1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Utils.h" 49 #include "llvm/Transforms/Vectorize.h" 50 #include <memory> 51 52 using namespace llvm; 53 54 static cl::opt<bool> EnableR600StructurizeCFG( 55 "r600-ir-structurize", 56 cl::desc("Use StructurizeCFG IR pass"), 57 cl::init(true)); 58 59 static cl::opt<bool> EnableSROA( 60 "amdgpu-sroa", 61 cl::desc("Run SROA after promote alloca pass"), 62 cl::ReallyHidden, 63 cl::init(true)); 64 65 static cl::opt<bool> 66 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 67 cl::desc("Run early if-conversion"), 68 cl::init(false)); 69 70 static cl::opt<bool> EnableR600IfConvert( 71 "r600-if-convert", 72 cl::desc("Use if conversion pass"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Option to disable vectorizer for tests. 77 static cl::opt<bool> EnableLoadStoreVectorizer( 78 "amdgpu-load-store-vectorizer", 79 cl::desc("Enable load store vectorizer"), 80 cl::init(true), 81 cl::Hidden); 82 83 // Option to control global loads scalarization 84 static cl::opt<bool> ScalarizeGlobal( 85 "amdgpu-scalarize-global-loads", 86 cl::desc("Enable global load scalarization"), 87 cl::init(true), 88 cl::Hidden); 89 90 // Option to run internalize pass. 91 static cl::opt<bool> InternalizeSymbols( 92 "amdgpu-internalize-symbols", 93 cl::desc("Enable elimination of non-kernel functions and unused globals"), 94 cl::init(false), 95 cl::Hidden); 96 97 // Option to inline all early. 98 static cl::opt<bool> EarlyInlineAll( 99 "amdgpu-early-inline-all", 100 cl::desc("Inline all functions early"), 101 cl::init(false), 102 cl::Hidden); 103 104 static cl::opt<bool> EnableSDWAPeephole( 105 "amdgpu-sdwa-peephole", 106 cl::desc("Enable SDWA peepholer"), 107 cl::init(true)); 108 109 // Enable address space based alias analysis 110 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 111 cl::desc("Enable AMDGPU Alias Analysis"), 112 cl::init(true)); 113 114 // Option to run late CFG structurizer 115 static cl::opt<bool, true> LateCFGStructurize( 116 "amdgpu-late-structurize", 117 cl::desc("Enable late CFG structurization"), 118 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 119 cl::Hidden); 120 121 static cl::opt<bool, true> EnableAMDGPUFunctionCalls( 122 "amdgpu-function-calls", 123 cl::desc("Enable AMDGPU function call support"), 124 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 125 cl::init(false), 126 cl::Hidden); 127 128 // Enable lib calls simplifications 129 static cl::opt<bool> EnableLibCallSimplify( 130 "amdgpu-simplify-libcall", 131 cl::desc("Enable amdgpu library simplifications"), 132 cl::init(true), 133 cl::Hidden); 134 135 static cl::opt<bool> EnableLowerKernelArguments( 136 "amdgpu-ir-lower-kernel-arguments", 137 cl::desc("Lower kernel argument loads in IR pass"), 138 cl::init(true), 139 cl::Hidden); 140 141 // Enable atomic optimization 142 static cl::opt<bool> EnableAtomicOptimizations( 143 "amdgpu-atomic-optimizations", 144 cl::desc("Enable atomic optimizations"), 145 cl::init(false), 146 cl::Hidden); 147 148 extern "C" void LLVMInitializeAMDGPUTarget() { 149 // Register the target 150 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 151 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 152 153 PassRegistry *PR = PassRegistry::getPassRegistry(); 154 initializeR600ClauseMergePassPass(*PR); 155 initializeR600ControlFlowFinalizerPass(*PR); 156 initializeR600PacketizerPass(*PR); 157 initializeR600ExpandSpecialInstrsPassPass(*PR); 158 initializeR600VectorRegMergerPass(*PR); 159 initializeGlobalISel(*PR); 160 initializeAMDGPUDAGToDAGISelPass(*PR); 161 initializeSILowerI1CopiesPass(*PR); 162 initializeSIFixSGPRCopiesPass(*PR); 163 initializeSIFixVGPRCopiesPass(*PR); 164 initializeSIFoldOperandsPass(*PR); 165 initializeSIPeepholeSDWAPass(*PR); 166 initializeSIShrinkInstructionsPass(*PR); 167 initializeSIOptimizeExecMaskingPreRAPass(*PR); 168 initializeSILoadStoreOptimizerPass(*PR); 169 initializeAMDGPUFixFunctionBitcastsPass(*PR); 170 initializeAMDGPUAlwaysInlinePass(*PR); 171 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 172 initializeAMDGPUAnnotateUniformValuesPass(*PR); 173 initializeAMDGPUArgumentUsageInfoPass(*PR); 174 