1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "TargetInfo/AMDGPUTargetInfo.h" 30 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/IR/Attributes.h" 38 #include "llvm/IR/Function.h" 39 #include "llvm/IR/LegacyPassManager.h" 40 #include "llvm/InitializePasses.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/CommandLine.h" 43 #include "llvm/Support/Compiler.h" 44 #include "llvm/Support/TargetRegistry.h" 45 #include "llvm/Target/TargetLoweringObjectFile.h" 46 #include "llvm/Transforms/IPO.h" 47 #include "llvm/Transforms/IPO/AlwaysInliner.h" 48 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 49 #include "llvm/Transforms/Scalar.h" 50 #include "llvm/Transforms/Scalar/GVN.h" 51 #include "llvm/Transforms/Utils.h" 52 #include "llvm/Transforms/Vectorize.h" 53 #include <memory> 54 55 using namespace llvm; 56 57 static cl::opt<bool> EnableR600StructurizeCFG( 58 "r600-ir-structurize", 59 cl::desc("Use StructurizeCFG IR pass"), 60 cl::init(true)); 61 62 static cl::opt<bool> EnableSROA( 63 "amdgpu-sroa", 64 cl::desc("Run SROA after promote alloca pass"), 65 cl::ReallyHidden, 66 cl::init(true)); 67 68 static cl::opt<bool> 69 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 70 cl::desc("Run early if-conversion"), 71 cl::init(false)); 72 73 static cl::opt<bool> 74 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 75 cl::desc("Run pre-RA exec mask optimizations"), 76 cl::init(true)); 77 78 static cl::opt<bool> EnableR600IfConvert( 79 "r600-if-convert", 80 cl::desc("Use if conversion pass"), 81 cl::ReallyHidden, 82 cl::init(true)); 83 84 // Option to disable vectorizer for tests. 85 static cl::opt<bool> EnableLoadStoreVectorizer( 86 "amdgpu-load-store-vectorizer", 87 cl::desc("Enable load store vectorizer"), 88 cl::init(true), 89 cl::Hidden); 90 91 // Option to control global loads scalarization 92 static cl::opt<bool> ScalarizeGlobal( 93 "amdgpu-scalarize-global-loads", 94 cl::desc("Enable global load scalarization"), 95 cl::init(true), 96 cl::Hidden); 97 98 // Option to run internalize pass. 99 static cl::opt<bool> InternalizeSymbols( 100 "amdgpu-internalize-symbols", 101 cl::desc("Enable elimination of non-kernel functions and unused globals"), 102 cl::init(false), 103 cl::Hidden); 104 105 // Option to inline all early. 106 static cl::opt<bool> EarlyInlineAll( 107 "amdgpu-early-inline-all", 108 cl::desc("Inline all functions early"), 109 cl::init(false), 110 cl::Hidden); 111 112 static cl::opt<bool> EnableSDWAPeephole( 113 "amdgpu-sdwa-peephole", 114 cl::desc("Enable SDWA peepholer"), 115 cl::init(true)); 116 117 static cl::opt<bool> EnableDPPCombine( 118 "amdgpu-dpp-combine", 119 cl::desc("Enable DPP combiner"), 120 cl::init(true)); 121 122 // Enable address space based alias analysis 123 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 124 cl::desc("Enable AMDGPU Alias Analysis"), 125 cl::init(true)); 126 127 // Option to run late CFG structurizer 128 static cl::opt<bool, true> LateCFGStructurize( 129 "amdgpu-late-structurize", 130 cl::desc("Enable late CFG structurization"), 131 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 132 cl::Hidden); 133 134 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 135 "amdgpu-function-calls", 136 cl::desc("Enable AMDGPU function call support"), 137 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 138 cl::init(true), 139 cl::Hidden); 140 141 // Enable lib calls simplifications 142 static cl::opt<bool> EnableLibCallSimplify( 143 "amdgpu-simplify-libcall", 144 cl::desc("Enable amdgpu library simplifications"), 145 cl::init(true), 146 cl::Hidden); 147 148 static cl::opt<bool> EnableLowerKernelArguments( 149 "amdgpu-ir-lower-kernel-arguments", 150 cl::desc("Lower kernel argument loads in IR pass"), 151 cl::init(true), 152 cl::Hidden); 153 154 static cl::opt<bool> EnableRegReassign( 155 "amdgpu-reassign-regs", 156 cl::desc("Enable register reassign optimizations on gfx10+"), 157 cl::init(true), 158 cl::Hidden); 159 160 // Enable atomic optimization 161 static cl::opt<bool> EnableAtomicOptimizations( 162 "amdgpu-atomic-optimizations", 163 cl::desc("Enable atomic optimizations"), 164 cl::init(false), 165 cl::Hidden); 166 167 // Enable Mode register optimization 168 static cl::opt<bool> EnableSIModeRegisterPass( 169 "amdgpu-mode-register", 170 cl::desc("Enable mode register pass"), 171 cl::init(true), 172 cl::Hidden); 173 174 // Option is used in lit tests to prevent deadcoding of patterns inspected. 