1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/Localizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/MIRParser/MIParser.h" 36 #include "llvm/CodeGen/Passes.h" 37 #include "llvm/CodeGen/TargetPassConfig.h" 38 #include "llvm/IR/Attributes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/LegacyPassManager.h" 41 #include "llvm/InitializePasses.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/CommandLine.h" 44 #include "llvm/Support/Compiler.h" 45 #include "llvm/Support/TargetRegistry.h" 46 #include "llvm/Target/TargetLoweringObjectFile.h" 47 #include "llvm/Transforms/IPO.h" 48 #include "llvm/Transforms/IPO/AlwaysInliner.h" 49 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 50 #include "llvm/Transforms/Scalar.h" 51 #include "llvm/Transforms/Scalar/GVN.h" 52 #include "llvm/Transforms/Utils.h" 53 #include "llvm/Transforms/Vectorize.h" 54 #include <memory> 55 56 using namespace llvm; 57 58 static cl::opt<bool> EnableR600StructurizeCFG( 59 "r600-ir-structurize", 60 cl::desc("Use StructurizeCFG IR pass"), 61 cl::init(true)); 62 63 static cl::opt<bool> EnableSROA( 64 "amdgpu-sroa", 65 cl::desc("Run SROA after promote alloca pass"), 66 cl::ReallyHidden, 67 cl::init(true)); 68 69 static cl::opt<bool> 70 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 71 cl::desc("Run early if-conversion"), 72 cl::init(false)); 73 74 static cl::opt<bool> 75 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 76 cl::desc("Run pre-RA exec mask optimizations"), 77 cl::init(true)); 78 79 static cl::opt<bool> EnableR600IfConvert( 80 "r600-if-convert", 81 cl::desc("Use if conversion pass"), 82 cl::ReallyHidden, 83 cl::init(true)); 84 85 // Option to disable vectorizer for tests. 86 static cl::opt<bool> EnableLoadStoreVectorizer( 87 "amdgpu-load-store-vectorizer", 88 cl::desc("Enable load store vectorizer"), 89 cl::init(true), 90 cl::Hidden); 91 92 // Option to control global loads scalarization 93 static cl::opt<bool> ScalarizeGlobal( 94 "amdgpu-scalarize-global-loads", 95 cl::desc("Enable global load scalarization"), 96 cl::init(true), 97 cl::Hidden); 98 99 // Option to run internalize pass. 100 static cl::opt<bool> InternalizeSymbols( 101 "amdgpu-internalize-symbols", 102 cl::desc("Enable elimination of non-kernel functions and unused globals"), 103 cl::init(false), 104 cl::Hidden); 105 106 // Option to inline all early. 107 static cl::opt<bool> EarlyInlineAll( 108 "amdgpu-early-inline-all", 109 cl::desc("Inline all functions early"), 110 cl::init(false), 111 cl::Hidden); 112 113 static cl::opt<bool> EnableSDWAPeephole( 114 "amdgpu-sdwa-peephole", 115 cl::desc("Enable SDWA peepholer"), 116 cl::init(true)); 117 118 static cl::opt<bool> EnableDPPCombine( 119 "amdgpu-dpp-combine", 120 cl::desc("Enable DPP combiner"), 121 cl::init(true)); 122 123 // Enable address space based alias analysis 124 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 125 cl::desc("Enable AMDGPU Alias Analysis"), 126 cl::init(true)); 127 128 // Option to run late CFG structurizer 129 static cl::opt<bool, true> LateCFGStructurize( 130 "amdgpu-late-structurize", 131 cl::desc("Enable late CFG structurization"), 132 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 133 cl::Hidden); 134 135 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 136 "amdgpu-function-calls", 137 cl::desc("Enable AMDGPU function call support"), 138 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 139 cl::init(true), 140 cl::Hidden); 141 142 // Enable lib calls simplifications 143 static cl::opt<bool> EnableLibCallSimplify( 144 "amdgpu-simplify-libcall", 145 cl::desc("Enable amdgpu library simplifications"), 146 cl::init(true), 147 cl::Hidden); 148 149 static cl::opt<bool> EnableLowerKernelArguments( 150 "amdgpu-ir-lower-kernel-arguments", 151 cl::desc("Lower kernel argument loads in IR pass"), 152 cl::init(true), 153 cl::Hidden); 154 155 static cl::opt<bool> EnableRegReassign( 156 "amdgpu-reassign-regs", 157 cl::desc("Enable register reassign optimizations on gfx10+"), 158 cl::init(true), 159 cl::Hidden); 160 161 // Enable atomic optimization 162 static cl::opt<bool> EnableAtomicOptimizations( 163 "amdgpu-atomic-optimizations", 164 cl::desc("Enable atomic optimizations"), 165 cl::init(false), 166 cl::Hidden); 167 168 // Enable Mode register optimization 169 static cl::opt<bool> EnableSIModeRegisterPass( 170 "amdgpu-mode-register", 171 cl::desc("Enable mode register pass"), 172 cl::init(true), 173 cl::Hidden); 174 175 // Option is used in lit tests to prevent deadcoding of patterns inspected. 