1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/IR/PassManager.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Passes/PassBuilder.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Compiler.h" 49 #include "llvm/Support/TargetRegistry.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include "llvm/Transforms/IPO.h" 52 #include "llvm/Transforms/IPO/AlwaysInliner.h" 53 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 54 #include "llvm/Transforms/Scalar.h" 55 #include "llvm/Transforms/Scalar/GVN.h" 56 #include "llvm/Transforms/Utils.h" 57 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 58 #include "llvm/Transforms/Vectorize.h" 59 #include <memory> 60 61 using namespace llvm; 62 63 static cl::opt<bool> EnableR600StructurizeCFG( 64 "r600-ir-structurize", 65 cl::desc("Use StructurizeCFG IR pass"), 66 cl::init(true)); 67 68 static cl::opt<bool> EnableSROA( 69 "amdgpu-sroa", 70 cl::desc("Run SROA after promote alloca pass"), 71 cl::ReallyHidden, 72 cl::init(true)); 73 74 static cl::opt<bool> 75 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 76 cl::desc("Run early if-conversion"), 77 cl::init(false)); 78 79 static cl::opt<bool> 80 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 81 cl::desc("Run pre-RA exec mask optimizations"), 82 cl::init(true)); 83 84 static cl::opt<bool> EnableR600IfConvert( 85 "r600-if-convert", 86 cl::desc("Use if conversion pass"), 87 cl::ReallyHidden, 88 cl::init(true)); 89 90 // Option to disable vectorizer for tests. 91 static cl::opt<bool> EnableLoadStoreVectorizer( 92 "amdgpu-load-store-vectorizer", 93 cl::desc("Enable load store vectorizer"), 94 cl::init(true), 95 cl::Hidden); 96 97 // Option to control global loads scalarization 98 static cl::opt<bool> ScalarizeGlobal( 99 "amdgpu-scalarize-global-loads", 100 cl::desc("Enable global load scalarization"), 101 cl::init(true), 102 cl::Hidden); 103 104 // Option to run internalize pass. 105 static cl::opt<bool> InternalizeSymbols( 106 "amdgpu-internalize-symbols", 107 cl::desc("Enable elimination of non-kernel functions and unused globals"), 108 cl::init(false), 109 cl::Hidden); 110 111 // Option to inline all early. 112 static cl::opt<bool> EarlyInlineAll( 113 "amdgpu-early-inline-all", 114 cl::desc("Inline all functions early"), 115 cl::init(false), 116 cl::Hidden); 117 118 static cl::opt<bool> EnableSDWAPeephole( 119 "amdgpu-sdwa-peephole", 120 cl::desc("Enable SDWA peepholer"), 121 cl::init(true)); 122 123 static cl::opt<bool> EnableDPPCombine( 124 "amdgpu-dpp-combine", 125 cl::desc("Enable DPP combiner"), 126 cl::init(true)); 127 128 // Enable address space based alias analysis 129 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 130 cl::desc("Enable AMDGPU Alias Analysis"), 131 cl::init(true)); 132 133 // Option to run late CFG structurizer 134 static cl::opt<bool, true> LateCFGStructurize( 135 "amdgpu-late-structurize", 136 cl::desc("Enable late CFG structurization"), 137 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 138 cl::Hidden); 139 140 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 141 "amdgpu-function-calls", 142 cl::desc("Enable AMDGPU function call support"), 143 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 144 cl::init(true), 145 cl::Hidden); 146 147 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 148 "amdgpu-fixed-function-abi", 149 cl::desc("Enable all implicit function arguments"), 150 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 151 cl::init(false), 152 cl::Hidden); 153 154 // Enable lib calls simplifications 155 static cl::opt<bool> EnableLibCallSimplify( 156 "amdgpu-simplify-libcall", 157 cl::desc("Enable amdgpu library simplifications"), 158 cl::init(true), 159 cl::Hidden); 160 161 static cl::opt<bool> EnableLowerKernelArguments( 162 "amdgpu-ir-lower-kernel-arguments", 163 cl::desc("Lower kernel argument loads in IR pass"), 164 cl::init(true), 165 cl::Hidden); 166 167 static cl::opt<bool> EnableRegReassign( 168 "amdgpu-reassign-regs", 169 cl::desc("Enable register reassign optimizations on gfx10+"), 170 cl::init(true), 171 cl::Hidden); 172 173 // Enable atomic optimization 174 static cl::opt<bool> EnableAtomicOptimizations( 175 "amdgpu-atomic-optimizations", 176 cl::desc("Enable atomic optimizations"), 177 cl::init(false), 178 cl::Hidden); 179 180 // Enable Mode register optimization 181 static cl::opt<bool> EnableSIModeRegisterPass( 182 "amdgpu-mode-register", 183 cl::desc("Enable mode register pass"), 184 cl::init(true), 185 cl::Hidden); 186 187 // Option is used in lit tests to prevent deadcoding of patterns inspected. 