaitcntsPass(*PR); 175 initializeSIWholeQuadModePass(*PR); 176 initializeSILowerControlFlowPass(*PR); 177 initializeSIInsertSkipsPass(*PR); 178 initializeSIMemoryLegalizerPass(*PR); 179 initializeSIDebuggerInsertNopsPass(*PR); 180 initializeSIOptimizeExecMaskingPass(*PR); 181 initializeSIFixWWMLivenessPass(*PR); 182 initializeSIFormMemoryClausesPass(*PR); 183 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 184 initializeAMDGPUAAWrapperPassPass(*PR); 185 initializeAMDGPUUseNativeCallsPass(*PR); 186 initializeAMDGPUSimplifyLibCallsPass(*PR); 187 initializeAMDGPUInlinerPass(*PR); 188 } 189 190 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 191 return llvm::make_unique<AMDGPUTargetObjectFile>(); 192 } 193 194 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 195 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 196 } 197 198 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 199 return new SIScheduleDAGMI(C); 200 } 201 202 static ScheduleDAGInstrs * 203 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 204 ScheduleDAGMILive *DAG = 205 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 206 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 207 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 208 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 209 return DAG; 210 } 211 212 static ScheduleDAGInstrs * 213 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 214 auto DAG = new GCNIterativeScheduler(C, 215 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 216 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 217 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 218 return DAG; 219 } 220 221 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 222 return new GCNIterativeScheduler(C, 223 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 224 } 225 226 static ScheduleDAGInstrs * 227 createIterativeILPMachineScheduler(MachineSchedContext *C) { 228 auto DAG = new GCNIterativeScheduler(C, 229 GCNIterativeScheduler::SCHEDULE_ILP); 230 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 231 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 232 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 233 return DAG; 234 } 235 236 static MachineSchedRegistry 237 R600SchedRegistry("r600", "Run R600's custom scheduler", 238 createR600MachineScheduler); 239 240 static MachineSchedRegistry 241 SISchedRegistry("si", "Run SI's custom scheduler", 242 createSIMachineScheduler); 243 244 static MachineSchedRegistry 245 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 246 "Run GCN scheduler to maximize occupancy", 247 createGCNMaxOccupancyMachineScheduler); 248 249 static MachineSchedRegistry 250 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 251 "Run GCN scheduler to maximize occupancy (experimental)", 252 createIterativeGCNMaxOccupancyMachineScheduler); 253 254 static MachineSchedRegistry 255 GCNMinRegSchedRegistry("gcn-minreg", 256 "Run GCN iterative scheduler for minimal register usage (experimental)", 257 createMinRegScheduler); 258 259 static MachineSchedRegistry 260 GCNILPSchedRegistry("gcn-ilp", 261 "Run GCN iterative scheduler for ILP scheduling (experimental)", 262 createIterativeILPMachineScheduler); 263 264 static StringRef computeDataLayout(const Triple &TT) { 265 if (TT.getArch() == Triple::r600) { 266 // 32-bit pointers. 267 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 268 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 269 } 270 271 // 32-bit private, local, and region pointers. 64-bit global, constant and 272 // flat. 273 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 274 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 275 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 276 } 277 278 LLVM_READNONE 279 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 280 if (!GPU.empty()) 281 return GPU; 282 283 if (TT.getArch() == Triple::amdgcn) 284 return "generic"; 285 286 return "r600"; 287 } 288 289 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 290 // The AMDGPU toolchain only supports generating shared objects, so we 291 // must always use PIC. 292 return Reloc::PIC_; 293 } 294 295 