176 static cl::opt<bool> 177 EnableDCEInRA("amdgpu-dce-in-ra", 178 cl::init(true), cl::Hidden, 179 cl::desc("Enable machine DCE inside regalloc")); 180 181 static cl::opt<bool> EnableScalarIRPasses( 182 "amdgpu-scalar-ir-passes", 183 cl::desc("Enable scalar IR passes"), 184 cl::init(true), 185 cl::Hidden); 186 187 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 188 // Register the target 189 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 190 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 191 192 PassRegistry *PR = PassRegistry::getPassRegistry(); 193 initializeR600ClauseMergePassPass(*PR); 194 initializeR600ControlFlowFinalizerPass(*PR); 195 initializeR600PacketizerPass(*PR); 196 initializeR600ExpandSpecialInstrsPassPass(*PR); 197 initializeR600VectorRegMergerPass(*PR); 198 initializeGlobalISel(*PR); 199 initializeAMDGPUDAGToDAGISelPass(*PR); 200 initializeGCNDPPCombinePass(*PR); 201 initializeSILowerI1CopiesPass(*PR); 202 initializeSILowerSGPRSpillsPass(*PR); 203 initializeSIFixSGPRCopiesPass(*PR); 204 initializeSIFixVGPRCopiesPass(*PR); 205 initializeSIFixupVectorISelPass(*PR); 206 initializeSIFoldOperandsPass(*PR); 207 initializeSIPeepholeSDWAPass(*PR); 208 initializeSIShrinkInstructionsPass(*PR); 209 initializeSIOptimizeExecMaskingPreRAPass(*PR); 210 initializeSILoadStoreOptimizerPass(*PR); 211 initializeAMDGPUFixFunctionBitcastsPass(*PR); 212 initializeAMDGPUAlwaysInlinePass(*PR); 213 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 214 initializeAMDGPUAnnotateUniformValuesPass(*PR); 215 initializeAMDGPUArgumentUsageInfoPass(*PR); 216 initializeAMDGPUAtomicOptimizerPass(*PR); 217 initializeAMDGPULowerKernelArgumentsPass(*PR); 218 initializeAMDGPULowerKernelAttributesPass(*PR); 219 initializeAMDGPULowerIntrinsicsPass(*PR); 220 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 221 initializeAMDGPUPostLegalizerCombinerPass(*PR); 222 initializeAMDGPUPreLegalizerCombinerPass(*PR); 223 initializeAMDGPUPromoteAllocaPass(*PR); 224 initializeAMDGPUCodeGenPreparePass(*PR); 225 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 226 initializeAMDGPUPropagateAttributesLatePass(*PR); 227 initializeAMDGPURewriteOutArgumentsPass(*PR); 228 initializeAMDGPUUnifyMetadataPass(*PR); 229 initializeSIAnnotateControlFlowPass(*PR); 230 initializeSIInsertWaitcntsPass(*PR); 231 initializeSIModeRegisterPass(*PR); 232 initializeSIWholeQuadModePass(*PR); 233 initializeSILowerControlFlowPass(*PR); 234 initializeSIRemoveShortExecBranchesPass(*PR); 235 initializeSIInsertSkipsPass(*PR); 236 initializeSIMemoryLegalizerPass(*PR); 237 initializeSIOptimizeExecMaskingPass(*PR); 238 initializeSIPreAllocateWWMRegsPass(*PR); 239 initializeSIFormMemoryClausesPass(*PR); 240 initializeSIPostRABundlerPass(*PR); 241 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 242 initializeAMDGPUAAWrapperPassPass(*PR); 243 initializeAMDGPUExternalAAWrapperPass(*PR); 244 initializeAMDGPUUseNativeCallsPass(*PR); 245 initializeAMDGPUSimplifyLibCallsPass(*PR); 246 initializeAMDGPUInlinerPass(*PR); 247 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 248 initializeGCNRegBankReassignPass(*PR); 249 initializeGCNNSAReassignPass(*PR); 250 initializeSIAddIMGInitPass(*PR); 251 } 252 253 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 254 return std::make_unique<AMDGPUTargetObjectFile>(); 255 } 256 257 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 258 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 259 } 260 261 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 262 return new SIScheduleDAGMI(C); 263 } 264 265 static ScheduleDAGInstrs * 266 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 267 ScheduleDAGMILive *DAG = 268 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 269 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 270 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 271 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 272 return DAG; 273 } 274 275 static ScheduleDAGInstrs * 276 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 277 auto DAG = new GCNIterativeScheduler(C, 278 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 279 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 280 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 281 return DAG; 282 } 283 284 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 285 return new GCNIterativeScheduler(C, 286 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 287 } 288 289 static ScheduleDAGInstrs * 290 createIterativeILPMachineScheduler(MachineSchedContext *C) { 291 auto DAG = new GCNIterativeScheduler(C, 292 GCNIterativeScheduler::SCHEDULE_ILP); 293 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 294 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 295 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 296 return DAG; 297 } 298 299 static MachineSchedRegistry 300 R600SchedRegistry("r600", "Run R600's custom scheduler", 301 createR600MachineScheduler); 302 303 static MachineSchedRegistry 304 SISchedRegistry("si", "Run SI's custom scheduler", 305 createSIMachineScheduler); 306 307 static MachineSchedRegistry 308 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 309 "Run GCN scheduler to maximize occupancy", 310 createGCNMaxOccupancyMachineScheduler); 311 312 static MachineSchedRegistry 313 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 314 "Run GCN scheduler to maximize occupancy (experimental)", 315 createIterativeGCNMaxOccupancyMachineScheduler); 316 317 static MachineSchedRegistry 318 GCNMinRegSchedRegistry("gcn-minreg", 319 "Run GCN iterative scheduler for minimal register usage (experimental)", 320 createMinRegScheduler); 321 322 static MachineSchedRegistry 323 GCNILPSchedRegistry("gcn-ilp", 324 "Run GCN iterative scheduler for ILP scheduling (experimental)", 325 createIterativeILPMachineScheduler); 326 327 static StringRef computeDataLayout(const Triple &TT) { 328 if (TT.getArch() == Triple::r600) { 329 // 32-bit pointers. 