1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUTargetObjectFile.h" 20 #include "AMDGPUTargetTransformInfo.h" 21 #include "GCNSchedStrategy.h" 22 #include "R600MachineScheduler.h" 23 #include "SIMachineScheduler.h" 24 #include "llvm/ADT/SmallString.h" 25 #include "llvm/ADT/STLExtras.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/CodeGen/GlobalISel/GISelAccessor.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/MachineScheduler.h" 31 #include "llvm/CodeGen/Passes.h" 32 #include "llvm/CodeGen/TargetPassConfig.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Transforms/IPO.h" 35 #include "llvm/Transforms/IPO/AlwaysInliner.h" 36 #include "llvm/Transforms/Scalar.h" 37 #include "llvm/Transforms/Scalar/GVN.h" 38 #include "llvm/Transforms/Vectorize.h" 39 #include "llvm/IR/Attributes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/LegacyPassManager.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 #include <memory> 47 48 using namespace llvm; 49 50 static cl::opt<bool> EnableR600StructurizeCFG( 51 "r600-ir-structurize", 52 cl::desc("Use StructurizeCFG IR pass"), 53 cl::init(true)); 54 55 static cl::opt<bool> EnableSROA( 56 "amdgpu-sroa", 57 cl::desc("Run SROA after promote alloca pass"), 58 cl::ReallyHidden, 59 cl::init(true)); 60 61 static cl::opt<bool> EnableR600IfConvert( 62 "r600-if-convert", 63 cl::desc("Use if conversion pass"), 64 cl::ReallyHidden, 65 cl::init(true)); 66 67 // Option to disable vectorizer for tests. 68 static cl::opt<bool> EnableLoadStoreVectorizer( 69 "amdgpu-load-store-vectorizer", 70 cl::desc("Enable load store vectorizer"), 71 cl::init(true), 72 cl::Hidden); 73 74 // Option to to control global loads scalarization 75 static cl::opt<bool> ScalarizeGlobal( 76 "amdgpu-scalarize-global-loads", 77 cl::desc("Enable global load scalarization"), 78 cl::init(false), 79 cl::Hidden); 80 81 extern "C" void LLVMInitializeAMDGPUTarget() { 82 // Register the target 83 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 84 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 85 86 PassRegistry *PR = PassRegistry::getPassRegistry(); 87 initializeSILowerI1CopiesPass(*PR); 88 initializeSIFixSGPRCopiesPass(*PR); 89 initializeSIFixVGPRCopiesPass(*PR); 90 initializeSIFoldOperandsPass(*PR); 91 initializeSIShrinkInstructionsPass(*PR); 92 initializeSIFixControlFlowLiveIntervalsPass(*PR); 93 initializeSILoadStoreOptimizerPass(*PR); 94 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 95 initializeAMDGPUAnnotateUniformValuesPass(*PR); 96 initializeAMDGPUPromoteAllocaPass(*PR); 97 initializeAMDGPUCodeGenPreparePass(*PR); 98 initializeAMDGPUUnifyMetadataPass(*PR); 99 initializeSIAnnotateControlFlowPass(*PR); 100 initializeSIInsertWaitsPass(*PR); 101 initializeSIWholeQuadModePass(*PR); 102 initializeSILowerControlFlowPass(*PR); 103 initializeSIInsertSkipsPass(*PR); 104 initializeSIDebuggerInsertNopsPass(*PR); 105 initializeSIOptimizeExecMaskingPass(*PR); 106 } 107 108 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 109 return llvm::make_unique<AMDGPUTargetObjectFile>(); 110 } 111 112 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 113 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 114 } 115 116 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 117 return new SIScheduleDAGMI(C); 118 } 119 120 static ScheduleDAGInstrs * 121 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 122 ScheduleDAGMILive *DAG = 123 new ScheduleDAGMILive(C, 124 llvm::make_unique<GCNMaxOccupancySchedStrategy>(C)); 125 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 126 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 127 return DAG; 128 } 129 130 static MachineSchedRegistry 131 R600SchedRegistry("r600", "Run R600's custom scheduler", 132 createR600MachineScheduler); 133 134 static MachineSchedRegistry 135 SISchedRegistry("si", "Run SI's custom scheduler", 136 createSIMachineScheduler); 137 138 static MachineSchedRegistry 139 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 140 "Run GCN scheduler to maximize occupancy", 141 createGCNMaxOccupancyMachineScheduler); 142 143 static StringRef computeDataLayout(const Triple &TT) { 144 if (TT.getArch() == Triple::r600) { 145 // 32-bit pointers. 