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) { 296 if (CM) 297 return *CM; 298 return CodeModel::Small; 299 } 300 301 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 302 StringRef CPU, StringRef FS, 303 TargetOptions Options, 304 Optional<Reloc::Model> RM, 305 Optional<CodeModel::Model> CM, 306 CodeGenOpt::Level OptLevel) 307 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 308 FS, Options, getEffectiveRelocModel(RM), 309 getEffectiveCodeModel(CM), OptLevel), 310 TLOF(createTLOF(getTargetTriple())) { 311 AS = AMDGPU::getAMDGPUAS(TT); 312 initAsmInfo(); 313 } 314 315 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 316 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 317 318 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 319 320 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 321 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 322 return GPUAttr.hasAttribute(Attribute::None) ? 323 getTargetCPU() : GPUAttr.getValueAsString(); 324 } 325 326 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 327 Attribute FSAttr = F.getFnAttribute("target-features"); 328 329 return FSAttr.hasAttribute(Attribute::None) ? 330 getTargetFeatureString() : 331 FSAttr.getValueAsString(); 332 } 333 334 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 335 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 336 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 337 AAR.addAAResult(WrapperPass->getResult()); 338 }); 339 } 340 341 /// Predicate for Internalize pass. 342 static bool mustPreserveGV(const GlobalValue &GV) { 343 if (const Function *F = dyn_cast<Function>(&GV)) 344 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 345 346 return !GV.use_empty(); 347 } 348 349 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 350 Builder.DivergentTarget = true; 351 352 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 353 bool Internalize = InternalizeSymbols; 354 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; 355 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 356 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 357 358 if (EnableAMDGPUFunctionCalls) { 359 delete Builder.Inliner; 360 Builder.Inliner = createAMDGPUFunctionInliningPass(); 361 } 362 363 if (Internalize) { 364 // If we're generating code, we always have the whole program available. The 365 // relocations expected for externally visible functions aren't supported, 366 // so make sure every non-entry function is hidden. 367 Builder.addExtension( 368 PassManagerBuilder::EP_EnabledOnOptLevel0, 369 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 370 PM.add(createInternalizePass(mustPreserveGV)); 371 }); 372 } 373 374 Builder.addExtension( 375 PassManagerBuilder::EP_ModuleOptimizerEarly, 376 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 377 legacy::PassManagerBase &PM) { 378 if (AMDGPUAA) { 379 PM.add(createAMDGPUAAWrapperPass()); 380 PM.add(createAMDGPUExternalAAWrapperPass()); 381 } 382 PM.add(createAMDGPUUnifyMetadataPass()); 383 if (Internalize) { 384 PM.add(createInternalizePass(mustPreserveGV)); 385 PM.add(createGlobalDCEPass()); 386 } 387 if (EarlyInline) 388 PM.add(createAMDGPUAlwaysInlinePass(false)); 389 }); 390 391 const auto &Opt = Options; 392 Builder.addExtension( 393 PassManagerBuilder::EP_EarlyAsPossible, 394 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 395 legacy::PassManagerBase &PM) { 396 if (AMDGPUAA) { 397 PM.add(createAMDGPUAAWrapperPass()); 398 PM.add(createAMDGPUExternalAAWrapperPass()); 399 } 400 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 401 if (LibCallSimplify) 402 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 403 }); 404 405 Builder.addExtension( 406 PassManagerBuilder::EP_CGSCCOptimizerLate, 407 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 408 // Add infer address spaces pass to the opt pipeline after inlining 409 // but before SROA to increase SROA opportunities. 410 PM.add(createInferAddressSpacesPass()); 411 412 // This should run after inlining to have any chance of doing anything, 413 // and before other cleanup optimizations. 