initializeAMDGPUAtomicOptimizerPass(*PR); 175 initializeAMDGPULowerKernelArgumentsPass(*PR); 176 initializeAMDGPULowerKernelAttributesPass(*PR); 177 initializeAMDGPULowerIntrinsicsPass(*PR); 178 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 179 initializeAMDGPUPromoteAllocaPass(*PR); 180 initializeAMDGPUCodeGenPreparePass(*PR); 181 initializeAMDGPURewriteOutArgumentsPass(*PR); 182 initializeAMDGPUUnifyMetadataPass(*PR); 183 initializeSIAnnotateControlFlowPass(*PR); 184 initializeSIInsertWaitcntsPass(*PR); 185 initializeSIWholeQuadModePass(*PR); 186 initializeSILowerControlFlowPass(*PR); 187 initializeSIInsertSkipsPass(*PR); 188 initializeSIMemoryLegalizerPass(*PR); 189 initializeSIDebuggerInsertNopsPass(*PR); 190 initializeSIOptimizeExecMaskingPass(*PR); 191 initializeSIFixWWMLivenessPass(*PR); 192 initializeSIFormMemoryClausesPass(*PR); 193 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 194 initializeAMDGPUAAWrapperPassPass(*PR); 195 initializeAMDGPUExternalAAWrapperPass(*PR); 196 initializeAMDGPUUseNativeCallsPass(*PR); 197 initializeAMDGPUSimplifyLibCallsPass(*PR); 198 initializeAMDGPUInlinerPass(*PR); 199 } 200 201 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 202 return llvm::make_unique<AMDGPUTargetObjectFile>(); 203 } 204 205 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 206 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 207 } 208 209 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 210 return new SIScheduleDAGMI(C); 211 } 212 213 static ScheduleDAGInstrs * 214 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 215 ScheduleDAGMILive *DAG = 216 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 217 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 218 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 219 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 220 return DAG; 221 } 222 223 static ScheduleDAGInstrs * 224 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 225 auto DAG = new GCNIterativeScheduler(C, 226 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 227 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 228 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 229 return DAG; 230 } 231 232 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 233 return new GCNIterativeScheduler(C, 234 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 235 } 236 237 static ScheduleDAGInstrs * 238 createIterativeILPMachineScheduler(MachineSchedContext *C) { 239 auto DAG = new GCNIterativeScheduler(C, 240 GCNIterativeScheduler::SCHEDULE_ILP); 241 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 242 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 243 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 244 return DAG; 245 } 246 247 static MachineSchedRegistry 248 R600SchedRegistry("r600", "Run R600's custom scheduler", 249 createR600MachineScheduler); 250 251 static MachineSchedRegistry 252 SISchedRegistry("si", "Run SI's custom scheduler", 253 createSIMachineScheduler); 254 255 static MachineSchedRegistry 256 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 257 "Run GCN scheduler to maximize occupancy", 258 createGCNMaxOccupancyMachineScheduler); 259 260 static MachineSchedRegistry 261 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 262 "Run GCN scheduler to maximize occupancy (experimental)", 263 createIterativeGCNMaxOccupancyMachineScheduler); 264 265 static MachineSchedRegistry 266 GCNMinRegSchedRegistry("gcn-minreg", 267 "Run GCN iterative scheduler for minimal register usage (experimental)", 268 createMinRegScheduler); 269 270 static MachineSchedRegistry 271 GCNILPSchedRegistry("gcn-ilp", 272 "Run GCN iterative scheduler for ILP scheduling (experimental)", 273 createIterativeILPMachineScheduler); 274 275 static StringRef computeDataLayout(const Triple &TT) { 276 if (TT.getArch() == Triple::r600) { 277 // 32-bit pointers. 278 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 279 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 280 } 281 282 // 32-bit private, local, and region pointers. 