175 static cl::opt<bool> 176 EnableDCEInRA("amdgpu-dce-in-ra", 177 cl::init(true), cl::Hidden, 178 cl::desc("Enable machine DCE inside regalloc")); 179 180 static cl::opt<bool> EnableScalarIRPasses( 181 "amdgpu-scalar-ir-passes", 182 cl::desc("Enable scalar IR passes"), 183 cl::init(true), 184 cl::Hidden); 185 186 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 187 // Register the target 188 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 189 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 190 191 PassRegistry *PR = PassRegistry::getPassRegistry(); 192 initializeR600ClauseMergePassPass(*PR); 193 initializeR600ControlFlowFinalizerPass(*PR); 194 initializeR600PacketizerPass(*PR); 195 initializeR600ExpandSpecialInstrsPassPass(*PR); 196 initializeR600VectorRegMergerPass(*PR); 197 initializeGlobalISel(*PR); 198 initializeAMDGPUDAGToDAGISelPass(*PR); 199 initializeGCNDPPCombinePass(*PR); 200 initializeSILowerI1CopiesPass(*PR); 201 initializeSILowerSGPRSpillsPass(*PR); 202 initializeSIFixSGPRCopiesPass(*PR); 203 initializeSIFixVGPRCopiesPass(*PR); 204 initializeSIFixupVectorISelPass(*PR); 205 initializeSIFoldOperandsPass(*PR); 206 initializeSIPeepholeSDWAPass(*PR); 207 initializeSIShrinkInstructionsPass(*PR); 208 initializeSIOptimizeExecMaskingPreRAPass(*PR); 209 initializeSILoadStoreOptimizerPass(*PR); 210 initializeAMDGPUFixFunctionBitcastsPass(*PR); 211 initializeAMDGPUAlwaysInlinePass(*PR); 212 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 213 initializeAMDGPUAnnotateUniformValuesPass(*PR); 214 initializeAMDGPUArgumentUsageInfoPass(*PR); 215 initializeAMDGPUAtomicOptimizerPass(*PR); 216 initializeAMDGPULowerKernelArgumentsPass(*PR); 217 initializeAMDGPULowerKernelAttributesPass(*PR); 218 initializeAMDGPULowerIntrinsicsPass(*PR); 219 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 220 initializeAMDGPUPreLegalizerCombinerPass(*PR); 221 initializeAMDGPUPromoteAllocaPass(*PR); 222 initializeAMDGPUCodeGenPreparePass(*PR); 223 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 224 initializeAMDGPUPropagateAttributesLatePass(*PR); 225 initializeAMDGPURewriteOutArgumentsPass(*PR); 226 initializeAMDGPUUnifyMetadataPass(*PR); 227 initializeSIAnnotateControlFlowPass(*PR); 228 initializeSIInsertWaitcntsPass(*PR); 229 initializeSIModeRegisterPass(*PR); 230 initializeSIWholeQuadModePass(*PR); 231 initializeSILowerControlFlowPass(*PR); 232 initializeSIRemoveShortExecBranchesPass(*PR); 233 initializeSIInsertSkipsPass(*PR); 234 initializeSIMemoryLegalizerPass(*PR); 235 initializeSIOptimizeExecMaskingPass(*PR); 236 initializeSIPreAllocateWWMRegsPass(*PR); 237 initializeSIFormMemoryClausesPass(*PR); 238 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 239 initializeAMDGPUAAWrapperPassPass(*PR); 240 initializeAMDGPUExternalAAWrapperPass(*PR); 241 initializeAMDGPUUseNativeCallsPass(*PR); 242 initializeAMDGPUSimplifyLibCallsPass(*PR); 243 initializeAMDGPUInlinerPass(*PR); 244 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 245 initializeGCNRegBankReassignPass(*PR); 246 initializeGCNNSAReassignPass(*PR); 247 } 248 249 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 250 return std::make_unique<AMDGPUTargetObjectFile>(); 251 } 252 253 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 254 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 255 } 256 257 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 258 return new SIScheduleDAGMI(C); 259 } 260 261 static ScheduleDAGInstrs * 262 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 263 ScheduleDAGMILive *DAG = 264 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 265 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 266 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 267 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 268 return DAG; 269 } 270 271 static ScheduleDAGInstrs * 272 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 273 auto DAG = new GCNIterativeScheduler(C, 274 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 275 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 276 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 277 return DAG; 278 } 279 280 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 281 return new GCNIterativeScheduler(C, 282 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 283 } 284 285 static ScheduleDAGInstrs * 286 createIterativeILPMachineScheduler(MachineSchedContext *C) { 287 auto DAG = new GCNIterativeScheduler(C, 288 GCNIterativeScheduler::SCHEDULE_ILP); 289 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 290 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 291 