1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #ifdef LLVM_BUILD_GLOBAL_ISEL 23 #include "AMDGPURegisterBankInfo.h" 24 #endif 25 #include "AMDGPUTargetObjectFile.h" 26 #include "AMDGPUTargetTransformInfo.h" 27 #include "GCNIterativeScheduler.h" 28 #include "GCNSchedStrategy.h" 29 #include "R600MachineScheduler.h" 30 #include "SIMachineScheduler.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/AlwaysInliner.h" 40 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Scalar/GVN.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/LegacyPassManager.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include <memory> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> EnableR600IfConvert( 72 "r600-if-convert", 73 cl::desc("Use if conversion pass"), 74 cl::ReallyHidden, 75 cl::init(true)); 76 77 // Option to disable vectorizer for tests. 78 static cl::opt<bool> EnableLoadStoreVectorizer( 79 "amdgpu-load-store-vectorizer", 80 cl::desc("Enable load store vectorizer"), 81 cl::init(true), 82 cl::Hidden); 83 84 // Option to to control global loads scalarization 85 static cl::opt<bool> ScalarizeGlobal( 86 "amdgpu-scalarize-global-loads", 87 cl::desc("Enable global load scalarization"), 88 cl::init(false), 89 cl::Hidden); 90 91 // Option to run internalize pass. 92 static cl::opt<bool> InternalizeSymbols( 93 "amdgpu-internalize-symbols", 94 cl::desc("Enable elimination of non-kernel functions and unused globals"), 95 cl::init(false), 96 cl::Hidden); 97 98 // Option to inline all early. 99 static cl::opt<bool> EarlyInlineAll( 100 "amdgpu-early-inline-all", 101 cl::desc("Inline all functions early"), 102 cl::init(false), 103 cl::Hidden); 104 105 static cl::opt<bool> EnableSDWAPeephole( 106 "amdgpu-sdwa-peephole", 107 cl::desc("Enable SDWA peepholer"), 108 cl::init(true)); 109 110 // Enable address space based alias analysis 111 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 112 cl::desc("Enable AMDGPU Alias Analysis"), 113 cl::init(true)); 114 115 // Option to enable new waitcnt insertion pass. 116 static cl::opt<bool> EnableSIInsertWaitcntsPass( 117 "enable-si-insert-waitcnts", 118 cl::desc("Use new waitcnt insertion pass"), 119 cl::init(false)); 120 121 extern "C" void LLVMInitializeAMDGPUTarget() { 122 // Register the target 123 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 124 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 125 126 PassRegistry *PR = PassRegistry::getPassRegistry(); 127 initializeSILowerI1CopiesPass(*PR); 128 initializeSIFixSGPRCopiesPass(*PR); 129 initializeSIFixVGPRCopiesPass(*PR); 130 initializeSIFoldOperandsPass(*PR); 131 initializeSIPeepholeSDWAPass(*PR); 132 initializeSIShrinkInstructionsPass(*PR); 133 initializeSIFixControlFlowLiveIntervalsPass(*PR); 134 initializeSILoadStoreOptimizerPass(*PR); 135 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 136 initializeAMDGPUAnnotateUniformValuesPass(*PR); 137 initializeAMDGPULowerIntrinsicsPass(*PR); 138 initializeAMDGPUPromoteAllocaPass(*PR); 139 initializeAMDGPUCodeGenPreparePass(*PR); 140 initializeAMDGPUUnifyMetadataPass(*PR); 141 initializeSIAnnotateControlFlowPass(*PR); 142 initializeSIInsertWaitsPass(*PR); 143 initializeSIInsertWaitcntsPass(*PR); 144 initializeSIWholeQuadModePass(*PR); 145 initializeSILowerControlFlowPass(*PR); 146 initializeSIInsertSkipsPass(*PR); 147 initializeSIDebuggerInsertNopsPass(*PR); 148 initializeSIOptimizeExecMaskingPass(*PR); 149 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 150 initializeAMDGPUAAWrapperPassPass(*PR); 151 } 152 153 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 154 return llvm::make_unique<AMDGPUTargetObjectFile>(); 155 } 156 157 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 158 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 159 } 160 161 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 162 return new SIScheduleDAGMI(C); 163 } 164 165 static ScheduleDAGInstrs * 166 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 167 ScheduleDAGMILive *DAG = 168 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 169 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 170 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 171 return DAG; 172 } 173 174 static ScheduleDAGInstrs * 175 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 176 auto DAG = new GCNIterativeScheduler(C, 177 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 