330 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 331 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 332 } 333 334 // 32-bit private, local, and region pointers. 64-bit global, constant and 335 // flat, non-integral buffer fat pointers. 336 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 337 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 338 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 339 "-ni:7"; 340 } 341 342 LLVM_READNONE 343 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 344 if (!GPU.empty()) 345 return GPU; 346 347 // Need to default to a target with flat support for HSA. 348 if (TT.getArch() == Triple::amdgcn) 349 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 350 351 return "r600"; 352 } 353 354 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 355 // The AMDGPU toolchain only supports generating shared objects, so we 356 // must always use PIC. 357 return Reloc::PIC_; 358 } 359 360 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 361 StringRef CPU, StringRef FS, 362 TargetOptions Options, 363 Optional<Reloc::Model> RM, 364 Optional<CodeModel::Model> CM, 365 CodeGenOpt::Level OptLevel) 366 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 367 FS, Options, getEffectiveRelocModel(RM), 368 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 369 TLOF(createTLOF(getTargetTriple())) { 370 initAsmInfo(); 371 } 372 373 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 374 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 375 376 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 377 378 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 379 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 380 return GPUAttr.hasAttribute(Attribute::None) ? 381 getTargetCPU() : GPUAttr.getValueAsString(); 382 } 383 384 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 385 Attribute FSAttr = F.getFnAttribute("target-features"); 386 387 return FSAttr.hasAttribute(Attribute::None) ? 388 getTargetFeatureString() : 389 FSAttr.getValueAsString(); 390 } 391 392 /// Predicate for Internalize pass. 393 static bool mustPreserveGV(const GlobalValue &GV) { 394 if (const Function *F = dyn_cast<Function>(&GV)) 395 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 396 397 return !GV.use_empty(); 398 } 399 400 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 401 Builder.DivergentTarget = true; 402 403 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 404 bool Internalize = InternalizeSymbols; 405 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 406 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 407 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 408 409 if (EnableFunctionCalls) { 410 delete Builder.Inliner; 411 Builder.Inliner = createAMDGPUFunctionInliningPass(); 412 } 413 414 Builder.addExtension( 415 PassManagerBuilder::EP_ModuleOptimizerEarly, 416 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 417 legacy::PassManagerBase &PM) { 418 if (AMDGPUAA) { 419 PM.add(createAMDGPUAAWrapperPass()); 420 PM.add(createAMDGPUExternalAAWrapperPass()); 421 } 422 PM.add(createAMDGPUUnifyMetadataPass()); 423 PM.add(createAMDGPUPrintfRuntimeBinding()); 424 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 425 if (Internalize) { 426 PM.add(createInternalizePass(mustPreserveGV)); 427 PM.add(createGlobalDCEPass()); 428 } 429 if (EarlyInline) 430 PM.add(createAMDGPUAlwaysInlinePass(false)); 431 }); 432 433 const auto &Opt = Options; 434 Builder.addExtension( 435 PassManagerBuilder::EP_EarlyAsPossible, 436 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 437 legacy::PassManagerBase &PM) { 438 if (AMDGPUAA) { 439 PM.add(createAMDGPUAAWrapperPass()); 440 PM.add(createAMDGPUExternalAAWrapperPass()); 441 } 442 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 443 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 444 if (LibCallSimplify) 445 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 446 }); 447 448 Builder.addExtension( 449 PassManagerBuilder::EP_CGSCCOptimizerLate, 450 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 451 // Add infer address spaces pass to the opt pipeline after inlining 452 // but before SROA to increase SROA opportunities. 453 PM.add(createInferAddressSpacesPass()); 454 455 // This should run after inlining to have any chance of doing anything, 456 // and before other cleanup optimizations. 