146 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 147 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 148 } 149 150 // 32-bit private, local, and region pointers. 64-bit global, constant and 151 // flat. 152 return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" 153 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 154 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 155 } 156 157 LLVM_READNONE 158 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 159 if (!GPU.empty()) 160 return GPU; 161 162 // HSA only supports CI+, so change the default GPU to a CI for HSA. 163 if (TT.getArch() == Triple::amdgcn) 164 return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; 165 166 return "r600"; 167 } 168 169 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 170 // The AMDGPU toolchain only supports generating shared objects, so we 171 // must always use PIC. 172 return Reloc::PIC_; 173 } 174 175 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 176 StringRef CPU, StringRef FS, 177 TargetOptions Options, 178 Optional<Reloc::Model> RM, 179 CodeModel::Model CM, 180 CodeGenOpt::Level OptLevel) 181 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 182 FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), 183 TLOF(createTLOF(getTargetTriple())) { 184 initAsmInfo(); 185 } 186 187 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 188 189 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 190 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 191 return GPUAttr.hasAttribute(Attribute::None) ? 192 getTargetCPU() : GPUAttr.getValueAsString(); 193 } 194 195 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 196 Attribute FSAttr = F.getFnAttribute("target-features"); 197 198 return FSAttr.hasAttribute(Attribute::None) ? 199 getTargetFeatureString() : 200 FSAttr.getValueAsString(); 201 } 202 203 void AMDGPUTargetMachine::addEarlyAsPossiblePasses(PassManagerBase &PM) { 204 PM.add(createAMDGPUUnifyMetadataPass()); 205 } 206 207 //===----------------------------------------------------------------------===// 208 // R600 Target Machine (R600 -> Cayman) 209 //===----------------------------------------------------------------------===// 210 211 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 212 StringRef CPU, StringRef FS, 213 TargetOptions Options, 214 Optional<Reloc::Model> RM, 215 CodeModel::Model CM, CodeGenOpt::Level OL) 216 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 217 setRequiresStructuredCFG(true); 218 } 219 220 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 221 const Function &F) const { 222 StringRef GPU = getGPUName(F); 223 StringRef FS = getFeatureString(F); 224 225 SmallString<128> SubtargetKey(GPU); 226 SubtargetKey.append(FS); 227 228 auto &I = SubtargetMap[SubtargetKey]; 229 if (!I) { 230 // This needs to be done before we create a new subtarget since any 231 // creation will depend on the TM and the code generation flags on the 232 // function that reside in TargetOptions. 233 resetTargetOptions(F); 234 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 235 } 236 237 return I.get(); 238 } 239 240 //===----------------------------------------------------------------------===// 241 // GCN Target Machine (SI+) 242 //===----------------------------------------------------------------------===// 243 244 #ifdef LLVM_BUILD_GLOBAL_ISEL 245 namespace { 246 247 struct SIGISelActualAccessor : public GISelAccessor { 248 std::unique_ptr<AMDGPUCallLowering> CallLoweringInfo; 249 const AMDGPUCallLowering *getCallLowering() const override { 250 return CallLoweringInfo.get(); 251 } 252 }; 253 254 } // end anonymous namespace 255 #endif 256 257 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 258 StringRef CPU, StringRef FS, 259 TargetOptions Options, 260 Optional<Reloc::Model> RM, 261 CodeModel::Model CM, CodeGenOpt::Level OL) 262 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 263 264 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 265 StringRef GPU = getGPUName(F); 266 StringRef FS = getFeatureString(F); 267 268 SmallString<128> SubtargetKey(GPU); 269 SubtargetKey.append(FS); 270 271 auto &I = SubtargetMap[SubtargetKey]; 272 if (!I) { 273 // This needs to be done before we create a new subtarget since any 274 // creation will depend on the TM and the code generation flags on the 275 // function that reside in TargetOptions. 