178 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 179 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 180 return DAG; 181 } 182 183 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 184 return new GCNIterativeScheduler(C, 185 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 186 } 187 188 static MachineSchedRegistry 189 R600SchedRegistry("r600", "Run R600's custom scheduler", 190 createR600MachineScheduler); 191 192 static MachineSchedRegistry 193 SISchedRegistry("si", "Run SI's custom scheduler", 194 createSIMachineScheduler); 195 196 static MachineSchedRegistry 197 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 198 "Run GCN scheduler to maximize occupancy", 199 createGCNMaxOccupancyMachineScheduler); 200 201 static MachineSchedRegistry 202 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 203 "Run GCN scheduler to maximize occupancy (experimental)", 204 createIterativeGCNMaxOccupancyMachineScheduler); 205 206 static MachineSchedRegistry 207 GCNMinRegSchedRegistry("gcn-minreg", 208 "Run GCN iterative scheduler for minimal register usage (experimental)", 209 createMinRegScheduler); 210 211 static StringRef computeDataLayout(const Triple &TT) { 212 if (TT.getArch() == Triple::r600) { 213 // 32-bit pointers. 214 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 215 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 216 } 217 218 // 32-bit private, local, and region pointers. 64-bit global, constant and 219 // flat. 220 if (TT.getEnvironmentName() == "amdgiz" || 221 TT.getEnvironmentName() == "amdgizcl") 222 return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32" 223 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 224 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5"; 225 return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" 226 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 227 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 228 } 229 230 LLVM_READNONE 231 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 232 if (!GPU.empty()) 233 return GPU; 234 235 // HSA only supports CI+, so change the default GPU to a CI for HSA. 236 if (TT.getArch() == Triple::amdgcn) 237 return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; 238 239 return "r600"; 240 } 241 242 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 243 // The AMDGPU toolchain only supports generating shared objects, so we 244 // must always use PIC. 245 return Reloc::PIC_; 246 } 247 248 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 249 StringRef CPU, StringRef FS, 250 TargetOptions Options, 251 Optional<Reloc::Model> RM, 252 CodeModel::Model CM, 253 CodeGenOpt::Level OptLevel) 254 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 255 FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), 256 TLOF(createTLOF(getTargetTriple())) { 257 AS = AMDGPU::getAMDGPUAS(TT); 258 initAsmInfo(); 259 } 260 261 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 262 263 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 264 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 265 return GPUAttr.hasAttribute(Attribute::None) ? 266 getTargetCPU() : GPUAttr.getValueAsString(); 267 } 268 269 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 270 Attribute FSAttr = F.getFnAttribute("target-features"); 271 272 return FSAttr.hasAttribute(Attribute::None) ? 273 getTargetFeatureString() : 274 FSAttr.getValueAsString(); 275 } 276 277 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 278 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 279 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 280 AAR.addAAResult(WrapperPass->getResult()); 281 }); 282 } 283 284 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 285 Builder.DivergentTarget = true; 286 287 bool Internalize = InternalizeSymbols && 288 (getOptLevel() > CodeGenOpt::None) && 289 (getTargetTriple().getArch() == Triple::amdgcn); 290 bool EarlyInline = EarlyInlineAll && 291 (getOptLevel() > CodeGenOpt::None); 292 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && getOptLevel() > CodeGenOpt::None; 293 294 Builder.addExtension( 295 PassManagerBuilder::EP_ModuleOptimizerEarly, 296 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 297 legacy::PassManagerBase &PM) { 298 if (AMDGPUAA) { 299 PM.add(createAMDGPUAAWrapperPass()); 300 PM.add(createAMDGPUExternalAAWrapperPass()); 301 } 302 PM.add(createAMDGPUUnifyMetadataPass()); 303 if (Internalize) { 304 PM.add(createInternalizePass([=](const GlobalValue &GV) -> bool { 305 if (const Function *F = dyn_cast<Function>(&GV)) { 306 if (F->isDeclaration()) 307 return true; 308 switch (F->getCallingConv()) { 309 default: 310 return false; 311 case CallingConv::AMDGPU_VS: 312 case CallingConv::AMDGPU_GS: 313 case CallingConv::AMDGPU_PS: 314 case CallingConv::AMDGPU_CS: 315 case CallingConv::AMDGPU_KERNEL: 316 case CallingConv::SPIR_KERNEL: 317 return true; 318 } 319 } 320 return !GV.use_empty(); 321 })); 322 PM.add(createGlobalDCEPass()); 323 } 324 if (EarlyInline) 325 PM.add(createAMDGPUAlwaysInlinePass(false)); 326 }); 327 328 Builder.addExtension( 329 PassManagerBuilder::EP_EarlyAsPossible, 330 [AMDGPUAA](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 331 if (AMDGPUAA) { 332 PM.add(createAMDGPUAAWrapperPass()); 333 PM.add(createAMDGPUExternalAAWrapperPass()); 334 } 335 }); 336 } 337 338 //===----------------------------------------------------------------------===// 339 // R600 Target Machine (R600 -> Cayman) 340 //===----------------------------------------------------------------------===// 341 342 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 343 StringRef CPU, StringRef FS, 344 TargetOptions Options, 345 Optional<Reloc::Model> RM, 346 CodeModel::Model CM, CodeGenOpt::Level OL) 347 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 348 setRequiresStructuredCFG(true); 349 } 350 351 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 352 const Function &F) const { 353 StringRef GPU = getGPUName(F); 354 StringRef FS = getFeatureString(F); 355 356 SmallString<128> SubtargetKey(GPU); 357 SubtargetKey.append(FS); 358 359 auto &I = SubtargetMap[SubtargetKey]; 360 if (!I) { 361 // This needs to be done before we create a new subtarget since any 362 // creation will depend on the TM and the code generation flags on the 363 // function that reside in TargetOptions. 364 resetTargetOptions(F); 365 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 366 } 367 368 return I.get(); 369 } 370 371 //===----------------------------------------------------------------------===// 372 // GCN Target Machine (SI+) 373 //===----------------------------------------------------------------------===// 374 375 #ifdef LLVM_BUILD_GLOBAL_ISEL 376 namespace { 377 378 struct SIGISelActualAccessor : public GISelAccessor { 379 std::unique_ptr<AMDGPUCallLowering> CallLoweringInfo; 380 std::unique_ptr<InstructionSelector> InstSelector; 381 std::unique_ptr<LegalizerInfo> Legalizer; 382 std::unique_ptr<RegisterBankInfo> RegBankInfo; 383 const AMDGPUCallLowering *getCallLowering() const override { 384 return CallLoweringInfo.get(); 385 } 386 const InstructionSelector *getInstructionSelector() const override { 387 return InstSelector.get(); 388 } 389 const LegalizerInfo *getLegalizerInfo() const override { 390 return Legalizer.get(); 391 } 392 const RegisterBankInfo *getRegBankInfo() const override { 393 return RegBankInfo.get(); 394 } 395 }; 396 397 } // end anonymous namespace 398 #endif 399 400 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 401 StringRef CPU, StringRef FS, 402 TargetOptions Options, 403 Optional<Reloc::Model> RM, 404 CodeModel::Model CM, CodeGenOpt::Level OL) 405 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 406 407 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 408 StringRef GPU = getGPUName(F); 409 StringRef FS = getFeatureString(F); 410 411 SmallString<128> SubtargetKey(GPU); 412 SubtargetKey.append(FS); 413 414 auto &I = SubtargetMap[SubtargetKey]; 415 if (!I) { 416 // This needs to be done before we create a new subtarget since any 417 // creation will depend on the TM and the code generation flags on the 418 // function that reside in TargetOptions. 