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 292 return DAG; 293 } 294 295 static MachineSchedRegistry 296 R600SchedRegistry("r600", "Run R600's custom scheduler", 297 createR600MachineScheduler); 298 299 static MachineSchedRegistry 300 SISchedRegistry("si", "Run SI's custom scheduler", 301 createSIMachineScheduler); 302 303 static MachineSchedRegistry 304 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 305 "Run GCN scheduler to maximize occupancy", 306 createGCNMaxOccupancyMachineScheduler); 307 308 static MachineSchedRegistry 309 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 310 "Run GCN scheduler to maximize occupancy (experimental)", 311 createIterativeGCNMaxOccupancyMachineScheduler); 312 313 static MachineSchedRegistry 314 GCNMinRegSchedRegistry("gcn-minreg", 315 "Run GCN iterative scheduler for minimal register usage (experimental)", 316 createMinRegScheduler); 317 318 static MachineSchedRegistry 319 GCNILPSchedRegistry("gcn-ilp", 320 "Run GCN iterative scheduler for ILP scheduling (experimental)", 321 createIterativeILPMachineScheduler); 322 323 static StringRef computeDataLayout(const Triple &TT) { 324 if (TT.getArch() == Triple::r600) { 325 // 32-bit pointers. 326 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 327 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 328 } 329 330 // 32-bit private, local, and region pointers. 64-bit global, constant and 331 // flat, non-integral buffer fat pointers. 332 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 333 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 334 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 335 "-ni:7"; 336 } 337 338 LLVM_READNONE 339 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 340 if (!GPU.empty()) 341 return GPU; 342 343 // Need to default to a target with flat support for HSA. 344 if (TT.getArch() == Triple::amdgcn) 345 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 346 347 return "r600"; 348 } 349 350 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 351 // The AMDGPU toolchain only supports generating shared objects, so we 352 // must always use PIC. 353 return Reloc::PIC_; 354 } 355 356 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 357 StringRef CPU, StringRef FS, 358 TargetOptions Options, 359 Optional<Reloc::Model> RM, 360 Optional<CodeModel::Model> CM, 361 CodeGenOpt::Level OptLevel) 362 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 363 FS, Options, getEffectiveRelocModel(RM), 364 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 365 TLOF(createTLOF(getTargetTriple())) { 366 initAsmInfo(); 367 } 368 369 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 370 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 371 372 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 373 374 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 375 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 376 return GPUAttr.hasAttribute(Attribute::None) ? 377 getTargetCPU() : GPUAttr.getValueAsString(); 378 } 379 380 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 381 Attribute FSAttr = F.getFnAttribute("target-features"); 382 383 return FSAttr.hasAttribute(Attribute::None) ? 384 getTargetFeatureString() : 385 FSAttr.getValueAsString(); 386 } 387 388 /// Predicate for Internalize pass. 389 static bool mustPreserveGV(const GlobalValue &GV) { 390 if (const Function *F = dyn_cast<Function>(&GV)) 391 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 392 393 return !GV.use_empty(); 394 } 395 396 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 397 Builder.DivergentTarget = true; 398 399 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 400 bool Internalize = InternalizeSymbols; 401 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 402 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 403 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 404 405 if (EnableFunctionCalls) { 406 delete Builder.Inliner; 407 Builder.Inliner = createAMDGPUFunctionInliningPass(); 408 } 409 410 Builder.addExtension( 411 PassManagerBuilder::EP_ModuleOptimizerEarly, 412 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 413 legacy::PassManagerBase &PM) { 414 if (AMDGPUAA) { 415 PM.add(createAMDGPUAAWrapperPass()); 416 PM.add(createAMDGPUExternalAAWrapperPass()); 417 } 418 PM.add(createAMDGPUUnifyMetadataPass()); 419 PM.add(createAMDGPUPrintfRuntimeBinding()); 420 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 421 if (Internalize) { 422 PM.add(createInternalizePass(mustPreserveGV)); 423 