188 static cl::opt<bool> 189 EnableDCEInRA("amdgpu-dce-in-ra", 190 cl::init(true), cl::Hidden, 191 cl::desc("Enable machine DCE inside regalloc")); 192 193 static cl::opt<bool> EnableScalarIRPasses( 194 "amdgpu-scalar-ir-passes", 195 cl::desc("Enable scalar IR passes"), 196 cl::init(true), 197 cl::Hidden); 198 199 static cl::opt<bool> EnableStructurizerWorkarounds( 200 "amdgpu-enable-structurizer-workarounds", 201 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 202 cl::Hidden); 203 204 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 205 // Register the target 206 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 207 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 208 209 PassRegistry *PR = PassRegistry::getPassRegistry(); 210 initializeR600ClauseMergePassPass(*PR); 211 initializeR600ControlFlowFinalizerPass(*PR); 212 initializeR600PacketizerPass(*PR); 213 initializeR600ExpandSpecialInstrsPassPass(*PR); 214 initializeR600VectorRegMergerPass(*PR); 215 initializeGlobalISel(*PR); 216 initializeAMDGPUDAGToDAGISelPass(*PR); 217 initializeGCNDPPCombinePass(*PR); 218 initializeSILowerI1CopiesPass(*PR); 219 initializeSILowerSGPRSpillsPass(*PR); 220 initializeSIFixSGPRCopiesPass(*PR); 221 initializeSIFixVGPRCopiesPass(*PR); 222 initializeSIFoldOperandsPass(*PR); 223 initializeSIPeepholeSDWAPass(*PR); 224 initializeSIShrinkInstructionsPass(*PR); 225 initializeSIOptimizeExecMaskingPreRAPass(*PR); 226 initializeSILoadStoreOptimizerPass(*PR); 227 initializeAMDGPUFixFunctionBitcastsPass(*PR); 228 initializeAMDGPUAlwaysInlinePass(*PR); 229 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 230 initializeAMDGPUAnnotateUniformValuesPass(*PR); 231 initializeAMDGPUArgumentUsageInfoPass(*PR); 232 initializeAMDGPUAtomicOptimizerPass(*PR); 233 initializeAMDGPULowerKernelArgumentsPass(*PR); 234 initializeAMDGPULowerKernelAttributesPass(*PR); 235 initializeAMDGPULowerIntrinsicsPass(*PR); 236 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 237 initializeAMDGPUPostLegalizerCombinerPass(*PR); 238 initializeAMDGPUPreLegalizerCombinerPass(*PR); 239 initializeAMDGPUPromoteAllocaPass(*PR); 240 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 241 initializeAMDGPUCodeGenPreparePass(*PR); 242 initializeAMDGPULateCodeGenPreparePass(*PR); 243 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 244 initializeAMDGPUPropagateAttributesLatePass(*PR); 245 initializeAMDGPURewriteOutArgumentsPass(*PR); 246 initializeAMDGPUUnifyMetadataPass(*PR); 247 initializeSIAnnotateControlFlowPass(*PR); 248 initializeSIInsertHardClausesPass(*PR); 249 initializeSIInsertWaitcntsPass(*PR); 250 initializeSIModeRegisterPass(*PR); 251 initializeSIWholeQuadModePass(*PR); 252 initializeSILowerControlFlowPass(*PR); 253 initializeSIRemoveShortExecBranchesPass(*PR); 254 initializeSIPreEmitPeepholePass(*PR); 255 initializeSIInsertSkipsPass(*PR); 256 initializeSIMemoryLegalizerPass(*PR); 257 initializeSIOptimizeExecMaskingPass(*PR); 258 initializeSIPreAllocateWWMRegsPass(*PR); 259 initializeSIFormMemoryClausesPass(*PR); 260 initializeSIPostRABundlerPass(*PR); 261 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 262 initializeAMDGPUAAWrapperPassPass(*PR); 263 initializeAMDGPUExternalAAWrapperPass(*PR); 264 initializeAMDGPUUseNativeCallsPass(*PR); 265 initializeAMDGPUSimplifyLibCallsPass(*PR); 266 initializeAMDGPUInlinerPass(*PR); 267 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 268 initializeGCNRegBankReassignPass(*PR); 269 initializeGCNNSAReassignPass(*PR); 270 initializeSIAddIMGInitPass(*PR); 271 } 272 273 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 274 return std::make_unique<AMDGPUTargetObjectFile>(); 275 } 276 277 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 278 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 279 } 280 281 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 282 return new SIScheduleDAGMI(C); 283 } 284 285 static ScheduleDAGInstrs * 286 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 287 ScheduleDAGMILive *DAG = 288 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 289 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 290 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 291 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 292 return DAG; 293 } 294 295 static ScheduleDAGInstrs * 296 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 297 auto DAG = new GCNIterativeScheduler(C, 298 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 299 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 300 return DAG; 301 } 302 303 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 304 return new GCNIterativeScheduler(C, 305 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 306 } 307 308 static ScheduleDAGInstrs * 309 createIterativeILPMachineScheduler(MachineSchedContext *C) { 310 auto DAG = new GCNIterativeScheduler(C, 311 GCNIterativeScheduler::SCHEDULE_ILP); 312 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 313 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 314 return DAG; 315 } 316 317 static MachineSchedRegistry 318 R600SchedRegistry("r600", "Run R600's custom scheduler", 319 createR600MachineScheduler); 320 321 static MachineSchedRegistry 322 SISchedRegistry("si", "Run SI's custom scheduler", 323 createSIMachineScheduler); 324 325 static MachineSchedRegistry 326 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 327 "Run GCN scheduler to maximize occupancy", 328 createGCNMaxOccupancyMachineScheduler); 329 330 static MachineSchedRegistry 331 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 332 "Run GCN scheduler to maximize occupancy (experimental)", 333 createIterativeGCNMaxOccupancyMachineScheduler); 334 335 static MachineSchedRegistry 336 GCNMinRegSchedRegistry("gcn-minreg", 337 "Run GCN iterative scheduler for minimal register usage (experimental)", 338 createMinRegScheduler); 339 340 static MachineSchedRegistry 341 GCNILPSchedRegistry("gcn-ilp", 342 "Run GCN iterative scheduler for ILP scheduling (experimental)", 343 createIterativeILPMachineScheduler); 344 345 static StringRef computeDataLayout(const Triple &TT) { 346 if (TT.getArch() == Triple::r600) { 347 // 32-bit pointers. 