64-bit global, constant and 283 // flat. 284 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 285 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 286 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 287 } 288 289 LLVM_READNONE 290 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 291 if (!GPU.empty()) 292 return GPU; 293 294 if (TT.getArch() == Triple::amdgcn) 295 return "generic"; 296 297 return "r600"; 298 } 299 300 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 301 // The AMDGPU toolchain only supports generating shared objects, so we 302 // must always use PIC. 303 return Reloc::PIC_; 304 } 305 306 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) { 307 if (CM) 308 return *CM; 309 return CodeModel::Small; 310 } 311 312 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 313 StringRef CPU, StringRef FS, 314 TargetOptions Options, 315 Optional<Reloc::Model> RM, 316 Optional<CodeModel::Model> CM, 317 CodeGenOpt::Level OptLevel) 318 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 319 FS, Options, getEffectiveRelocModel(RM), 320 getEffectiveCodeModel(CM), OptLevel), 321 TLOF(createTLOF(getTargetTriple())) { 322 initAsmInfo(); 323 } 324 325 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 326 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 327 328 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 329 330 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 331 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 332 return GPUAttr.hasAttribute(Attribute::None) ? 333 getTargetCPU() : GPUAttr.getValueAsString(); 334 } 335 336 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 337 Attribute FSAttr = F.getFnAttribute("target-features"); 338 339 return FSAttr.hasAttribute(Attribute::None) ? 340 getTargetFeatureString() : 341 FSAttr.getValueAsString(); 342 } 343 344 /// Predicate for Internalize pass. 345 static bool mustPreserveGV(const GlobalValue &GV) { 346 if (const Function *F = dyn_cast<Function>(&GV)) 347 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 348 349 return !GV.use_empty(); 350 } 351 352 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 353 Builder.DivergentTarget = true; 354 355 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 356 bool Internalize = InternalizeSymbols; 357 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; 358 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 359 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 360 361 if (EnableAMDGPUFunctionCalls) { 362 delete Builder.Inliner; 363 Builder.Inliner = createAMDGPUFunctionInliningPass(); 364 } 365 366 Builder.addExtension( 367 PassManagerBuilder::EP_ModuleOptimizerEarly, 368 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 369 legacy::PassManagerBase &PM) { 370 if (AMDGPUAA) { 371 PM.add(createAMDGPUAAWrapperPass()); 372 PM.add(createAMDGPUExternalAAWrapperPass()); 373 } 374 PM.add(createAMDGPUUnifyMetadataPass()); 375 if (Internalize) { 376 PM.add(createInternalizePass(mustPreserveGV)); 377 PM.add(createGlobalDCEPass()); 378 } 379 if (EarlyInline) 380 PM.add(createAMDGPUAlwaysInlinePass(false)); 381 }); 382 383 const auto &Opt = Options; 384 Builder.addExtension( 385 PassManagerBuilder::EP_EarlyAsPossible, 386 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 387 legacy::PassManagerBase &PM) { 388 if (AMDGPUAA) { 389 PM.add(createAMDGPUAAWrapperPass()); 390 PM.add(createAMDGPUExternalAAWrapperPass()); 391 } 392 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 393 if (LibCallSimplify) 394 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 395 }); 396 397 Builder.addExtension( 398 PassManagerBuilder::EP_CGSCCOptimizerLate, 399 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 400 // Add infer address spaces pass to the opt pipeline after inlining 401 // but before SROA to increase SROA opportunities. 402 PM.add(createInferAddressSpacesPass()); 403 404 // This should run after inlining to have any chance of doing anything, 405 // and before other cleanup optimizations. 