457 PM.add(createAMDGPULowerKernelAttributesPass()); 458 }); 459 } 460 461 //===----------------------------------------------------------------------===// 462 // R600 Target Machine (R600 -> Cayman) 463 //===----------------------------------------------------------------------===// 464 465 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 466 StringRef CPU, StringRef FS, 467 TargetOptions Options, 468 Optional<Reloc::Model> RM, 469 Optional<CodeModel::Model> CM, 470 CodeGenOpt::Level OL, bool JIT) 471 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 472 setRequiresStructuredCFG(true); 473 474 // Override the default since calls aren't supported for r600. 475 if (EnableFunctionCalls && 476 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 477 EnableFunctionCalls = false; 478 } 479 480 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 481 const Function &F) const { 482 StringRef GPU = getGPUName(F); 483 StringRef FS = getFeatureString(F); 484 485 SmallString<128> SubtargetKey(GPU); 486 SubtargetKey.append(FS); 487 488 auto &I = SubtargetMap[SubtargetKey]; 489 if (!I) { 490 // This needs to be done before we create a new subtarget since any 491 // creation will depend on the TM and the code generation flags on the 492 // function that reside in TargetOptions. 493 resetTargetOptions(F); 494 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 495 } 496 497 return I.get(); 498 } 499 500 TargetTransformInfo 501 R600TargetMachine::getTargetTransformInfo(const Function &F) { 502 return TargetTransformInfo(R600TTIImpl(this, F)); 503 } 504 505 //===----------------------------------------------------------------------===// 506 // GCN Target Machine (SI+) 507 //===----------------------------------------------------------------------===// 508 509 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 510 StringRef CPU, StringRef FS, 511 TargetOptions Options, 512 Optional<Reloc::Model> RM, 513 Optional<CodeModel::Model> CM, 514 CodeGenOpt::Level OL, bool JIT) 515 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 516 517 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 518 StringRef GPU = getGPUName(F); 519 StringRef FS = getFeatureString(F); 520 521 SmallString<128> SubtargetKey(GPU); 522 SubtargetKey.append(FS); 523 524 auto &I = SubtargetMap[SubtargetKey]; 525 if (!I) { 526 // This needs to be done before we create a new subtarget since any 527 // creation will depend on the TM and the code generation flags on the 528 // function that reside in TargetOptions. 529 resetTargetOptions(F); 530 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 531 } 532 533 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 534 535 return I.get(); 536 } 537 538 TargetTransformInfo 539 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 540 return TargetTransformInfo(GCNTTIImpl(this, F)); 541 } 542 543 //===----------------------------------------------------------------------===// 544 // AMDGPU Pass Setup 545 //===----------------------------------------------------------------------===// 546 547 namespace { 548 549 class AMDGPUPassConfig : public TargetPassConfig { 550 public: 551 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 552 : TargetPassConfig(TM, PM) { 553 // Exceptions and StackMaps are not supported, so these passes will never do 554 // anything. 555 disablePass(&StackMapLivenessID); 556 disablePass(&FuncletLayoutID); 557 } 558 559 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 560 return getTM<AMDGPUTargetMachine>(); 561 } 562 563 ScheduleDAGInstrs * 564 createMachineScheduler(MachineSchedContext *C) const override { 565 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 566 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 567 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 568 return DAG; 569 } 570 571 void addEarlyCSEOrGVNPass(); 572 void addStraightLineScalarOptimizationPasses(); 573 void addIRPasses() override; 574 void addCodeGenPrepare() override; 575 bool addPreISel() override; 576 bool addInstSelector() override; 577 bool addGCPasses() override; 578 579 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 580 }; 581 582 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 583 return getStandardCSEConfigForOpt(TM->getOptLevel()); 584 } 585 586 class R600PassConfig final : public AMDGPUPassConfig { 587 public: 588 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 589 : AMDGPUPassConfig(TM, PM) {} 590 591 ScheduleDAGInstrs *createMachineScheduler( 592 MachineSchedContext *C) const override { 593 return createR600MachineScheduler(C); 594 } 595 596 bool addPreISel() override; 597 bool addInstSelector() override; 598 void addPreRegAlloc() override; 599 void addPreSched2() override; 600 void addPreEmitPass() override; 601 }; 602 603 class GCNPassConfig final : public AMDGPUPassConfig { 604 public: 605 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 606 : AMDGPUPassConfig(TM, PM) { 607 // It is necessary to know the register usage of the entire call graph. We 608 // allow calls without EnableAMDGPUFunctionCalls if they are marked 609 // noinline, so this is always required. 