348 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 349 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 350 } 351 352 // 32-bit private, local, and region pointers. 64-bit global, constant and 353 // flat, non-integral buffer fat pointers. 354 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 355 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 356 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 357 "-ni:7"; 358 } 359 360 LLVM_READNONE 361 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 362 if (!GPU.empty()) 363 return GPU; 364 365 // Need to default to a target with flat support for HSA. 366 if (TT.getArch() == Triple::amdgcn) 367 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 368 369 return "r600"; 370 } 371 372 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 373 // The AMDGPU toolchain only supports generating shared objects, so we 374 // must always use PIC. 375 return Reloc::PIC_; 376 } 377 378 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 379 StringRef CPU, StringRef FS, 380 TargetOptions Options, 381 Optional<Reloc::Model> RM, 382 Optional<CodeModel::Model> CM, 383 CodeGenOpt::Level OptLevel) 384 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 385 FS, Options, getEffectiveRelocModel(RM), 386 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 387 TLOF(createTLOF(getTargetTriple())) { 388 initAsmInfo(); 389 if (TT.getArch() == Triple::amdgcn) { 390 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 391 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 392 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 393 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 394 } 395 } 396 397 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 398 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 399 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 400 401 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 402 403 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 404 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 405 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 406 } 407 408 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 409 Attribute FSAttr = F.getFnAttribute("target-features"); 410 411 return FSAttr.isValid() ? FSAttr.getValueAsString() 412 : getTargetFeatureString(); 413 } 414 415 /// Predicate for Internalize pass. 416 static bool mustPreserveGV(const GlobalValue &GV) { 417 if (const Function *F = dyn_cast<Function>(&GV)) 418 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 419 420 return !GV.use_empty(); 421 } 422 423 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 424 Builder.DivergentTarget = true; 425 426 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 427 bool Internalize = InternalizeSymbols; 428 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 429 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 430 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 431 432 if (EnableFunctionCalls) { 433 delete Builder.Inliner; 434 Builder.Inliner = createAMDGPUFunctionInliningPass(); 435 } 436 437 Builder.addExtension( 438 PassManagerBuilder::EP_ModuleOptimizerEarly, 439 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 440 legacy::PassManagerBase &PM) { 441 if (AMDGPUAA) { 442 PM.add(createAMDGPUAAWrapperPass()); 443 PM.add(createAMDGPUExternalAAWrapperPass()); 444 } 445 PM.add(createAMDGPUUnifyMetadataPass()); 446 PM.add(createAMDGPUPrintfRuntimeBinding()); 447 if (Internalize) 448 PM.add(createInternalizePass(mustPreserveGV)); 449 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 450 if (Internalize) 451 PM.add(createGlobalDCEPass()); 452 if (EarlyInline) 453 PM.add(createAMDGPUAlwaysInlinePass(false)); 454 }); 455 456 Builder.addExtension( 457 PassManagerBuilder::EP_EarlyAsPossible, 458 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 459 legacy::PassManagerBase &PM) { 460 if (AMDGPUAA) { 461 PM.add(createAMDGPUAAWrapperPass()); 462 PM.add(createAMDGPUExternalAAWrapperPass()); 463 } 464 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 465 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 466 if (LibCallSimplify) 467 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 468 }); 469 470 Builder.addExtension( 471 PassManagerBuilder::EP_CGSCCOptimizerLate, 472 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 473 // Add infer address spaces pass to the opt pipeline after inlining 474 // but before SROA to increase SROA opportunities. 475 PM.add(createInferAddressSpacesPass()); 476 477 // This should run after inlining to have any chance of doing anything, 478 // and before other cleanup optimizations. 