PM.add(createGlobalDCEPass()); 424 } 425 if (EarlyInline) 426 PM.add(createAMDGPUAlwaysInlinePass(false)); 427 }); 428 429 const auto &Opt = Options; 430 Builder.addExtension( 431 PassManagerBuilder::EP_EarlyAsPossible, 432 [AMDGPUAA, LibCallSimplify, &Opt, this](const PassManagerBuilder &, 433 legacy::PassManagerBase &PM) { 434 if (AMDGPUAA) { 435 PM.add(createAMDGPUAAWrapperPass()); 436 PM.add(createAMDGPUExternalAAWrapperPass()); 437 } 438 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 439 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 440 if (LibCallSimplify) 441 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt, this)); 442 }); 443 444 Builder.addExtension( 445 PassManagerBuilder::EP_CGSCCOptimizerLate, 446 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 447 // Add infer address spaces pass to the opt pipeline after inlining 448 // but before SROA to increase SROA opportunities. 449 PM.add(createInferAddressSpacesPass()); 450 451 // This should run after inlining to have any chance of doing anything, 452 // and before other cleanup optimizations. 453 PM.add(createAMDGPULowerKernelAttributesPass()); 454 }); 455 } 456 457 //===----------------------------------------------------------------------===// 458 // R600 Target Machine (R600 -> Cayman) 459 //===----------------------------------------------------------------------===// 460 461 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 462 StringRef CPU, StringRef FS, 463 TargetOptions Options, 464 Optional<Reloc::Model> RM, 465 Optional<CodeModel::Model> CM, 466 CodeGenOpt::Level OL, bool JIT) 467 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 468 setRequiresStructuredCFG(true); 469 470 // Override the default since calls aren't supported for r600. 471 if (EnableFunctionCalls && 472 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 473 EnableFunctionCalls = false; 474 } 475 476 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 477 const Function &F) const { 478 StringRef GPU = getGPUName(F); 479 StringRef FS = getFeatureString(F); 480 481 SmallString<128> SubtargetKey(GPU); 482 SubtargetKey.append(FS); 483 484 auto &I = SubtargetMap[SubtargetKey]; 485 if (!I) { 486 // This needs to be done before we create a new subtarget since any 487 // creation will depend on the TM and the code generation flags on the 488 // function that reside in TargetOptions. 489 resetTargetOptions(F); 490 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 491 } 492 493 return I.get(); 494 } 495 496 TargetTransformInfo 497 R600TargetMachine::getTargetTransformInfo(const Function &F) { 498 return TargetTransformInfo(R600TTIImpl(this, F)); 499 } 500 501 //===----------------------------------------------------------------------===// 502 // GCN Target Machine (SI+) 503 //===----------------------------------------------------------------------===// 504 505 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 506 StringRef CPU, StringRef FS, 507 TargetOptions Options, 508 Optional<Reloc::Model> RM, 509 Optional<CodeModel::Model> CM, 510 CodeGenOpt::Level OL, bool JIT) 511 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 512 513 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 514 StringRef GPU = getGPUName(F); 515 StringRef FS = getFeatureString(F); 516 517 SmallString<128> SubtargetKey(GPU); 518 SubtargetKey.append(FS); 519 520 auto &I = SubtargetMap[SubtargetKey]; 521 if (!I) { 522 // This needs to be done before we create a new subtarget since any 523 // creation will depend on the TM and the code generation flags on the 524 // function that reside in TargetOptions. 525 resetTargetOptions(F); 526 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 527 } 528 529 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 530 531 return I.get(); 532 } 533 534 TargetTransformInfo 535 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 536 return TargetTransformInfo(GCNTTIImpl(this, F)); 537 } 538 539 //===----------------------------------------------------------------------===// 540 // AMDGPU Pass Setup 541 //===----------------------------------------------------------------------===// 542 543 namespace { 544 545 class AMDGPUPassConfig : public TargetPassConfig { 546 public: 547 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 548 : TargetPassConfig(TM, PM) { 549 // Exceptions and StackMaps are not supported, so these passes will never do 550 // anything. 