610 setRequiresCodeGenSCCOrder(true); 611 } 612 613 GCNTargetMachine &getGCNTargetMachine() const { 614 return getTM<GCNTargetMachine>(); 615 } 616 617 ScheduleDAGInstrs * 618 createMachineScheduler(MachineSchedContext *C) const override; 619 620 bool addPreISel() override; 621 void addMachineSSAOptimization() override; 622 bool addILPOpts() override; 623 bool addInstSelector() override; 624 bool addIRTranslator() override; 625 void addPreLegalizeMachineIR() override; 626 bool addLegalizeMachineIR() override; 627 void addPreRegBankSelect() override; 628 bool addRegBankSelect() override; 629 bool addGlobalInstructionSelect() override; 630 void addFastRegAlloc() override; 631 void addOptimizedRegAlloc() override; 632 void addPreRegAlloc() override; 633 bool addPreRewrite() override; 634 void addPostRegAlloc() override; 635 void addPreSched2() override; 636 void addPreEmitPass() override; 637 }; 638 639 } // end anonymous namespace 640 641 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 642 if (getOptLevel() == CodeGenOpt::Aggressive) 643 addPass(createGVNPass()); 644 else 645 addPass(createEarlyCSEPass()); 646 } 647 648 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 649 addPass(createLICMPass()); 650 addPass(createSeparateConstOffsetFromGEPPass()); 651 addPass(createSpeculativeExecutionPass()); 652 // ReassociateGEPs exposes more opportunites for SLSR. See 653 // the example in reassociate-geps-and-slsr.ll. 654 addPass(createStraightLineStrengthReducePass()); 655 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 656 // EarlyCSE can reuse. 657 addEarlyCSEOrGVNPass(); 658 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 659 addPass(createNaryReassociatePass()); 660 // NaryReassociate on GEPs creates redundant common expressions, so run 661 // EarlyCSE after it. 662 addPass(createEarlyCSEPass()); 663 } 664 665 void AMDGPUPassConfig::addIRPasses() { 666 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 667 668 // There is no reason to run these. 669 disablePass(&StackMapLivenessID); 670 disablePass(&FuncletLayoutID); 671 disablePass(&PatchableFunctionID); 672 673 addPass(createAMDGPUPrintfRuntimeBinding()); 674 675 // This must occur before inlining, as the inliner will not look through 676 // bitcast calls. 677 addPass(createAMDGPUFixFunctionBitcastsPass()); 678 679 // A call to propagate attributes pass in the backend in case opt was not run. 680 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 681 682 addPass(createAtomicExpandPass()); 683 684 685 addPass(createAMDGPULowerIntrinsicsPass()); 686 687 // Function calls are not supported, so make sure we inline everything. 688 addPass(createAMDGPUAlwaysInlinePass()); 689 addPass(createAlwaysInlinerLegacyPass()); 690 // We need to add the barrier noop pass, otherwise adding the function 691 // inlining pass will cause all of the PassConfigs passes to be run 692 // one function at a time, which means if we have a nodule with two 693 // functions, then we will generate code for the first function 694 // without ever running any passes on the second. 695 addPass(createBarrierNoopPass()); 696 697 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 698 if (TM.getTargetTriple().getArch() == Triple::r600) 699 addPass(createR600OpenCLImageTypeLoweringPass()); 700 701 // Replace OpenCL enqueued block function pointers with global variables. 702 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 703 704 if (TM.getOptLevel() > CodeGenOpt::None) { 705 addPass(createInferAddressSpacesPass()); 706 addPass(createAMDGPUPromoteAlloca()); 707 708 if (EnableSROA) 709 addPass(createSROAPass()); 710 711 if (EnableScalarIRPasses) 712 addStraightLineScalarOptimizationPasses(); 713 714 if (EnableAMDGPUAliasAnalysis) { 715 addPass(createAMDGPUAAWrapperPass()); 716 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 717 AAResults &AAR) { 718 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 719 AAR.addAAResult(WrapperPass->getResult()); 720 })); 721 } 722 } 723 724 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 725 // TODO: May want to move later or split into an early and late one. 726 addPass(createAMDGPUCodeGenPreparePass()); 727 } 728 729 TargetPassConfig::addIRPasses(); 730 731 // EarlyCSE is not always strong enough to clean up what LSR produces. For 732 // example, GVN can combine 733 // 734 // %0 = add %a, %b 735 // %1 = add %b, %a 736 // 737 // and 738 // 739 // %0 = shl nsw %a, 2 740 // %1 = shl %a, 2 741 // 742 // but EarlyCSE can do neither of them. 743 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 744 addEarlyCSEOrGVNPass(); 745 } 746 747 void AMDGPUPassConfig::addCodeGenPrepare() { 748 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 749 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 750 751 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 752 EnableLowerKernelArguments) 753 addPass(createAMDGPULowerKernelArgumentsPass()); 754 755 addPass(&AMDGPUPerfHintAnalysisID); 756 757 TargetPassConfig::addCodeGenPrepare(); 758 759 if (EnableLoadStoreVectorizer) 760 addPass(createLoadStoreVectorizerPass()); 761 } 762 763 bool AMDGPUPassConfig::addPreISel() { 764 addPass(createLowerSwitchPass()); 765 addPass(createFlattenCFGPass()); 766 return false; 767 } 768 769 bool AMDGPUPassConfig::addInstSelector() { 770 // Defer the verifier until FinalizeISel. 