479 PM.add(createAMDGPULowerKernelAttributesPass()); 480 481 // Promote alloca to vector before SROA and loop unroll. If we manage 482 // to eliminate allocas before unroll we may choose to unroll less. 483 if (EnableOpt) 484 PM.add(createAMDGPUPromoteAllocaToVector()); 485 }); 486 } 487 488 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 489 bool DebugPassManager) { 490 PB.registerPipelineParsingCallback( 491 [](StringRef PassName, FunctionPassManager &PM, 492 ArrayRef<PassBuilder::PipelineElement>) { 493 if (PassName == "amdgpu-simplifylib") { 494 PM.addPass(AMDGPUSimplifyLibCallsPass()); 495 return true; 496 } 497 if (PassName == "amdgpu-usenative") { 498 PM.addPass(AMDGPUUseNativeCallsPass()); 499 return true; 500 } 501 return false; 502 }); 503 504 PB.registerPipelineStartEPCallback([DebugPassManager]( 505 ModulePassManager &PM, 506 PassBuilder::OptimizationLevel Level) { 507 FunctionPassManager FPM(DebugPassManager); 508 FPM.addPass(AMDGPUUseNativeCallsPass()); 509 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 510 FPM.addPass(AMDGPUSimplifyLibCallsPass()); 511 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 512 }); 513 } 514 515 //===----------------------------------------------------------------------===// 516 // R600 Target Machine (R600 -> Cayman) 517 //===----------------------------------------------------------------------===// 518 519 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 520 StringRef CPU, StringRef FS, 521 TargetOptions Options, 522 Optional<Reloc::Model> RM, 523 Optional<CodeModel::Model> CM, 524 CodeGenOpt::Level OL, bool JIT) 525 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 526 setRequiresStructuredCFG(true); 527 528 // Override the default since calls aren't supported for r600. 529 if (EnableFunctionCalls && 530 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 531 EnableFunctionCalls = false; 532 } 533 534 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 535 const Function &F) const { 536 StringRef GPU = getGPUName(F); 537 StringRef FS = getFeatureString(F); 538 539 SmallString<128> SubtargetKey(GPU); 540 SubtargetKey.append(FS); 541 542 auto &I = SubtargetMap[SubtargetKey]; 543 if (!I) { 544 // This needs to be done before we create a new subtarget since any 545 // creation will depend on the TM and the code generation flags on the 546 // function that reside in TargetOptions. 547 resetTargetOptions(F); 548 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 549 } 550 551 return I.get(); 552 } 553 554 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 555 unsigned DestAS) const { 556 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 557 AMDGPU::isFlatGlobalAddrSpace(DestAS); 558 } 559 560 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 561 const auto *LD = dyn_cast<LoadInst>(V); 562 if (!LD) 563 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 564 565 // It must be a generic pointer loaded. 566 assert(V->getType()->isPointerTy() && 567 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 568 569 const auto *Ptr = LD->getPointerOperand(); 570 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 571 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 572 // For a generic pointer loaded from the constant memory, it could be assumed 573 // as a global pointer since the constant memory is only populated on the 574 // host side. As implied by the offload programming model, only global 575 // pointers could be referenced on the host side. 576 return AMDGPUAS::GLOBAL_ADDRESS; 577 } 578 579 TargetTransformInfo 580 R600TargetMachine::getTargetTransformInfo(const Function &F) { 581 return TargetTransformInfo(R600TTIImpl(this, F)); 582 } 583 584 //===----------------------------------------------------------------------===// 585 // GCN Target Machine (SI+) 586 //===----------------------------------------------------------------------===// 587 588 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 589 StringRef CPU, StringRef FS, 590 TargetOptions Options, 591 Optional<Reloc::Model> RM, 592 Optional<CodeModel::Model> CM, 593 CodeGenOpt::Level OL, bool JIT) 594 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 595 596 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 597 StringRef GPU = getGPUName(F); 598 StringRef FS = getFeatureString(F); 599 600 SmallString<128> SubtargetKey(GPU); 601 SubtargetKey.append(FS); 602 603 auto &I = SubtargetMap[SubtargetKey]; 604 if (!I) { 605 // This needs to be done before we create a new subtarget since any 606 // creation will depend on the TM and the code generation flags on the 607 // function that reside in TargetOptions. 608 resetTargetOptions(F); 609 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 610 } 611 612 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 613 614 return I.get(); 615 } 616 617 TargetTransformInfo 618 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 619 return TargetTransformInfo(GCNTTIImpl(this, F)); 620 } 621 622 //===----------------------------------------------------------------------===// 623 // AMDGPU Pass Setup 624 //===----------------------------------------------------------------------===// 625 626 namespace { 627 628 class AMDGPUPassConfig : public TargetPassConfig { 629 public: 630 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 631 : TargetPassConfig(TM, PM) { 632 // Exceptions and StackMaps are not supported, so these passes will never do 633 // anything. 