414 PM.add(createAMDGPULowerKernelAttributesPass()); 415 }); 416 } 417 418 //===----------------------------------------------------------------------===// 419 // R600 Target Machine (R600 -> Cayman) 420 //===----------------------------------------------------------------------===// 421 422 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 423 StringRef CPU, StringRef FS, 424 TargetOptions Options, 425 Optional<Reloc::Model> RM, 426 Optional<CodeModel::Model> CM, 427 CodeGenOpt::Level OL, bool JIT) 428 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 429 setRequiresStructuredCFG(true); 430 } 431 432 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 433 const Function &F) const { 434 StringRef GPU = getGPUName(F); 435 StringRef FS = getFeatureString(F); 436 437 SmallString<128> SubtargetKey(GPU); 438 SubtargetKey.append(FS); 439 440 auto &I = SubtargetMap[SubtargetKey]; 441 if (!I) { 442 // This needs to be done before we create a new subtarget since any 443 // creation will depend on the TM and the code generation flags on the 444 // function that reside in TargetOptions. 445 resetTargetOptions(F); 446 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 447 } 448 449 return I.get(); 450 } 451 452 TargetTransformInfo 453 R600TargetMachine::getTargetTransformInfo(const Function &F) { 454 return TargetTransformInfo(R600TTIImpl(this, F)); 455 } 456 457 //===----------------------------------------------------------------------===// 458 // GCN Target Machine (SI+) 459 //===----------------------------------------------------------------------===// 460 461 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 462 StringRef CPU, StringRef FS, 463 TargetOptions Options, 464 Optional<Reloc::Model> RM, 465 Optional<CodeModel::Model> CM, 466 CodeGenOpt::Level OL, bool JIT) 467 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 468 469 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 470 StringRef GPU = getGPUName(F); 471 StringRef FS = getFeatureString(F); 472 473 SmallString<128> SubtargetKey(GPU); 474 SubtargetKey.append(FS); 475 476 auto &I = SubtargetMap[SubtargetKey]; 477 if (!I) { 478 // This needs to be done before we create a new subtarget since any 479 // creation will depend on the TM and the code generation flags on the 480 // function that reside in TargetOptions. 481 resetTargetOptions(F); 482 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 483 } 484 485 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 486 487 return I.get(); 488 } 489 490 TargetTransformInfo 491 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 492 return TargetTransformInfo(GCNTTIImpl(this, F)); 493 } 494 495 //===----------------------------------------------------------------------===// 496 // AMDGPU Pass Setup 497 //===----------------------------------------------------------------------===// 498 499 namespace { 500 501 class AMDGPUPassConfig : public TargetPassConfig { 502 public: 503 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 504 : TargetPassConfig(TM, PM) { 505 // Exceptions and StackMaps are not supported, so these passes will never do 506 // anything. 507 disablePass(&StackMapLivenessID); 508 disablePass(&FuncletLayoutID); 509 } 510 511 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 512 return getTM<AMDGPUTargetMachine>(); 513 } 514 515 ScheduleDAGInstrs * 516 createMachineScheduler(MachineSchedContext *C) const override { 517 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 518 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 519 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 520 return DAG; 521 } 522 523 void addEarlyCSEOrGVNPass(); 524 void addStraightLineScalarOptimizationPasses(); 525 void addIRPasses() override; 526 void addCodeGenPrepare() override; 527 bool addPreISel() override; 528 bool addInstSelector() override; 529 bool addGCPasses() override; 530 }; 531 532 class R600PassConfig final : public AMDGPUPassConfig { 533 public: 534 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 535 : AMDGPUPassConfig(TM, PM) {} 536 537 ScheduleDAGInstrs *createMachineScheduler( 538 MachineSchedContext *C) const override { 539 return createR600MachineScheduler(C); 540 } 541 542 bool addPreISel() override; 543 bool addInstSelector() override; 544 void addPreRegAlloc() override; 545 void addPreSched2() override; 546 void addPreEmitPass() override; 547 }; 548 549 class GCNPassConfig final : public AMDGPUPassConfig { 550 public: 551 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 552 : AMDGPUPassConfig(TM, PM) { 553 // It is necessary to know the register usage of the entire call graph. We 554 // allow calls without EnableAMDGPUFunctionCalls if they are marked 555 // noinline, so this is always required. 