419 resetTargetOptions(F); 420 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 421 422 #ifndef LLVM_BUILD_GLOBAL_ISEL 423 GISelAccessor *GISel = new GISelAccessor(); 424 #else 425 SIGISelActualAccessor *GISel = new SIGISelActualAccessor(); 426 GISel->CallLoweringInfo.reset( 427 new AMDGPUCallLowering(*I->getTargetLowering())); 428 GISel->Legalizer.reset(new AMDGPULegalizerInfo()); 429 430 GISel->RegBankInfo.reset(new AMDGPURegisterBankInfo(*I->getRegisterInfo())); 431 GISel->InstSelector.reset(new AMDGPUInstructionSelector(*I, 432 *static_cast<AMDGPURegisterBankInfo*>(GISel->RegBankInfo.get()))); 433 #endif 434 435 I->setGISelAccessor(*GISel); 436 } 437 438 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 439 440 return I.get(); 441 } 442 443 //===----------------------------------------------------------------------===// 444 // AMDGPU Pass Setup 445 //===----------------------------------------------------------------------===// 446 447 namespace { 448 449 class AMDGPUPassConfig : public TargetPassConfig { 450 public: 451 AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM) 452 : TargetPassConfig(TM, PM) { 453 // Exceptions and StackMaps are not supported, so these passes will never do 454 // anything. 455 disablePass(&StackMapLivenessID); 456 disablePass(&FuncletLayoutID); 457 } 458 459 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 460 return getTM<AMDGPUTargetMachine>(); 461 } 462 463 ScheduleDAGInstrs * 464 createMachineScheduler(MachineSchedContext *C) const override { 465 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 466 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 467 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 468 return DAG; 469 } 470 471 void addEarlyCSEOrGVNPass(); 472 void addStraightLineScalarOptimizationPasses(); 473 void addIRPasses() override; 474 void addCodeGenPrepare() override; 475 bool addPreISel() override; 476 bool addInstSelector() override; 477 bool addGCPasses() override; 478 }; 479 480 class R600PassConfig final : public AMDGPUPassConfig { 481 public: 482 R600PassConfig(TargetMachine *TM, PassManagerBase &PM) 483 : AMDGPUPassConfig(TM, PM) {} 484 485 ScheduleDAGInstrs *createMachineScheduler( 486 MachineSchedContext *C) const override { 487 return createR600MachineScheduler(C); 488 } 489 490 bool addPreISel() override; 491 void addPreRegAlloc() override; 492 void addPreSched2() override; 493 void addPreEmitPass() override; 494 }; 495 496 class GCNPassConfig final : public AMDGPUPassConfig { 497 public: 498 GCNPassConfig(TargetMachine *TM, PassManagerBase &PM) 499 : AMDGPUPassConfig(TM, PM) {} 500 501 GCNTargetMachine &getGCNTargetMachine() const { 502 return getTM<GCNTargetMachine>(); 503 } 504 505 ScheduleDAGInstrs * 506 createMachineScheduler(MachineSchedContext *C) const override; 507 508 bool addPreISel() override; 509 void addMachineSSAOptimization() override; 510 bool addILPOpts() override; 511 bool addInstSelector() override; 512 #ifdef LLVM_BUILD_GLOBAL_ISEL 513 bool addIRTranslator() override; 514 bool addLegalizeMachineIR() override; 515 bool addRegBankSelect() override; 516 bool addGlobalInstructionSelect() override; 517 #endif 518 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 519 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 520 void addPreRegAlloc() override; 521 void addPostRegAlloc() override; 522 void addPreSched2() override; 523 void addPreEmitPass() override; 524 }; 525 526 } // end anonymous namespace 527 528 TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { 529 return TargetIRAnalysis([this](const Function &F) { 530 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 531 }); 532 } 533 534 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 535 if (getOptLevel() == CodeGenOpt::Aggressive) 536 addPass(createGVNPass()); 537 else 538 addPass(createEarlyCSEPass()); 539 } 540 541 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 542 addPass(createSeparateConstOffsetFromGEPPass()); 543 addPass(createSpeculativeExecutionPass()); 544 // ReassociateGEPs exposes more opportunites for SLSR. See 545 // the example in reassociate-geps-and-slsr.ll. 546 addPass(createStraightLineStrengthReducePass()); 547 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 548 // EarlyCSE can reuse. 549 addEarlyCSEOrGVNPass(); 550 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 551 addPass(createNaryReassociatePass()); 552 // NaryReassociate on GEPs creates redundant common expressions, so run 553 // EarlyCSE after it. 554 addPass(createEarlyCSEPass()); 555 } 556 557 void AMDGPUPassConfig::addIRPasses() { 558 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 559 560 // There is no reason to run these. 561 disablePass(&StackMapLivenessID); 562 disablePass(&FuncletLayoutID); 563 disablePass(&PatchableFunctionID); 564 565 addPass(createAMDGPULowerIntrinsicsPass(&TM)); 566 567 // Function calls are not supported, so make sure we inline everything. 