634 disablePass(&StackMapLivenessID); 635 disablePass(&FuncletLayoutID); 636 } 637 638 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 639 return getTM<AMDGPUTargetMachine>(); 640 } 641 642 ScheduleDAGInstrs * 643 createMachineScheduler(MachineSchedContext *C) const override { 644 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 645 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 646 return DAG; 647 } 648 649 void addEarlyCSEOrGVNPass(); 650 void addStraightLineScalarOptimizationPasses(); 651 void addIRPasses() override; 652 void addCodeGenPrepare() override; 653 bool addPreISel() override; 654 bool addInstSelector() override; 655 bool addGCPasses() override; 656 657 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 658 }; 659 660 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 661 return getStandardCSEConfigForOpt(TM->getOptLevel()); 662 } 663 664 class R600PassConfig final : public AMDGPUPassConfig { 665 public: 666 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 667 : AMDGPUPassConfig(TM, PM) {} 668 669 ScheduleDAGInstrs *createMachineScheduler( 670 MachineSchedContext *C) const override { 671 return createR600MachineScheduler(C); 672 } 673 674 bool addPreISel() override; 675 bool addInstSelector() override; 676 void addPreRegAlloc() override; 677 void addPreSched2() override; 678 void addPreEmitPass() override; 679 }; 680 681 class GCNPassConfig final : public AMDGPUPassConfig { 682 public: 683 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 684 : AMDGPUPassConfig(TM, PM) { 685 // It is necessary to know the register usage of the entire call graph. We 686 // allow calls without EnableAMDGPUFunctionCalls if they are marked 687 // noinline, so this is always required. 688 setRequiresCodeGenSCCOrder(true); 689 } 690 691 GCNTargetMachine &getGCNTargetMachine() const { 692 return getTM<GCNTargetMachine>(); 693 } 694 695 ScheduleDAGInstrs * 696 createMachineScheduler(MachineSchedContext *C) const override; 697 698 bool addPreISel() override; 699 void addMachineSSAOptimization() override; 700 bool addILPOpts() override; 701 bool addInstSelector() override; 702 bool addIRTranslator() override; 703 void addPreLegalizeMachineIR() override; 704 bool addLegalizeMachineIR() override; 705 void addPreRegBankSelect() override; 706 bool addRegBankSelect() override; 707 bool addGlobalInstructionSelect() override; 708 void addFastRegAlloc() override; 709 void addOptimizedRegAlloc() override; 710 void addPreRegAlloc() override; 711 bool addPreRewrite() override; 712 void addPostRegAlloc() override; 713 void addPreSched2() override; 714 void addPreEmitPass() override; 715 }; 716 717 } // end anonymous namespace 718 719 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 720 if (getOptLevel() == CodeGenOpt::Aggressive) 721 addPass(createGVNPass()); 722 else 723 addPass(createEarlyCSEPass()); 724 } 725 726 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 727 addPass(createLICMPass()); 728 addPass(createSeparateConstOffsetFromGEPPass()); 729 addPass(createSpeculativeExecutionPass()); 730 // ReassociateGEPs exposes more opportunites for SLSR. See 731 // the example in reassociate-geps-and-slsr.ll. 732 addPass(createStraightLineStrengthReducePass()); 733 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 734 // EarlyCSE can reuse. 735 addEarlyCSEOrGVNPass(); 736 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 737 addPass(createNaryReassociatePass()); 738 // NaryReassociate on GEPs creates redundant common expressions, so run 739 // EarlyCSE after it. 740 addPass(createEarlyCSEPass()); 741 } 742 743 void AMDGPUPassConfig::addIRPasses() { 744 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 745 746 // There is no reason to run these. 747 disablePass(&StackMapLivenessID); 748 disablePass(&FuncletLayoutID); 749 disablePass(&PatchableFunctionID); 750 751 addPass(createAMDGPUPrintfRuntimeBinding()); 752 753 // This must occur before inlining, as the inliner will not look through 754 // bitcast calls. 755 addPass(createAMDGPUFixFunctionBitcastsPass()); 756 757 // A call to propagate attributes pass in the backend in case opt was not run. 758 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 759 760 addPass(createAtomicExpandPass()); 761 762 763 addPass(createAMDGPULowerIntrinsicsPass()); 764 765 // Function calls are not supported, so make sure we inline everything. 766 addPass(createAMDGPUAlwaysInlinePass()); 767 addPass(createAlwaysInlinerLegacyPass()); 768 // We need to add the barrier noop pass, otherwise adding the function 769 // inlining pass will cause all of the PassConfigs passes to be run 770 // one function at a time, which means if we have a nodule with two 771 // functions, then we will generate code for the first function 772 // without ever running any passes on the second. 773 addPass(createBarrierNoopPass()); 774 775 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 776 if (TM.getTargetTriple().getArch() == Triple::r600) 777 addPass(createR600OpenCLImageTypeLoweringPass()); 778 779 // Replace OpenCL enqueued block function pointers with global variables. 