551 disablePass(&StackMapLivenessID); 552 disablePass(&FuncletLayoutID); 553 } 554 555 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 556 return getTM<AMDGPUTargetMachine>(); 557 } 558 559 ScheduleDAGInstrs * 560 createMachineScheduler(MachineSchedContext *C) const override { 561 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 562 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 563 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 564 return DAG; 565 } 566 567 void addEarlyCSEOrGVNPass(); 568 void addStraightLineScalarOptimizationPasses(); 569 void addIRPasses() override; 570 void addCodeGenPrepare() override; 571 bool addPreISel() override; 572 bool addInstSelector() override; 573 bool addGCPasses() override; 574 575 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 576 }; 577 578 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 579 return getStandardCSEConfigForOpt(TM->getOptLevel()); 580 } 581 582 class R600PassConfig final : public AMDGPUPassConfig { 583 public: 584 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 585 : AMDGPUPassConfig(TM, PM) {} 586 587 ScheduleDAGInstrs *createMachineScheduler( 588 MachineSchedContext *C) const override { 589 return createR600MachineScheduler(C); 590 } 591 592 bool addPreISel() override; 593 bool addInstSelector() override; 594 void addPreRegAlloc() override; 595 void addPreSched2() override; 596 void addPreEmitPass() override; 597 }; 598 599 class GCNPassConfig final : public AMDGPUPassConfig { 600 public: 601 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 602 : AMDGPUPassConfig(TM, PM) { 603 // It is necessary to know the register usage of the entire call graph. We 604 // allow calls without EnableAMDGPUFunctionCalls if they are marked 605 // noinline, so this is always required. 606 setRequiresCodeGenSCCOrder(true); 607 } 608 609 GCNTargetMachine &getGCNTargetMachine() const { 610 return getTM<GCNTargetMachine>(); 611 } 612 613 ScheduleDAGInstrs * 614 createMachineScheduler(MachineSchedContext *C) const override; 615 616 bool addPreISel() override; 617 void addMachineSSAOptimization() override; 618 bool addILPOpts() override; 619 bool addInstSelector() override; 620 bool addIRTranslator() override; 621 void addPreLegalizeMachineIR() override; 622 bool addLegalizeMachineIR() override; 623 bool addRegBankSelect() override; 624 bool addGlobalInstructionSelect() override; 625 void addFastRegAlloc() override; 626 void addOptimizedRegAlloc() override; 627 void addPreRegAlloc() override; 628 bool addPreRewrite() override; 629 void addPostRegAlloc() override; 630 void addPreSched2() override; 631 void addPreEmitPass() override; 632 }; 633 634 } // end anonymous namespace 635 636 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 637 if (getOptLevel() == CodeGenOpt::Aggressive) 638 addPass(createGVNPass()); 639 else 640 addPass(createEarlyCSEPass()); 641 } 642 643 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 644 addPass(createLICMPass()); 645 addPass(createSeparateConstOffsetFromGEPPass()); 646 addPass(createSpeculativeExecutionPass()); 647 // ReassociateGEPs exposes more opportunites for SLSR. See 648 // the example in reassociate-geps-and-slsr.ll. 649 addPass(createStraightLineStrengthReducePass()); 650 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 651 // EarlyCSE can reuse. 652 addEarlyCSEOrGVNPass(); 653 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 654 addPass(createNaryReassociatePass()); 655 // NaryReassociate on GEPs creates redundant common expressions, so run 656 // EarlyCSE after it. 657 addPass(createEarlyCSEPass()); 658 } 659 660 void AMDGPUPassConfig::addIRPasses() { 661 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 662 663 // There is no reason to run these. 664 disablePass(&StackMapLivenessID); 665 disablePass(&FuncletLayoutID); 666 disablePass(&PatchableFunctionID); 667 668 addPass(createAMDGPUPrintfRuntimeBinding()); 669 670 // This must occur before inlining, as the inliner will not look through 671 // bitcast calls. 672 addPass(createAMDGPUFixFunctionBitcastsPass()); 673 674 // A call to propagate attributes pass in the backend in case opt was not run. 675 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 676 677 addPass(createAtomicExpandPass()); 678 679 680 addPass(createAMDGPULowerIntrinsicsPass()); 681 682 // Function calls are not supported, so make sure we inline everything. 683 addPass(createAMDGPUAlwaysInlinePass()); 684 addPass(createAlwaysInlinerLegacyPass()); 685 // We need to add the barrier noop pass, otherwise adding the function 686 // inlining pass will cause all of the PassConfigs passes to be run 687 // one function at a time, which means if we have a nodule with two 688 // functions, then we will generate code for the first function 689 // without ever running any passes on the second. 