568 addPass(createAMDGPUAlwaysInlinePass()); 569 addPass(createAlwaysInlinerLegacyPass()); 570 // We need to add the barrier noop pass, otherwise adding the function 571 // inlining pass will cause all of the PassConfigs passes to be run 572 // one function at a time, which means if we have a nodule with two 573 // functions, then we will generate code for the first function 574 // without ever running any passes on the second. 575 addPass(createBarrierNoopPass()); 576 577 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 578 // TODO: May want to move later or split into an early and late one. 579 580 addPass(createAMDGPUCodeGenPreparePass( 581 static_cast<const GCNTargetMachine *>(&TM))); 582 } 583 584 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 585 addPass(createAMDGPUOpenCLImageTypeLoweringPass()); 586 587 if (TM.getOptLevel() > CodeGenOpt::None) { 588 addPass(createInferAddressSpacesPass()); 589 addPass(createAMDGPUPromoteAlloca(&TM)); 590 591 if (EnableSROA) 592 addPass(createSROAPass()); 593 594 addStraightLineScalarOptimizationPasses(); 595 596 if (EnableAMDGPUAliasAnalysis) { 597 addPass(createAMDGPUAAWrapperPass()); 598 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 599 AAResults &AAR) { 600 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 601 AAR.addAAResult(WrapperPass->getResult()); 602 })); 603 } 604 } 605 606 TargetPassConfig::addIRPasses(); 607 608 // EarlyCSE is not always strong enough to clean up what LSR produces. For 609 // example, GVN can combine 610 // 611 // %0 = add %a, %b 612 // %1 = add %b, %a 613 // 614 // and 615 // 616 // %0 = shl nsw %a, 2 617 // %1 = shl %a, 2 618 // 619 // but EarlyCSE can do neither of them. 620 if (getOptLevel() != CodeGenOpt::None) 621 addEarlyCSEOrGVNPass(); 622 } 623 624 void AMDGPUPassConfig::addCodeGenPrepare() { 625 TargetPassConfig::addCodeGenPrepare(); 626 627 if (EnableLoadStoreVectorizer) 628 addPass(createLoadStoreVectorizerPass()); 629 } 630 631 bool AMDGPUPassConfig::addPreISel() { 632 addPass(createFlattenCFGPass()); 633 return false; 634 } 635 636 bool AMDGPUPassConfig::addInstSelector() { 637 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 638 return false; 639 } 640 641 bool AMDGPUPassConfig::addGCPasses() { 642 // Do nothing. GC is not supported. 643 return false; 644 } 645 646 //===----------------------------------------------------------------------===// 647 // R600 Pass Setup 648 //===----------------------------------------------------------------------===// 649 650 bool R600PassConfig::addPreISel() { 651 AMDGPUPassConfig::addPreISel(); 652 653 if (EnableR600StructurizeCFG) 654 addPass(createStructurizeCFGPass()); 655 return false; 656 } 657 658 void R600PassConfig::addPreRegAlloc() { 659 addPass(createR600VectorRegMerger(*TM)); 660 } 661 662 void R600PassConfig::addPreSched2() { 663 addPass(createR600EmitClauseMarkers(), false); 664 if (EnableR600IfConvert) 665 addPass(&IfConverterID, false); 666 addPass(createR600ClauseMergePass(*TM), false); 667 } 668 669 void R600PassConfig::addPreEmitPass() { 670 addPass(createAMDGPUCFGStructurizerPass(), false); 671 addPass(createR600ExpandSpecialInstrsPass(*TM), false); 672 addPass(&FinalizeMachineBundlesID, false); 673 addPass(createR600Packetizer(*TM), false); 674 addPass(createR600ControlFlowFinalizer(*TM), false); 675 } 676 677 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 678 return new R600PassConfig(this, PM); 679 } 680 681 //===----------------------------------------------------------------------===// 682 // GCN Pass Setup 683 //===----------------------------------------------------------------------===// 684 685 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 686 MachineSchedContext *C) const { 687 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 688 if (ST.enableSIScheduler()) 689 return createSIMachineScheduler(C); 690 return createGCNMaxOccupancyMachineScheduler(C); 691 } 692 693 bool GCNPassConfig::addPreISel() { 694 AMDGPUPassConfig::addPreISel(); 695 696 // FIXME: We need to run a pass to propagate the attributes when calls are 697 // supported. 