276 resetTargetOptions(F); 277 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 278 279 #ifndef LLVM_BUILD_GLOBAL_ISEL 280 GISelAccessor *GISel = new GISelAccessor(); 281 #else 282 SIGISelActualAccessor *GISel = new SIGISelActualAccessor(); 283 GISel->CallLoweringInfo.reset( 284 new AMDGPUCallLowering(*I->getTargetLowering())); 285 #endif 286 287 I->setGISelAccessor(*GISel); 288 } 289 290 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 291 292 return I.get(); 293 } 294 295 //===----------------------------------------------------------------------===// 296 // AMDGPU Pass Setup 297 //===----------------------------------------------------------------------===// 298 299 namespace { 300 301 class AMDGPUPassConfig : public TargetPassConfig { 302 public: 303 AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM) 304 : TargetPassConfig(TM, PM) { 305 // Exceptions and StackMaps are not supported, so these passes will never do 306 // anything. 307 disablePass(&StackMapLivenessID); 308 disablePass(&FuncletLayoutID); 309 } 310 311 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 312 return getTM<AMDGPUTargetMachine>(); 313 } 314 315 ScheduleDAGInstrs * 316 createMachineScheduler(MachineSchedContext *C) const override { 317 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 318 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 319 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 320 return DAG; 321 } 322 323 void addEarlyCSEOrGVNPass(); 324 void addStraightLineScalarOptimizationPasses(); 325 void addIRPasses() override; 326 void addCodeGenPrepare() override; 327 bool addPreISel() override; 328 bool addInstSelector() override; 329 bool addGCPasses() override; 330 }; 331 332 class R600PassConfig final : public AMDGPUPassConfig { 333 public: 334 R600PassConfig(TargetMachine *TM, PassManagerBase &PM) 335 : AMDGPUPassConfig(TM, PM) {} 336 337 ScheduleDAGInstrs *createMachineScheduler( 338 MachineSchedContext *C) const override { 339 return createR600MachineScheduler(C); 340 } 341 342 bool addPreISel() override; 343 void addPreRegAlloc() override; 344 void addPreSched2() override; 345 void addPreEmitPass() override; 346 }; 347 348 class GCNPassConfig final : public AMDGPUPassConfig { 349 public: 350 GCNPassConfig(TargetMachine *TM, PassManagerBase &PM) 351 : AMDGPUPassConfig(TM, PM) {} 352 353 GCNTargetMachine &getGCNTargetMachine() const { 354 return getTM<GCNTargetMachine>(); 355 } 356 357 ScheduleDAGInstrs * 358 createMachineScheduler(MachineSchedContext *C) const override; 359 360 void addIRPasses() override; 361 bool addPreISel() override; 362 void addMachineSSAOptimization() override; 363 bool addInstSelector() override; 364 #ifdef LLVM_BUILD_GLOBAL_ISEL 365 bool addIRTranslator() override; 366 bool addLegalizeMachineIR() override; 367 bool addRegBankSelect() override; 368 bool addGlobalInstructionSelect() override; 369 #endif 370 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 371 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 372 void addPreRegAlloc() override; 373 void addPostRegAlloc() override; 374 void addPreSched2() override; 375 void addPreEmitPass() override; 376 }; 377 378 } // end anonymous namespace 379 380 TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { 381 return TargetIRAnalysis([this](const Function &F) { 382 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 383 }); 384 } 385 386 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 387 if (getOptLevel() == CodeGenOpt::Aggressive) 388 addPass(createGVNPass()); 389 else 390 addPass(createEarlyCSEPass()); 391 } 392 393 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 394 addPass(createSeparateConstOffsetFromGEPPass()); 395 addPass(createSpeculativeExecutionPass()); 396 // ReassociateGEPs exposes more opportunites for SLSR. See 397 // the example in reassociate-geps-and-slsr.ll. 398 addPass(createStraightLineStrengthReducePass()); 399 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 400 // EarlyCSE can reuse. 