780 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 781 782 if (TM.getOptLevel() > CodeGenOpt::None) { 783 addPass(createInferAddressSpacesPass()); 784 addPass(createAMDGPUPromoteAlloca()); 785 786 if (EnableSROA) 787 addPass(createSROAPass()); 788 789 if (EnableScalarIRPasses) 790 addStraightLineScalarOptimizationPasses(); 791 792 if (EnableAMDGPUAliasAnalysis) { 793 addPass(createAMDGPUAAWrapperPass()); 794 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 795 AAResults &AAR) { 796 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 797 AAR.addAAResult(WrapperPass->getResult()); 798 })); 799 } 800 } 801 802 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 803 // TODO: May want to move later or split into an early and late one. 804 addPass(createAMDGPUCodeGenPreparePass()); 805 } 806 807 TargetPassConfig::addIRPasses(); 808 809 // EarlyCSE is not always strong enough to clean up what LSR produces. For 810 // example, GVN can combine 811 // 812 // %0 = add %a, %b 813 // %1 = add %b, %a 814 // 815 // and 816 // 817 // %0 = shl nsw %a, 2 818 // %1 = shl %a, 2 819 // 820 // but EarlyCSE can do neither of them. 821 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 822 addEarlyCSEOrGVNPass(); 823 } 824 825 void AMDGPUPassConfig::addCodeGenPrepare() { 826 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 827 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 828 829 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 830 EnableLowerKernelArguments) 831 addPass(createAMDGPULowerKernelArgumentsPass()); 832 833 addPass(&AMDGPUPerfHintAnalysisID); 834 835 TargetPassConfig::addCodeGenPrepare(); 836 837 if (EnableLoadStoreVectorizer) 838 addPass(createLoadStoreVectorizerPass()); 839 840 // LowerSwitch pass may introduce unreachable blocks that can 841 // cause unexpected behavior for subsequent passes. Placing it 842 // here seems better that these blocks would get cleaned up by 843 // UnreachableBlockElim inserted next in the pass flow. 844 addPass(createLowerSwitchPass()); 845 } 846 847 bool AMDGPUPassConfig::addPreISel() { 848 addPass(createFlattenCFGPass()); 849 return false; 850 } 851 852 bool AMDGPUPassConfig::addInstSelector() { 853 // Defer the verifier until FinalizeISel. 854 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 855 return false; 856 } 857 858 bool AMDGPUPassConfig::addGCPasses() { 859 // Do nothing. GC is not supported. 860 return false; 861 } 862 863 //===----------------------------------------------------------------------===// 864 // R600 Pass Setup 865 //===----------------------------------------------------------------------===// 866 867 bool R600PassConfig::addPreISel() { 868 AMDGPUPassConfig::addPreISel(); 869 870 if (EnableR600StructurizeCFG) 871 addPass(createStructurizeCFGPass()); 872 return false; 873 } 874 875 bool R600PassConfig::addInstSelector() { 876 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 877 return false; 878 } 879 880 void R600PassConfig::addPreRegAlloc() { 881 addPass(createR600VectorRegMerger()); 882 } 883 884 void R600PassConfig::addPreSched2() { 885 addPass(createR600EmitClauseMarkers(), false); 886 if (EnableR600IfConvert) 887 addPass(&IfConverterID, false); 888 addPass(createR600ClauseMergePass(), false); 889 } 890 891 void R600PassConfig::addPreEmitPass() { 892 addPass(createAMDGPUCFGStructurizerPass(), false); 893 addPass(createR600ExpandSpecialInstrsPass(), false); 894 addPass(&FinalizeMachineBundlesID, false); 895 addPass(createR600Packetizer(), false); 896 addPass(createR600ControlFlowFinalizer(), false); 897 } 898 899 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 900 return new R600PassConfig(*this, PM); 901 } 902 903 //===----------------------------------------------------------------------===// 904 // GCN Pass Setup 905 //===----------------------------------------------------------------------===// 906 907 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 908 MachineSchedContext *C) const { 909 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 910 if (ST.enableSIScheduler()) 911 return createSIMachineScheduler(C); 912 return createGCNMaxOccupancyMachineScheduler(C); 913 } 914 915 bool GCNPassConfig::addPreISel() { 916 AMDGPUPassConfig::addPreISel(); 917 918 addPass(createAMDGPULateCodeGenPreparePass()); 919 if (EnableAtomicOptimizations) { 920 addPass(createAMDGPUAtomicOptimizerPass()); 921 } 922 923 // FIXME: We need to run a pass to propagate the attributes when calls are 924 // supported. 925 926 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 927 // regions formed by them. 928 addPass(&AMDGPUUnifyDivergentExitNodesID); 929 if (!LateCFGStructurize) { 930 if (EnableStructurizerWorkarounds) { 931 addPass(createFixIrreduciblePass()); 932 addPass(createUnifyLoopExitsPass()); 933 } 934 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 935 } 936 addPass(createSinkingPass()); 937 addPass(createAMDGPUAnnotateUniformValues()); 938 if (!LateCFGStructurize) { 939 addPass(createSIAnnotateControlFlowPass()); 940 } 941 addPass(createLCSSAPass()); 942 943 return false; 944 } 945 946 void GCNPassConfig::addMachineSSAOptimization() { 947 TargetPassConfig::addMachineSSAOptimization(); 948 949 // We want to fold operands after PeepholeOptimizer has run (or as part of 950 // it), because it will eliminate extra copies making it easier to fold the 951 // real source operand. We want to eliminate dead instructions after, so that 952 // we see fewer uses of the copies. We then need to clean up the dead 953 // instructions leftover after the operands are folded as well. 954 // 955 // XXX - Can we get away without running DeadMachineInstructionElim again? 