556 setRequiresCodeGenSCCOrder(true); 557 } 558 559 GCNTargetMachine &getGCNTargetMachine() const { 560 return getTM<GCNTargetMachine>(); 561 } 562 563 ScheduleDAGInstrs * 564 createMachineScheduler(MachineSchedContext *C) const override; 565 566 bool addPreISel() override; 567 void addMachineSSAOptimization() override; 568 bool addILPOpts() override; 569 bool addInstSelector() override; 570 bool addIRTranslator() override; 571 bool addLegalizeMachineIR() override; 572 bool addRegBankSelect() override; 573 bool addGlobalInstructionSelect() override; 574 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 575 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 576 void addPreRegAlloc() override; 577 void addPostRegAlloc() override; 578 void addPreSched2() override; 579 void addPreEmitPass() override; 580 }; 581 582 } // end anonymous namespace 583 584 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 585 if (getOptLevel() == CodeGenOpt::Aggressive) 586 addPass(createGVNPass()); 587 else 588 addPass(createEarlyCSEPass()); 589 } 590 591 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 592 addPass(createLICMPass()); 593 addPass(createSeparateConstOffsetFromGEPPass()); 594 addPass(createSpeculativeExecutionPass()); 595 // ReassociateGEPs exposes more opportunites for SLSR. See 596 // the example in reassociate-geps-and-slsr.ll. 597 addPass(createStraightLineStrengthReducePass()); 598 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 599 // EarlyCSE can reuse. 600 addEarlyCSEOrGVNPass(); 601 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 602 addPass(createNaryReassociatePass()); 603 // NaryReassociate on GEPs creates redundant common expressions, so run 604 // EarlyCSE after it. 605 addPass(createEarlyCSEPass()); 606 } 607 608 void AMDGPUPassConfig::addIRPasses() { 609 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 610 611 // There is no reason to run these. 612 disablePass(&StackMapLivenessID); 613 disablePass(&FuncletLayoutID); 614 disablePass(&PatchableFunctionID); 615 616 addPass(createAMDGPULowerIntrinsicsPass()); 617 618 if (TM.getTargetTriple().getArch() == Triple::r600 || 619 !EnableAMDGPUFunctionCalls) { 620 // Function calls are not supported, so make sure we inline everything. 621 addPass(createAMDGPUAlwaysInlinePass()); 622 addPass(createAlwaysInlinerLegacyPass()); 623 // We need to add the barrier noop pass, otherwise adding the function 624 // inlining pass will cause all of the PassConfigs passes to be run 625 // one function at a time, which means if we have a nodule with two 626 // functions, then we will generate code for the first function 627 // without ever running any passes on the second. 628 addPass(createBarrierNoopPass()); 629 } 630 631 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 632 // TODO: May want to move later or split into an early and late one. 633 634 addPass(createAMDGPUCodeGenPreparePass()); 635 } 636 637 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 638 if (TM.getTargetTriple().getArch() == Triple::r600) 639 addPass(createR600OpenCLImageTypeLoweringPass()); 640 641 // Replace OpenCL enqueued block function pointers with global variables. 