406 PM.add(createAMDGPULowerKernelAttributesPass()); 407 }); 408 } 409 410 //===----------------------------------------------------------------------===// 411 // R600 Target Machine (R600 -> Cayman) 412 //===----------------------------------------------------------------------===// 413 414 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 415 StringRef CPU, StringRef FS, 416 TargetOptions Options, 417 Optional<Reloc::Model> RM, 418 Optional<CodeModel::Model> CM, 419 CodeGenOpt::Level OL, bool JIT) 420 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 421 setRequiresStructuredCFG(true); 422 } 423 424 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 425 const Function &F) const { 426 StringRef GPU = getGPUName(F); 427 StringRef FS = getFeatureString(F); 428 429 SmallString<128> SubtargetKey(GPU); 430 SubtargetKey.append(FS); 431 432 auto &I = SubtargetMap[SubtargetKey]; 433 if (!I) { 434 // This needs to be done before we create a new subtarget since any 435 // creation will depend on the TM and the code generation flags on the 436 // function that reside in TargetOptions. 437 resetTargetOptions(F); 438 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 439 } 440 441 return I.get(); 442 } 443 444 TargetTransformInfo 445 R600TargetMachine::getTargetTransformInfo(const Function &F) { 446 return TargetTransformInfo(R600TTIImpl(this, F)); 447 } 448 449 //===----------------------------------------------------------------------===// 450 // GCN Target Machine (SI+) 451 //===----------------------------------------------------------------------===// 452 453 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 454 StringRef CPU, StringRef FS, 455 TargetOptions Options, 456 Optional<Reloc::Model> RM, 457 Optional<CodeModel::Model> CM, 458 CodeGenOpt::Level OL, bool JIT) 459 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 460 461 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 462 StringRef GPU = getGPUName(F); 463 StringRef FS = getFeatureString(F); 464 465 SmallString<128> SubtargetKey(GPU); 466 SubtargetKey.append(FS); 467 468 auto &I = SubtargetMap[SubtargetKey]; 469 if (!I) { 470 // This needs to be done before we create a new subtarget since any 471 // creation will depend on the TM and the code generation flags on the 472 // function that reside in TargetOptions. 473 resetTargetOptions(F); 474 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 475 } 476 477 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 478 479 return I.get(); 480 } 481 482 TargetTransformInfo 483 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 484 return TargetTransformInfo(GCNTTIImpl(this, F)); 485 } 486 487 //===----------------------------------------------------------------------===// 488 // AMDGPU Pass Setup 489 //===----------------------------------------------------------------------===// 490 491 namespace { 492 493 class AMDGPUPassConfig : public TargetPassConfig { 494 public: 495 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 496 : TargetPassConfig(TM, PM) { 497 // Exceptions and StackMaps are not supported, so these passes will never do 498 // anything. 499 disablePass(&StackMapLivenessID); 500 disablePass(&FuncletLayoutID); 501 } 502 503 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 504 return getTM<AMDGPUTargetMachine>(); 505 } 506 507 ScheduleDAGInstrs * 508 createMachineScheduler(MachineSchedContext *C) const override { 509 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 510 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 511 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 512 return DAG; 513 } 514 515 void addEarlyCSEOrGVNPass(); 516 void addStraightLineScalarOptimizationPasses(); 517 void addIRPasses() override; 518 void addCodeGenPrepare() override; 519 bool addPreISel() override; 520 bool addInstSelector() override; 521 bool addGCPasses() override; 522 }; 523 524 class R600PassConfig final : public AMDGPUPassConfig { 525 public: 526 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 527 : AMDGPUPassConfig(TM, PM) {} 528 529 ScheduleDAGInstrs *createMachineScheduler( 530 MachineSchedContext *C) const override { 531 return createR600MachineScheduler(C); 532 } 533 534 bool addPreISel() override; 535 bool addInstSelector() override; 536 void addPreRegAlloc() override; 537 void addPreSched2() override; 538 void addPreEmitPass() override; 539 }; 540 541 class GCNPassConfig final : public AMDGPUPassConfig { 542 public: 543 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 544 : AMDGPUPassConfig(TM, PM) { 545 // It is necessary to know the register usage of the entire call graph. We 546 // allow calls without EnableAMDGPUFunctionCalls if they are marked 547 // noinline, so this is always required. 