956 addPass(&SIFoldOperandsID); 957 if (EnableDPPCombine) 958 addPass(&GCNDPPCombineID); 959 addPass(&DeadMachineInstructionElimID); 960 addPass(&SILoadStoreOptimizerID); 961 if (EnableSDWAPeephole) { 962 addPass(&SIPeepholeSDWAID); 963 addPass(&EarlyMachineLICMID); 964 addPass(&MachineCSEID); 965 addPass(&SIFoldOperandsID); 966 addPass(&DeadMachineInstructionElimID); 967 } 968 addPass(createSIShrinkInstructionsPass()); 969 } 970 971 bool GCNPassConfig::addILPOpts() { 972 if (EnableEarlyIfConversion) 973 addPass(&EarlyIfConverterID); 974 975 TargetPassConfig::addILPOpts(); 976 return false; 977 } 978 979 bool GCNPassConfig::addInstSelector() { 980 AMDGPUPassConfig::addInstSelector(); 981 addPass(&SIFixSGPRCopiesID); 982 addPass(createSILowerI1CopiesPass()); 983 addPass(createSIAddIMGInitPass()); 984 return false; 985 } 986 987 bool GCNPassConfig::addIRTranslator() { 988 addPass(new IRTranslator(getOptLevel())); 989 return false; 990 } 991 992 void GCNPassConfig::addPreLegalizeMachineIR() { 993 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 994 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 995 addPass(new Localizer()); 996 } 997 998 bool GCNPassConfig::addLegalizeMachineIR() { 999 addPass(new Legalizer()); 1000 return false; 1001 } 1002 1003 void GCNPassConfig::addPreRegBankSelect() { 1004 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1005 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1006 } 1007 1008 bool GCNPassConfig::addRegBankSelect() { 1009 addPass(new RegBankSelect()); 1010 return false; 1011 } 1012 1013 bool GCNPassConfig::addGlobalInstructionSelect() { 1014 addPass(new InstructionSelect()); 1015 return false; 1016 } 1017 1018 void GCNPassConfig::addPreRegAlloc() { 1019 if (LateCFGStructurize) { 1020 addPass(createAMDGPUMachineCFGStructurizerPass()); 1021 } 1022 } 1023 1024 void GCNPassConfig::addFastRegAlloc() { 1025 // FIXME: We have to disable the verifier here because of PHIElimination + 1026 // TwoAddressInstructions disabling it. 1027 1028 // This must be run immediately after phi elimination and before 1029 // TwoAddressInstructions, otherwise the processing of the tied operand of 1030 // SI_ELSE will introduce a copy of the tied operand source after the else. 1031 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1032 1033 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1034 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1035 1036 TargetPassConfig::addFastRegAlloc(); 1037 } 1038 1039 void GCNPassConfig::addOptimizedRegAlloc() { 1040 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1041 // instructions that cause scheduling barriers. 1042 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1043 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1044 1045 if (OptExecMaskPreRA) 1046 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1047 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1048 1049 // This must be run immediately after phi elimination and before 1050 // TwoAddressInstructions, otherwise the processing of the tied operand of 1051 // SI_ELSE will introduce a copy of the tied operand source after the else. 1052 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1053 1054 if (EnableDCEInRA) 1055 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1056 1057 TargetPassConfig::addOptimizedRegAlloc(); 1058 } 1059 1060 bool GCNPassConfig::addPreRewrite() { 1061 if (EnableRegReassign) { 1062 addPass(&GCNNSAReassignID); 1063 addPass(&GCNRegBankReassignID); 1064 } 1065 return true; 1066 } 1067 1068 void GCNPassConfig::addPostRegAlloc() { 1069 addPass(&SIFixVGPRCopiesID); 1070 if (getOptLevel() > CodeGenOpt::None) 1071 addPass(&SIOptimizeExecMaskingID); 1072 TargetPassConfig::addPostRegAlloc(); 1073 1074 // Equivalent of PEI for SGPRs. 1075 addPass(&SILowerSGPRSpillsID); 1076 } 1077 1078 void GCNPassConfig::addPreSched2() { 1079 addPass(&SIPostRABundlerID); 1080 } 1081 1082 void GCNPassConfig::addPreEmitPass() { 1083 addPass(createSIMemoryLegalizerPass()); 1084 addPass(createSIInsertWaitcntsPass()); 1085 addPass(createSIShrinkInstructionsPass()); 1086 addPass(createSIModeRegisterPass()); 1087 1088 if (getOptLevel() > CodeGenOpt::None) 1089 addPass(&SIInsertHardClausesID); 1090 1091 addPass(&SIRemoveShortExecBranchesID); 1092 addPass(&SIInsertSkipsPassID); 1093 addPass(&SIPreEmitPeepholeID); 1094 // The hazard recognizer that runs as part of the post-ra scheduler does not 1095 // guarantee to be able handle all hazards correctly. This is because if there 1096 // are multiple scheduling regions in a basic block, the regions are scheduled 1097 // bottom up, so when we begin to schedule a region we don't know what 1098 // instructions were emitted directly before it. 1099 // 1100 // Here we add a stand-alone hazard recognizer pass which can handle all 1101 // cases. 1102 addPass(&PostRAHazardRecognizerID); 1103 addPass(&BranchRelaxationPassID); 1104 } 1105 1106 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1107 return new GCNPassConfig(*this, PM); 1108 } 1109 1110 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1111 return new yaml::SIMachineFunctionInfo(); 1112 } 1113 1114 yaml::MachineFunctionInfo * 1115 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1116 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1117 return new yaml::SIMachineFunctionInfo(*MFI, 1118 *MF.getSubtarget().getRegisterInfo()); 1119 } 1120 1121 bool GCNTargetMachine::parseMachineFunctionInfo( 1122 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1123 SMDiagnostic &Error, SMRange &SourceRange) const { 1124 const yaml::SIMachineFunctionInfo &YamlMFI = 1125 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1126 MachineFunction &MF = PFS.MF; 1127 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1128 1129 MFI->initializeBaseYamlFields(YamlMFI); 1130 1131 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1132 Register TempReg; 1133 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1134 SourceRange = RegName.SourceRange; 1135 return true; 1136 } 1137 RegVal = TempReg; 1138 1139 return false; 1140 }; 1141 1142 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1143 // Create a diagnostic for a the register string literal. 