771 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 772 return false; 773 } 774 775 bool AMDGPUPassConfig::addGCPasses() { 776 // Do nothing. GC is not supported. 777 return false; 778 } 779 780 //===----------------------------------------------------------------------===// 781 // R600 Pass Setup 782 //===----------------------------------------------------------------------===// 783 784 bool R600PassConfig::addPreISel() { 785 AMDGPUPassConfig::addPreISel(); 786 787 if (EnableR600StructurizeCFG) 788 addPass(createStructurizeCFGPass()); 789 return false; 790 } 791 792 bool R600PassConfig::addInstSelector() { 793 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 794 return false; 795 } 796 797 void R600PassConfig::addPreRegAlloc() { 798 addPass(createR600VectorRegMerger()); 799 } 800 801 void R600PassConfig::addPreSched2() { 802 addPass(createR600EmitClauseMarkers(), false); 803 if (EnableR600IfConvert) 804 addPass(&IfConverterID, false); 805 addPass(createR600ClauseMergePass(), false); 806 } 807 808 void R600PassConfig::addPreEmitPass() { 809 addPass(createAMDGPUCFGStructurizerPass(), false); 810 addPass(createR600ExpandSpecialInstrsPass(), false); 811 addPass(&FinalizeMachineBundlesID, false); 812 addPass(createR600Packetizer(), false); 813 addPass(createR600ControlFlowFinalizer(), false); 814 } 815 816 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 817 return new R600PassConfig(*this, PM); 818 } 819 820 //===----------------------------------------------------------------------===// 821 // GCN Pass Setup 822 //===----------------------------------------------------------------------===// 823 824 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 825 MachineSchedContext *C) const { 826 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 827 if (ST.enableSIScheduler()) 828 return createSIMachineScheduler(C); 829 return createGCNMaxOccupancyMachineScheduler(C); 830 } 831 832 bool GCNPassConfig::addPreISel() { 833 AMDGPUPassConfig::addPreISel(); 834 835 if (EnableAtomicOptimizations) { 836 addPass(createAMDGPUAtomicOptimizerPass()); 837 } 838 839 // FIXME: We need to run a pass to propagate the attributes when calls are 840 // supported. 841 842 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 843 // regions formed by them. 844 addPass(&AMDGPUUnifyDivergentExitNodesID); 845 if (!LateCFGStructurize) { 846 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 847 } 848 addPass(createSinkingPass()); 849 addPass(createAMDGPUAnnotateUniformValues()); 850 if (!LateCFGStructurize) { 851 addPass(createSIAnnotateControlFlowPass()); 852 } 853 addPass(createLCSSAPass()); 854 855 return false; 856 } 857 858 void GCNPassConfig::addMachineSSAOptimization() { 859 TargetPassConfig::addMachineSSAOptimization(); 860 861 // We want to fold operands after PeepholeOptimizer has run (or as part of 862 // it), because it will eliminate extra copies making it easier to fold the 863 // real source operand. We want to eliminate dead instructions after, so that 864 // we see fewer uses of the copies. We then need to clean up the dead 865 // instructions leftover after the operands are folded as well. 866 // 867 // XXX - Can we get away without running DeadMachineInstructionElim again? 868 addPass(&SIFoldOperandsID); 869 if (EnableDPPCombine) 870 addPass(&GCNDPPCombineID); 871 addPass(&DeadMachineInstructionElimID); 872 addPass(&SILoadStoreOptimizerID); 873 if (EnableSDWAPeephole) { 874 addPass(&SIPeepholeSDWAID); 875 addPass(&EarlyMachineLICMID); 876 addPass(&MachineCSEID); 877 addPass(&SIFoldOperandsID); 878 addPass(&DeadMachineInstructionElimID); 879 } 880 addPass(createSIShrinkInstructionsPass()); 881 } 882 883 bool GCNPassConfig::addILPOpts() { 884 if (EnableEarlyIfConversion) 885 addPass(&EarlyIfConverterID); 886 887 TargetPassConfig::addILPOpts(); 888 return false; 889 } 890 891 bool GCNPassConfig::addInstSelector() { 892 AMDGPUPassConfig::addInstSelector(); 893 addPass(&SIFixSGPRCopiesID); 894 addPass(createSILowerI1CopiesPass()); 895 addPass(createSIFixupVectorISelPass()); 896 addPass(createSIAddIMGInitPass()); 897 return false; 898 } 899 900 bool GCNPassConfig::addIRTranslator() { 901 addPass(new IRTranslator()); 902 return false; 903 } 904 905 void GCNPassConfig::addPreLegalizeMachineIR() { 906 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 907 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 908 addPass(new Localizer()); 909 } 910 911 bool GCNPassConfig::addLegalizeMachineIR() { 912 addPass(new Legalizer()); 913 return false; 914 } 915 916 void GCNPassConfig::addPreRegBankSelect() { 917 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 918 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 919 } 920 921 bool GCNPassConfig::addRegBankSelect() { 922 addPass(new RegBankSelect()); 923 return false; 924 } 925 926 bool GCNPassConfig::addGlobalInstructionSelect() { 927 addPass(new InstructionSelect()); 928 return false; 929 } 930 931 void GCNPassConfig::addPreRegAlloc() { 932 if (LateCFGStructurize) { 933 addPass(createAMDGPUMachineCFGStructurizerPass()); 934 } 935 addPass(createSIWholeQuadModePass()); 936 } 937 938 void GCNPassConfig::addFastRegAlloc() { 939 // FIXME: We have to disable the verifier here because of PHIElimination + 940 // TwoAddressInstructions disabling it. 941 942 // This must be run immediately after phi elimination and before 943 // TwoAddressInstructions, otherwise the processing of the tied operand of 944 // SI_ELSE will introduce a copy of the tied operand source after the else. 945 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 946 947 // This must be run just after RegisterCoalescing. 948 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 949 950 TargetPassConfig::addFastRegAlloc(); 951 } 952 953 void GCNPassConfig::addOptimizedRegAlloc() { 954 if (OptExecMaskPreRA) { 955 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 956 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 957 } else { 958 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 959 } 960 961 // This must be run immediately after phi elimination and before 962 // TwoAddressInstructions, otherwise the processing of the tied operand of 963 // SI_ELSE will introduce a copy of the tied operand source after the else. 964 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 965 966 // This must be run just after RegisterCoalescing. 967 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 968 969 if (EnableDCEInRA) 970 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 971 972 TargetPassConfig::addOptimizedRegAlloc(); 973 } 974 975 bool GCNPassConfig::addPreRewrite() { 976 if (EnableRegReassign) { 977 addPass(&GCNNSAReassignID); 978 addPass(&GCNRegBankReassignID); 979 } 980 return true; 981 } 982 983 void GCNPassConfig::addPostRegAlloc() { 984 addPass(&SIFixVGPRCopiesID); 985 if (getOptLevel() > CodeGenOpt::None) 986 addPass(&SIOptimizeExecMaskingID); 987 TargetPassConfig::addPostRegAlloc(); 988 989 // Equivalent of PEI for SGPRs. 990 addPass(&SILowerSGPRSpillsID); 991 } 992 993 void GCNPassConfig::addPreSched2() { 994 addPass(&SIPostRABundlerID); 995 } 996 997 void GCNPassConfig::addPreEmitPass() { 998 addPass(createSIMemoryLegalizerPass()); 999 addPass(createSIInsertWaitcntsPass()); 1000 addPass(createSIShrinkInstructionsPass()); 1001 addPass(createSIModeRegisterPass()); 1002 1003 // The hazard recognizer that runs as part of the post-ra scheduler does not 1004 // guarantee to be able handle all hazards correctly. This is because if there 1005 // are multiple scheduling regions in a basic block, the regions are scheduled 1006 // bottom up, so when we begin to schedule a region we don't know what 1007 // instructions were emitted directly before it. 1008 // 1009 // Here we add a stand-alone hazard recognizer pass which can handle all 1010 // cases. 1011 // 1012 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1013 // be better for it to emit S_NOP <N> when possible. 1014 addPass(&PostRAHazardRecognizerID); 1015 1016 addPass(&SIRemoveShortExecBranchesID); 1017 addPass(&SIInsertSkipsPassID); 1018 addPass(&BranchRelaxationPassID); 1019 } 1020 1021 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1022 return new GCNPassConfig(*this, PM); 1023 } 1024 1025 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1026 return new yaml::SIMachineFunctionInfo(); 1027 } 1028 1029 yaml::MachineFunctionInfo * 1030 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1031 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1032 return new yaml::SIMachineFunctionInfo(*MFI, 1033 *MF.getSubtarget().getRegisterInfo()); 1034 } 1035 1036 bool GCNTargetMachine::parseMachineFunctionInfo( 1037 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1038 SMDiagnostic &Error, SMRange &SourceRange) const { 1039 const yaml::SIMachineFunctionInfo &YamlMFI = 1040 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1041 MachineFunction &MF = PFS.MF; 1042 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1043 1044 MFI->initializeBaseYamlFields(YamlMFI); 1045 1046 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1047 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1048 SourceRange = RegName.SourceRange; 1049 return true; 1050 } 1051 1052 return false; 1053 }; 1054 1055 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1056 // Create a diagnostic for a the register string literal. 