642 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 643 644 if (TM.getOptLevel() > CodeGenOpt::None) { 645 addPass(createInferAddressSpacesPass()); 646 addPass(createAMDGPUPromoteAlloca()); 647 648 if (EnableSROA) 649 addPass(createSROAPass()); 650 651 addStraightLineScalarOptimizationPasses(); 652 653 if (EnableAMDGPUAliasAnalysis) { 654 addPass(createAMDGPUAAWrapperPass()); 655 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 656 AAResults &AAR) { 657 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 658 AAR.addAAResult(WrapperPass->getResult()); 659 })); 660 } 661 } 662 663 TargetPassConfig::addIRPasses(); 664 665 // EarlyCSE is not always strong enough to clean up what LSR produces. For 666 // example, GVN can combine 667 // 668 // %0 = add %a, %b 669 // %1 = add %b, %a 670 // 671 // and 672 // 673 // %0 = shl nsw %a, 2 674 // %1 = shl %a, 2 675 // 676 // but EarlyCSE can do neither of them. 677 if (getOptLevel() != CodeGenOpt::None) 678 addEarlyCSEOrGVNPass(); 679 } 680 681 void AMDGPUPassConfig::addCodeGenPrepare() { 682 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 683 EnableLowerKernelArguments) 684 addPass(createAMDGPULowerKernelArgumentsPass()); 685 686 TargetPassConfig::addCodeGenPrepare(); 687 688 if (EnableLoadStoreVectorizer) 689 addPass(createLoadStoreVectorizerPass()); 690 } 691 692 bool AMDGPUPassConfig::addPreISel() { 693 addPass(createFlattenCFGPass()); 694 return false; 695 } 696 697 bool AMDGPUPassConfig::addInstSelector() { 698 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 699 return false; 700 } 701 702 bool AMDGPUPassConfig::addGCPasses() { 703 // Do nothing. GC is not supported. 704 return false; 705 } 706 707 //===----------------------------------------------------------------------===// 708 // R600 Pass Setup 709 //===----------------------------------------------------------------------===// 710 711 bool R600PassConfig::addPreISel() { 712 AMDGPUPassConfig::addPreISel(); 713 714 if (EnableR600StructurizeCFG) 715 addPass(createStructurizeCFGPass()); 716 return false; 717 } 718 719 bool R600PassConfig::addInstSelector() { 720 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 721 return false; 722 } 723 724 void R600PassConfig::addPreRegAlloc() { 725 addPass(createR600VectorRegMerger()); 726 } 727 728 void R600PassConfig::addPreSched2() { 729 addPass(createR600EmitClauseMarkers(), false); 730 if (EnableR600IfConvert) 731 addPass(&IfConverterID, false); 732 addPass(createR600ClauseMergePass(), false); 733 } 734 735 void R600PassConfig::addPreEmitPass() { 736 addPass(createAMDGPUCFGStructurizerPass(), false); 737 addPass(createR600ExpandSpecialInstrsPass(), false); 738 addPass(&FinalizeMachineBundlesID, false); 739 addPass(createR600Packetizer(), false); 740 addPass(createR600ControlFlowFinalizer(), false); 741 } 742 743 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 744 return new R600PassConfig(*this, PM); 745 } 746 747 //===----------------------------------------------------------------------===// 748 // GCN Pass Setup 749 //===----------------------------------------------------------------------===// 750 751 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 752 MachineSchedContext *C) const { 753 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 754 if (ST.enableSIScheduler()) 755 return createSIMachineScheduler(C); 756 return createGCNMaxOccupancyMachineScheduler(C); 757 } 758 759 bool GCNPassConfig::addPreISel() { 760 AMDGPUPassConfig::addPreISel(); 761 762 // FIXME: We need to run a pass to propagate the attributes when calls are 763 // supported. 764 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 765 766 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 767 // regions formed by them. 768 addPass(&AMDGPUUnifyDivergentExitNodesID); 769 if (!LateCFGStructurize) { 770 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 771 } 772 addPass(createSinkingPass()); 773 addPass(createAMDGPUAnnotateUniformValues()); 774 if (!LateCFGStructurize) { 775 addPass(createSIAnnotateControlFlowPass()); 776 } 777 778 return false; 779 } 780 781 void GCNPassConfig::addMachineSSAOptimization() { 782 TargetPassConfig::addMachineSSAOptimization(); 783 784 // We want to fold operands after PeepholeOptimizer has run (or as part of 785 // it), because it will eliminate extra copies making it easier to fold the 786 // real source operand. We want to eliminate dead instructions after, so that 787 // we see fewer uses of the copies. We then need to clean up the dead 788 // instructions leftover after the operands are folded as well. 789 // 790 // XXX - Can we get away without running DeadMachineInstructionElim again? 