548 setRequiresCodeGenSCCOrder(true); 549 } 550 551 GCNTargetMachine &getGCNTargetMachine() const { 552 return getTM<GCNTargetMachine>(); 553 } 554 555 ScheduleDAGInstrs * 556 createMachineScheduler(MachineSchedContext *C) const override; 557 558 bool addPreISel() override; 559 void addMachineSSAOptimization() override; 560 bool addILPOpts() override; 561 bool addInstSelector() override; 562 bool addIRTranslator() override; 563 bool addLegalizeMachineIR() override; 564 bool addRegBankSelect() override; 565 bool addGlobalInstructionSelect() override; 566 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 567 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 568 void addPreRegAlloc() override; 569 void addPostRegAlloc() override; 570 void addPreSched2() override; 571 void addPreEmitPass() override; 572 }; 573 574 } // end anonymous namespace 575 576 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 577 if (getOptLevel() == CodeGenOpt::Aggressive) 578 addPass(createGVNPass()); 579 else 580 addPass(createEarlyCSEPass()); 581 } 582 583 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 584 addPass(createLICMPass()); 585 addPass(createSeparateConstOffsetFromGEPPass()); 586 addPass(createSpeculativeExecutionPass()); 587 // ReassociateGEPs exposes more opportunites for SLSR. See 588 // the example in reassociate-geps-and-slsr.ll. 589 addPass(createStraightLineStrengthReducePass()); 590 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 591 // EarlyCSE can reuse. 592 addEarlyCSEOrGVNPass(); 593 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 594 addPass(createNaryReassociatePass()); 595 // NaryReassociate on GEPs creates redundant common expressions, so run 596 // EarlyCSE after it. 597 addPass(createEarlyCSEPass()); 598 } 599 600 void AMDGPUPassConfig::addIRPasses() { 601 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 602 603 // There is no reason to run these. 604 disablePass(&StackMapLivenessID); 605 disablePass(&FuncletLayoutID); 606 disablePass(&PatchableFunctionID); 607 608 addPass(createAtomicExpandPass()); 609 610 // This must occur before inlining, as the inliner will not look through 611 // bitcast calls. 612 addPass(createAMDGPUFixFunctionBitcastsPass()); 613 614 addPass(createAMDGPULowerIntrinsicsPass()); 615 616 // Function calls are not supported, so make sure we inline everything. 617 addPass(createAMDGPUAlwaysInlinePass()); 618 addPass(createAlwaysInlinerLegacyPass()); 619 // We need to add the barrier noop pass, otherwise adding the function 620 // inlining pass will cause all of the PassConfigs passes to be run 621 // one function at a time, which means if we have a nodule with two 622 // functions, then we will generate code for the first function 623 // without ever running any passes on the second. 624 addPass(createBarrierNoopPass()); 625 626 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 627 // TODO: May want to move later or split into an early and late one. 628 629 addPass(createAMDGPUCodeGenPreparePass()); 630 } 631 632 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 633 if (TM.getTargetTriple().getArch() == Triple::r600) 634 addPass(createR600OpenCLImageTypeLoweringPass()); 635 636 // Replace OpenCL enqueued block function pointers with global variables. 