1057 const MemoryBuffer &Buffer = 1058 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1059 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1060 RegName.Value.size(), SourceMgr::DK_Error, 1061 "incorrect register class for field", RegName.Value, 1062 None, None); 1063 SourceRange = RegName.SourceRange; 1064 return true; 1065 }; 1066 1067 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1068 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1069 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1070 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1071 return true; 1072 1073 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1074 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1075 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1076 } 1077 1078 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1079 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1080 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1081 } 1082 1083 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1084 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1085 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1086 } 1087 1088 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1089 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1090 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1091 } 1092 1093 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1094 const TargetRegisterClass &RC, 1095 ArgDescriptor &Arg, unsigned UserSGPRs, 1096 unsigned SystemSGPRs) { 1097 // Skip parsing if it's not present. 1098 if (!A) 1099 return false; 1100 1101 if (A->IsRegister) { 1102 unsigned Reg; 1103 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1104 SourceRange = A->RegisterName.SourceRange; 1105 return true; 1106 } 1107 if (!RC.contains(Reg)) 1108 return diagnoseRegisterClass(A->RegisterName); 1109 Arg = ArgDescriptor::createRegister(Reg); 1110 } else 1111 Arg = ArgDescriptor::createStack(A->StackOffset); 1112 // Check and apply the optional mask. 1113 if (A->Mask) 1114 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1115 1116 MFI->NumUserSGPRs += UserSGPRs; 1117 MFI->NumSystemSGPRs += SystemSGPRs; 1118 return false; 1119 }; 1120 1121 if (YamlMFI.ArgInfo && 1122 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1123 AMDGPU::SGPR_128RegClass, 1124 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1125 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1126 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1127 2, 0) || 1128 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1129 MFI->ArgInfo.QueuePtr, 2, 0) || 1130 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1131 AMDGPU::SReg_64RegClass, 1132 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1133 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1134 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1135 2, 0) || 1136 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1137 AMDGPU::SReg_64RegClass, 1138 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1139 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1140 AMDGPU::SGPR_32RegClass, 1141 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1142 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1143 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1144 0, 1) || 1145 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1146 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1147 0, 1) || 1148 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1149 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1150 0, 1) || 1151 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1152 AMDGPU::SGPR_32RegClass, 1153 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1154 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1155 AMDGPU::SGPR_32RegClass, 1156 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1157 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1158 AMDGPU::SReg_64RegClass, 1159 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1160 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1161 AMDGPU::SReg_64RegClass, 1162 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1163 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1164 AMDGPU::VGPR_32RegClass, 1165 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1166 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1167 AMDGPU::VGPR_32RegClass, 1168 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1169 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1170 AMDGPU::VGPR_32RegClass, 1171 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1172 return true; 1173 1174 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1175 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1176 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1177 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1178 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1179 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1180 1181 return false; 1182 } 1183