401 addEarlyCSEOrGVNPass(); 402 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 403 addPass(createNaryReassociatePass()); 404 // NaryReassociate on GEPs creates redundant common expressions, so run 405 // EarlyCSE after it. 406 addPass(createEarlyCSEPass()); 407 } 408 409 void AMDGPUPassConfig::addIRPasses() { 410 // There is no reason to run these. 411 disablePass(&StackMapLivenessID); 412 disablePass(&FuncletLayoutID); 413 disablePass(&PatchableFunctionID); 414 415 // Function calls are not supported, so make sure we inline everything. 416 addPass(createAMDGPUAlwaysInlinePass()); 417 addPass(createAlwaysInlinerLegacyPass()); 418 // We need to add the barrier noop pass, otherwise adding the function 419 // inlining pass will cause all of the PassConfigs passes to be run 420 // one function at a time, which means if we have a nodule with two 421 // functions, then we will generate code for the first function 422 // without ever running any passes on the second. 423 addPass(createBarrierNoopPass()); 424 425 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 426 addPass(createAMDGPUOpenCLImageTypeLoweringPass()); 427 428 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 429 if (TM.getOptLevel() > CodeGenOpt::None) { 430 addPass(createAMDGPUPromoteAlloca(&TM)); 431 432 if (EnableSROA) 433 addPass(createSROAPass()); 434 435 addStraightLineScalarOptimizationPasses(); 436 } 437 438 TargetPassConfig::addIRPasses(); 439 440 // EarlyCSE is not always strong enough to clean up what LSR produces. For 441 // example, GVN can combine 442 // 443 // %0 = add %a, %b 444 // %1 = add %b, %a 445 // 446 // and 447 // 448 // %0 = shl nsw %a, 2 449 // %1 = shl %a, 2 450 // 451 // but EarlyCSE can do neither of them. 452 if (getOptLevel() != CodeGenOpt::None) 453 addEarlyCSEOrGVNPass(); 454 } 455 456 void AMDGPUPassConfig::addCodeGenPrepare() { 457 TargetPassConfig::addCodeGenPrepare(); 458 459 if (EnableLoadStoreVectorizer) 460 addPass(createLoadStoreVectorizerPass()); 461 } 462 463 bool AMDGPUPassConfig::addPreISel() { 464 addPass(createFlattenCFGPass()); 465 return false; 466 } 467 468 bool AMDGPUPassConfig::addInstSelector() { 469 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 470 return false; 471 } 472 473 bool AMDGPUPassConfig::addGCPasses() { 474 // Do nothing. GC is not supported. 475 return false; 476 } 477 478 //===----------------------------------------------------------------------===// 479 // R600 Pass Setup 480 //===----------------------------------------------------------------------===// 481 482 bool R600PassConfig::addPreISel() { 483 AMDGPUPassConfig::addPreISel(); 484 485 if (EnableR600StructurizeCFG) 486 addPass(createStructurizeCFGPass()); 487 return false; 488 } 489 490 void R600PassConfig::addPreRegAlloc() { 491 addPass(createR600VectorRegMerger(*TM)); 492 } 493 494 void R600PassConfig::addPreSched2() { 495 addPass(createR600EmitClauseMarkers(), false); 496 if (EnableR600IfConvert) 497 addPass(&IfConverterID, false); 498 addPass(createR600ClauseMergePass(*TM), false); 499 } 500 501 void R600PassConfig::addPreEmitPass() { 502 addPass(createAMDGPUCFGStructurizerPass(), false); 503 addPass(createR600ExpandSpecialInstrsPass(*TM), false); 504 addPass(&FinalizeMachineBundlesID, false); 505 addPass(createR600Packetizer(*TM), false); 506 addPass(createR600ControlFlowFinalizer(*TM), false); 507 } 508 509 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 510 return new R600PassConfig(this, PM); 511 } 512 513 //===----------------------------------------------------------------------===// 514 // GCN Pass Setup 515 //===----------------------------------------------------------------------===// 516 517 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 518 MachineSchedContext *C) const { 519 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 520 if (ST.enableSIScheduler()) 521 return createSIMachineScheduler(C); 522 return createGCNMaxOccupancyMachineScheduler(C); 523 } 524 525 bool GCNPassConfig::addPreISel() { 526 AMDGPUPassConfig::addPreISel(); 527 528 // FIXME: We need to run a pass to propagate the attributes when calls are 529 // supported. 