698 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 699 addPass(createAMDGPUAnnotateKernelFeaturesPass(&TM)); 700 701 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 702 // regions formed by them. 703 addPass(&AMDGPUUnifyDivergentExitNodesID); 704 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 705 addPass(createSinkingPass()); 706 addPass(createSITypeRewriter()); 707 addPass(createAMDGPUAnnotateUniformValues()); 708 addPass(createSIAnnotateControlFlowPass()); 709 710 return false; 711 } 712 713 void GCNPassConfig::addMachineSSAOptimization() { 714 TargetPassConfig::addMachineSSAOptimization(); 715 716 // We want to fold operands after PeepholeOptimizer has run (or as part of 717 // it), because it will eliminate extra copies making it easier to fold the 718 // real source operand. We want to eliminate dead instructions after, so that 719 // we see fewer uses of the copies. We then need to clean up the dead 720 // instructions leftover after the operands are folded as well. 721 // 722 // XXX - Can we get away without running DeadMachineInstructionElim again? 723 addPass(&SIFoldOperandsID); 724 addPass(&DeadMachineInstructionElimID); 725 addPass(&SILoadStoreOptimizerID); 726 addPass(createSIShrinkInstructionsPass()); 727 if (EnableSDWAPeephole) { 728 addPass(&SIPeepholeSDWAID); 729 addPass(&DeadMachineInstructionElimID); 730 } 731 } 732 733 bool GCNPassConfig::addILPOpts() { 734 if (EnableEarlyIfConversion) 735 addPass(&EarlyIfConverterID); 736 737 TargetPassConfig::addILPOpts(); 738 return false; 739 } 740 741 bool GCNPassConfig::addInstSelector() { 742 AMDGPUPassConfig::addInstSelector(); 743 addPass(createSILowerI1CopiesPass()); 744 addPass(&SIFixSGPRCopiesID); 745 return false; 746 } 747 748 #ifdef LLVM_BUILD_GLOBAL_ISEL 749 bool GCNPassConfig::addIRTranslator() { 750 addPass(new IRTranslator()); 751 return false; 752 } 753 754 bool GCNPassConfig::addLegalizeMachineIR() { 755 addPass(new Legalizer()); 756 return false; 757 } 758 759 bool GCNPassConfig::addRegBankSelect() { 760 addPass(new RegBankSelect()); 761 return false; 762 } 763 764 bool GCNPassConfig::addGlobalInstructionSelect() { 765 addPass(new InstructionSelect()); 766 return false; 767 } 768 769 #endif 770 771 void GCNPassConfig::addPreRegAlloc() { 772 addPass(createSIWholeQuadModePass()); 773 } 774 775 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 776 // FIXME: We have to disable the verifier here because of PHIElimination + 777 // TwoAddressInstructions disabling it. 778 779 // This must be run immediately after phi elimination and before 780 // TwoAddressInstructions, otherwise the processing of the tied operand of 781 // SI_ELSE will introduce a copy of the tied operand source after the else. 782 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 783 784 TargetPassConfig::addFastRegAlloc(RegAllocPass); 785 } 786 787 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 788 // This needs to be run directly before register allocation because earlier 789 // passes might recompute live intervals. 790 insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); 791 792 // This must be run immediately after phi elimination and before 793 // TwoAddressInstructions, otherwise the processing of the tied operand of 794 // SI_ELSE will introduce a copy of the tied operand source after the else. 795 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 796 797 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 798 } 799 800 void GCNPassConfig::addPostRegAlloc() { 801 addPass(&SIFixVGPRCopiesID); 802 addPass(&SIOptimizeExecMaskingID); 803 TargetPassConfig::addPostRegAlloc(); 804 } 805 806 void GCNPassConfig::addPreSched2() { 807 } 808 809 void GCNPassConfig::addPreEmitPass() { 810 // The hazard recognizer that runs as part of the post-ra scheduler does not 811 // guarantee to be able handle all hazards correctly. This is because if there 812 // are multiple scheduling regions in a basic block, the regions are scheduled 813 // bottom up, so when we begin to schedule a region we don't know what 814 // instructions were emitted directly before it. 815 // 816 // Here we add a stand-alone hazard recognizer pass which can handle all 817 // cases. 818 addPass(&PostRAHazardRecognizerID); 819 820 if (EnableSIInsertWaitcntsPass) 821 addPass(createSIInsertWaitcntsPass()); 822 else 823 addPass(createSIInsertWaitsPass()); 824 addPass(createSIShrinkInstructionsPass()); 825 addPass(&SIInsertSkipsPassID); 826 addPass(createSIDebuggerInsertNopsPass()); 827 addPass(&BranchRelaxationPassID); 828 } 829 830 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 831 return new GCNPassConfig(this, PM); 832 } 833 834