1144 const MemoryBuffer &Buffer = 1145 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1146 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1147 RegName.Value.size(), SourceMgr::DK_Error, 1148 "incorrect register class for field", RegName.Value, 1149 None, None); 1150 SourceRange = RegName.SourceRange; 1151 return true; 1152 }; 1153 1154 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1155 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1156 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1157 return true; 1158 1159 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1160 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1161 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1162 } 1163 1164 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1165 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1166 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1167 } 1168 1169 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1170 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1171 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1172 } 1173 1174 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1175 const TargetRegisterClass &RC, 1176 ArgDescriptor &Arg, unsigned UserSGPRs, 1177 unsigned SystemSGPRs) { 1178 // Skip parsing if it's not present. 1179 if (!A) 1180 return false; 1181 1182 if (A->IsRegister) { 1183 Register Reg; 1184 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1185 SourceRange = A->RegisterName.SourceRange; 1186 return true; 1187 } 1188 if (!RC.contains(Reg)) 1189 return diagnoseRegisterClass(A->RegisterName); 1190 Arg = ArgDescriptor::createRegister(Reg); 1191 } else 1192 Arg = ArgDescriptor::createStack(A->StackOffset); 1193 // Check and apply the optional mask. 1194 if (A->Mask) 1195 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1196 1197 MFI->NumUserSGPRs += UserSGPRs; 1198 MFI->NumSystemSGPRs += SystemSGPRs; 1199 return false; 1200 }; 1201 1202 if (YamlMFI.ArgInfo && 1203 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1204 AMDGPU::SGPR_128RegClass, 1205 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1206 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1207 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1208 2, 0) || 1209 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1210 MFI->ArgInfo.QueuePtr, 2, 0) || 1211 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1212 AMDGPU::SReg_64RegClass, 1213 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1214 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1215 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1216 2, 0) || 1217 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1218 AMDGPU::SReg_64RegClass, 1219 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1220 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1221 AMDGPU::SGPR_32RegClass, 1222 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1223 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1224 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1225 0, 1) || 1226 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1227 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1228 0, 1) || 1229 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1230 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1231 0, 1) || 1232 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1233 AMDGPU::SGPR_32RegClass, 1234 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1235 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1236 AMDGPU::SGPR_32RegClass, 1237 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1238 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1239 AMDGPU::SReg_64RegClass, 1240 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1241 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1242 AMDGPU::SReg_64RegClass, 1243 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1244 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1245 AMDGPU::VGPR_32RegClass, 1246 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1247 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1248 AMDGPU::VGPR_32RegClass, 1249 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1250 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1251 AMDGPU::VGPR_32RegClass, 1252 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1253 return true; 1254 1255 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1256 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1257 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1258 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1259 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1260 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1261 1262 return false; 1263 } 1264