530 addPass(&AMDGPUAnnotateKernelFeaturesID); 531 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 532 addPass(createSinkingPass()); 533 addPass(createSITypeRewriter()); 534 addPass(createAMDGPUAnnotateUniformValues()); 535 addPass(createSIAnnotateControlFlowPass()); 536 537 return false; 538 } 539 540 void GCNPassConfig::addMachineSSAOptimization() { 541 TargetPassConfig::addMachineSSAOptimization(); 542 543 // We want to fold operands after PeepholeOptimizer has run (or as part of 544 // it), because it will eliminate extra copies making it easier to fold the 545 // real source operand. We want to eliminate dead instructions after, so that 546 // we see fewer uses of the copies. We then need to clean up the dead 547 // instructions leftover after the operands are folded as well. 548 // 549 // XXX - Can we get away without running DeadMachineInstructionElim again? 550 addPass(&SIFoldOperandsID); 551 addPass(&DeadMachineInstructionElimID); 552 addPass(&SILoadStoreOptimizerID); 553 } 554 555 void GCNPassConfig::addIRPasses() { 556 // TODO: May want to move later or split into an early and late one. 557 addPass(createAMDGPUCodeGenPreparePass(&getGCNTargetMachine())); 558 559 AMDGPUPassConfig::addIRPasses(); 560 } 561 562 bool GCNPassConfig::addInstSelector() { 563 AMDGPUPassConfig::addInstSelector(); 564 addPass(createSILowerI1CopiesPass()); 565 addPass(&SIFixSGPRCopiesID); 566 return false; 567 } 568 569 #ifdef LLVM_BUILD_GLOBAL_ISEL 570 bool GCNPassConfig::addIRTranslator() { 571 addPass(new IRTranslator()); 572 return false; 573 } 574 575 bool GCNPassConfig::addLegalizeMachineIR() { 576 return false; 577 } 578 579 bool GCNPassConfig::addRegBankSelect() { 580 return false; 581 } 582 583 bool GCNPassConfig::addGlobalInstructionSelect() { 584 return false; 585 } 586 #endif 587 588 void GCNPassConfig::addPreRegAlloc() { 589 addPass(createSIShrinkInstructionsPass()); 590 addPass(createSIWholeQuadModePass()); 591 } 592 593 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 594 // FIXME: We have to disable the verifier here because of PHIElimination + 595 // TwoAddressInstructions disabling it. 596 597 // This must be run immediately after phi elimination and before 598 // TwoAddressInstructions, otherwise the processing of the tied operand of 599 // SI_ELSE will introduce a copy of the tied operand source after the else. 600 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 601 602 TargetPassConfig::addFastRegAlloc(RegAllocPass); 603 } 604 605 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 606 // This needs to be run directly before register allocation because earlier 607 // passes might recompute live intervals. 608 insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); 609 610 // This must be run immediately after phi elimination and before 611 // TwoAddressInstructions, otherwise the processing of the tied operand of 612 // SI_ELSE will introduce a copy of the tied operand source after the else. 613 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 614 615 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 616 } 617 618 void GCNPassConfig::addPostRegAlloc() { 619 addPass(&SIFixVGPRCopiesID); 620 addPass(&SIOptimizeExecMaskingID); 621 TargetPassConfig::addPostRegAlloc(); 622 } 623 624 void GCNPassConfig::addPreSched2() { 625 } 626 627 void GCNPassConfig::addPreEmitPass() { 628 // The hazard recognizer that runs as part of the post-ra scheduler does not 629 // guarantee to be able handle all hazards correctly. This is because if there 630 // are multiple scheduling regions in a basic block, the regions are scheduled 631 // bottom up, so when we begin to schedule a region we don't know what 632 // instructions were emitted directly before it. 633 // 634 // Here we add a stand-alone hazard recognizer pass which can handle all 635 // cases. 636 addPass(&PostRAHazardRecognizerID); 637 638 addPass(createSIInsertWaitsPass()); 639 addPass(createSIShrinkInstructionsPass()); 640 addPass(&SIInsertSkipsPassID); 641 addPass(createSIDebuggerInsertNopsPass()); 642 addPass(&BranchRelaxationPassID); 643 } 644 645 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 646 return new GCNPassConfig(this, PM); 647 } 648