637 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 638 639 if (TM.getOptLevel() > CodeGenOpt::None) { 640 addPass(createInferAddressSpacesPass()); 641 addPass(createAMDGPUPromoteAlloca()); 642 643 if (EnableSROA) 644 addPass(createSROAPass()); 645 646 addStraightLineScalarOptimizationPasses(); 647 648 if (EnableAMDGPUAliasAnalysis) { 649 addPass(createAMDGPUAAWrapperPass()); 650 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 651 AAResults &AAR) { 652 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 653 AAR.addAAResult(WrapperPass->getResult()); 654 })); 655 } 656 } 657 658 TargetPassConfig::addIRPasses(); 659 660 // EarlyCSE is not always strong enough to clean up what LSR produces. For 661 // example, GVN can combine 662 // 663 // %0 = add %a, %b 664 // %1 = add %b, %a 665 // 666 // and 667 // 668 // %0 = shl nsw %a, 2 669 // %1 = shl %a, 2 670 // 671 // but EarlyCSE can do neither of them. 672 if (getOptLevel() != CodeGenOpt::None) 673 addEarlyCSEOrGVNPass(); 674 } 675 676 void AMDGPUPassConfig::addCodeGenPrepare() { 677 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 678 EnableLowerKernelArguments) 679 addPass(createAMDGPULowerKernelArgumentsPass()); 680 681 TargetPassConfig::addCodeGenPrepare(); 682 683 if (EnableLoadStoreVectorizer) 684 addPass(createLoadStoreVectorizerPass()); 685 } 686 687 bool AMDGPUPassConfig::addPreISel() { 688 addPass(createLowerSwitchPass()); 689 addPass(createFlattenCFGPass()); 690 return false; 691 } 692 693 bool AMDGPUPassConfig::addInstSelector() { 694 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 695 return false; 696 } 697 698 bool AMDGPUPassConfig::addGCPasses() { 699 // Do nothing. GC is not supported. 700 return false; 701 } 702 703 //===----------------------------------------------------------------------===// 704 // R600 Pass Setup 705 //===----------------------------------------------------------------------===// 706 707 bool R600PassConfig::addPreISel() { 708 AMDGPUPassConfig::addPreISel(); 709 710 if (EnableR600StructurizeCFG) 711 addPass(createStructurizeCFGPass()); 712 return false; 713 } 714 715 bool R600PassConfig::addInstSelector() { 716 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 717 return false; 718 } 719 720 void R600PassConfig::addPreRegAlloc() { 721 addPass(createR600VectorRegMerger()); 722 } 723 724 void R600PassConfig::addPreSched2() { 725 addPass(createR600EmitClauseMarkers(), false); 726 if (EnableR600IfConvert) 727 addPass(&IfConverterID, false); 728 addPass(createR600ClauseMergePass(), false); 729 } 730 731 void R600PassConfig::addPreEmitPass() { 732 addPass(createAMDGPUCFGStructurizerPass(), false); 733 addPass(createR600ExpandSpecialInstrsPass(), false); 734 addPass(&FinalizeMachineBundlesID, false); 735 addPass(createR600Packetizer(), false); 736 addPass(createR600ControlFlowFinalizer(), false); 737 } 738 739 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 740 return new R600PassConfig(*this, PM); 741 } 742 743 //===----------------------------------------------------------------------===// 744 // GCN Pass Setup 745 //===----------------------------------------------------------------------===// 746 747 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 748 MachineSchedContext *C) const { 749 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 750 if (ST.enableSIScheduler()) 751 return createSIMachineScheduler(C); 752 return createGCNMaxOccupancyMachineScheduler(C); 753 } 754 755 bool GCNPassConfig::addPreISel() { 756 AMDGPUPassConfig::addPreISel(); 757 758 if (EnableAtomicOptimizations) { 759 addPass(createAMDGPUAtomicOptimizerPass()); 760 } 761 762 // FIXME: We need to run a pass to propagate the attributes when calls are 763 // supported. 764 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 765 766 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 767 // regions formed by them. 768 addPass(&AMDGPUUnifyDivergentExitNodesID); 769 if (!LateCFGStructurize) { 770 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 771 } 772 addPass(createSinkingPass()); 773 addPass(createAMDGPUAnnotateUniformValues()); 774 if (!LateCFGStructurize) { 775 addPass(createSIAnnotateControlFlowPass()); 776 } 777 778 return false; 779 } 780 781 void GCNPassConfig::addMachineSSAOptimization() { 782 TargetPassConfig::addMachineSSAOptimization(); 783 784 // We want to fold operands after PeepholeOptimizer has run (or as part of 785 // it), because it will eliminate extra copies making it easier to fold the 786 // real source operand. We want to eliminate dead instructions after, so that 787 // we see fewer uses of the copies. We then need to clean up the dead 788 // instructions leftover after the operands are folded as well. 789 // 790 // XXX - Can we get away without running DeadMachineInstructionElim again? 