791 addPass(&SIFoldOperandsID); 792 addPass(&DeadMachineInstructionElimID); 793 addPass(&SILoadStoreOptimizerID); 794 if (EnableSDWAPeephole) { 795 addPass(&SIPeepholeSDWAID); 796 addPass(&EarlyMachineLICMID); 797 addPass(&MachineCSEID); 798 addPass(&SIFoldOperandsID); 799 addPass(&DeadMachineInstructionElimID); 800 } 801 addPass(createSIShrinkInstructionsPass()); 802 } 803 804 bool GCNPassConfig::addILPOpts() { 805 if (EnableEarlyIfConversion) 806 addPass(&EarlyIfConverterID); 807 808 TargetPassConfig::addILPOpts(); 809 return false; 810 } 811 812 bool GCNPassConfig::addInstSelector() { 813 AMDGPUPassConfig::addInstSelector(); 814 addPass(createSILowerI1CopiesPass()); 815 addPass(&SIFixSGPRCopiesID); 816 return false; 817 } 818 819 bool GCNPassConfig::addIRTranslator() { 820 addPass(new IRTranslator()); 821 return false; 822 } 823 824 bool GCNPassConfig::addLegalizeMachineIR() { 825 addPass(new Legalizer()); 826 return false; 827 } 828 829 bool GCNPassConfig::addRegBankSelect() { 830 addPass(new RegBankSelect()); 831 return false; 832 } 833 834 bool GCNPassConfig::addGlobalInstructionSelect() { 835 addPass(new InstructionSelect()); 836 return false; 837 } 838 839 void GCNPassConfig::addPreRegAlloc() { 840 if (LateCFGStructurize) { 841 addPass(createAMDGPUMachineCFGStructurizerPass()); 842 } 843 addPass(createSIWholeQuadModePass()); 844 } 845 846 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 847 // FIXME: We have to disable the verifier here because of PHIElimination + 848 // TwoAddressInstructions disabling it. 849 850 // This must be run immediately after phi elimination and before 851 // TwoAddressInstructions, otherwise the processing of the tied operand of 852 // SI_ELSE will introduce a copy of the tied operand source after the else. 853 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 854 855 // This must be run after SILowerControlFlow, since it needs to use the 856 // machine-level CFG, but before register allocation. 857 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 858 859 TargetPassConfig::addFastRegAlloc(RegAllocPass); 860 } 861 862 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 863 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 864 865 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 866 867 // This must be run immediately after phi elimination and before 868 // TwoAddressInstructions, otherwise the processing of the tied operand of 869 // SI_ELSE will introduce a copy of the tied operand source after the else. 870 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 871 872 // This must be run after SILowerControlFlow, since it needs to use the 873 // machine-level CFG, but before register allocation. 874 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 875 876 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 877 } 878 879 void GCNPassConfig::addPostRegAlloc() { 880 addPass(&SIFixVGPRCopiesID); 881 addPass(&SIOptimizeExecMaskingID); 882 TargetPassConfig::addPostRegAlloc(); 883 } 884 885 void GCNPassConfig::addPreSched2() { 886 } 887 888 void GCNPassConfig::addPreEmitPass() { 889 addPass(createSIMemoryLegalizerPass()); 890 addPass(createSIInsertWaitcntsPass()); 891 addPass(createSIShrinkInstructionsPass()); 892 893 // The hazard recognizer that runs as part of the post-ra scheduler does not 894 // guarantee to be able handle all hazards correctly. This is because if there 895 // are multiple scheduling regions in a basic block, the regions are scheduled 896 // bottom up, so when we begin to schedule a region we don't know what 897 // instructions were emitted directly before it. 898 // 899 // Here we add a stand-alone hazard recognizer pass which can handle all 900 // cases. 901 // 902 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 903 // be better for it to emit S_NOP <N> when possible. 904 addPass(&PostRAHazardRecognizerID); 905 906 addPass(&SIInsertSkipsPassID); 907 addPass(createSIDebuggerInsertNopsPass()); 908 addPass(&BranchRelaxationPassID); 909 } 910 911 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 912 return new GCNPassConfig(*this, PM); 913 } 914