791 addPass(&SIFoldOperandsID); 792 addPass(&DeadMachineInstructionElimID); 793 addPass(&SILoadStoreOptimizerID); 794 if (EnableSDWAPeephole) { 795 addPass(&SIPeepholeSDWAID); 796 addPass(&EarlyMachineLICMID); 797 addPass(&MachineCSEID); 798 addPass(&SIFoldOperandsID); 799 addPass(&DeadMachineInstructionElimID); 800 } 801 addPass(createSIShrinkInstructionsPass()); 802 } 803 804 bool GCNPassConfig::addILPOpts() { 805 if (EnableEarlyIfConversion) 806 addPass(&EarlyIfConverterID); 807 808 TargetPassConfig::addILPOpts(); 809 return false; 810 } 811 812 bool GCNPassConfig::addInstSelector() { 813 AMDGPUPassConfig::addInstSelector(); 814 addPass(&SIFixSGPRCopiesID); 815 addPass(createSILowerI1CopiesPass()); 816 return false; 817 } 818 819 bool GCNPassConfig::addIRTranslator() { 820 addPass(new IRTranslator()); 821 return false; 822 } 823 824 bool GCNPassConfig::addLegalizeMachineIR() { 825 addPass(new Legalizer()); 826 return false; 827 } 828 829 bool GCNPassConfig::addRegBankSelect() { 830 addPass(new RegBankSelect()); 831 return false; 832 } 833 834 bool GCNPassConfig::addGlobalInstructionSelect() { 835 addPass(new InstructionSelect()); 836 return false; 837 } 838 839 void GCNPassConfig::addPreRegAlloc() { 840 if (LateCFGStructurize) { 841 addPass(createAMDGPUMachineCFGStructurizerPass()); 842 } 843 addPass(createSIWholeQuadModePass()); 844 } 845 846 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 847 // FIXME: We have to disable the verifier here because of PHIElimination + 848 // TwoAddressInstructions disabling it. 849 850 // This must be run immediately after phi elimination and before 851 // TwoAddressInstructions, otherwise the processing of the tied operand of 852 // SI_ELSE will introduce a copy of the tied operand source after the else. 853 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 854 855 // This must be run after SILowerControlFlow, since it needs to use the 856 // machine-level CFG, but before register allocation. 857 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 858 859 TargetPassConfig::addFastRegAlloc(RegAllocPass); 860 } 861 862 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 863 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 864 865 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 866 867 // This must be run immediately after phi elimination and before 868 // TwoAddressInstructions, otherwise the processing of the tied operand of 869 // SI_ELSE will introduce a copy of the tied operand source after the else. 870 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 871 872 // This must be run after SILowerControlFlow, since it needs to use the 873 // machine-level CFG, but before register allocation. 874 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 875 876 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 877 } 878 879 void GCNPassConfig::addPostRegAlloc() { 880 addPass(&SIFixVGPRCopiesID); 881 addPass(&SIOptimizeExecMaskingID); 882 TargetPassConfig::addPostRegAlloc(); 883 } 884 885 void GCNPassConfig::addPreSched2() { 886 } 887 888 void GCNPassConfig::addPreEmitPass() { 889 addPass(createSIMemoryLegalizerPass()); 890 addPass(createSIInsertWaitcntsPass()); 891 addPass(createSIShrinkInstructionsPass()); 892 893 // The hazard recognizer that runs as part of the post-ra scheduler does not 894 // guarantee to be able handle all hazards correctly. This is because if there 895 // are multiple scheduling regions in a basic block, the regions are scheduled 896 // bottom up, so when we begin to schedule a region we don't know what 897 // instructions were emitted directly before it. 898 // 899 // Here we add a stand-alone hazard recognizer pass which can handle all 900 // cases. 901 // 902 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 903 // be better for it to emit S_NOP <N> when possible. 904 addPass(&PostRAHazardRecognizerID); 905 906 addPass(&SIInsertSkipsPassID); 907 addPass(createSIDebuggerInsertNopsPass()); 908 addPass(&BranchRelaxationPassID); 909 } 910 911 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 912 return new GCNPassConfig(*this, PM); 913 } 914