690 addPass(createBarrierNoopPass()); 691 692 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 693 if (TM.getTargetTriple().getArch() == Triple::r600) 694 addPass(createR600OpenCLImageTypeLoweringPass()); 695 696 // Replace OpenCL enqueued block function pointers with global variables. 697 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 698 699 if (TM.getOptLevel() > CodeGenOpt::None) { 700 addPass(createInferAddressSpacesPass()); 701 addPass(createAMDGPUPromoteAlloca()); 702 703 if (EnableSROA) 704 addPass(createSROAPass()); 705 706 if (EnableScalarIRPasses) 707 addStraightLineScalarOptimizationPasses(); 708 709 if (EnableAMDGPUAliasAnalysis) { 710 addPass(createAMDGPUAAWrapperPass()); 711 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 712 AAResults &AAR) { 713 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 714 AAR.addAAResult(WrapperPass->getResult()); 715 })); 716 } 717 } 718 719 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 720 // TODO: May want to move later or split into an early and late one. 721 addPass(createAMDGPUCodeGenPreparePass()); 722 } 723 724 TargetPassConfig::addIRPasses(); 725 726 // EarlyCSE is not always strong enough to clean up what LSR produces. For 727 // example, GVN can combine 728 // 729 // %0 = add %a, %b 730 // %1 = add %b, %a 731 // 732 // and 733 // 734 // %0 = shl nsw %a, 2 735 // %1 = shl %a, 2 736 // 737 // but EarlyCSE can do neither of them. 738 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 739 addEarlyCSEOrGVNPass(); 740 } 741 742 void AMDGPUPassConfig::addCodeGenPrepare() { 743 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 744 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 745 746 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 747 EnableLowerKernelArguments) 748 addPass(createAMDGPULowerKernelArgumentsPass()); 749 750 addPass(&AMDGPUPerfHintAnalysisID); 751 752 TargetPassConfig::addCodeGenPrepare(); 753 754 if (EnableLoadStoreVectorizer) 755 addPass(createLoadStoreVectorizerPass()); 756 } 757 758 bool AMDGPUPassConfig::addPreISel() { 759 addPass(createLowerSwitchPass()); 760 addPass(createFlattenCFGPass()); 761 return false; 762 } 763 764 bool AMDGPUPassConfig::addInstSelector() { 765 // Defer the verifier until FinalizeISel. 766 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 767 return false; 768 } 769 770 bool AMDGPUPassConfig::addGCPasses() { 771 // Do nothing. GC is not supported. 772 return false; 773 } 774 775 //===----------------------------------------------------------------------===// 776 // R600 Pass Setup 777 //===----------------------------------------------------------------------===// 778 779 bool R600PassConfig::addPreISel() { 780 AMDGPUPassConfig::addPreISel(); 781 782 if (EnableR600StructurizeCFG) 783 addPass(createStructurizeCFGPass()); 784 return false; 785 } 786 787 bool R600PassConfig::addInstSelector() { 788 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 789 return false; 790 } 791 792 void R600PassConfig::addPreRegAlloc() { 793 addPass(createR600VectorRegMerger()); 794 } 795 796 void R600PassConfig::addPreSched2() { 797 addPass(createR600EmitClauseMarkers(), false); 798 if (EnableR600IfConvert) 799 addPass(&IfConverterID, false); 800 addPass(createR600ClauseMergePass(), false); 801 } 802 803 void R600PassConfig::addPreEmitPass() { 804 addPass(createAMDGPUCFGStructurizerPass(), false); 805 addPass(createR600ExpandSpecialInstrsPass(), false); 806 addPass(&FinalizeMachineBundlesID, false); 807 addPass(createR600Packetizer(), false); 808 addPass(createR600ControlFlowFinalizer(), false); 809 } 810 811 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 812 return new R600PassConfig(*this, PM); 813 } 814 815 //===----------------------------------------------------------------------===// 816 // GCN Pass Setup 817 //===----------------------------------------------------------------------===// 818 819 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 820 MachineSchedContext *C) const { 821 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 822 if (ST.enableSIScheduler()) 823 return createSIMachineScheduler(C); 824 return createGCNMaxOccupancyMachineScheduler(C); 825 } 826 827 bool GCNPassConfig::addPreISel() { 828 AMDGPUPassConfig::addPreISel(); 829 830 if (EnableAtomicOptimizations) { 831 addPass(createAMDGPUAtomicOptimizerPass()); 832 } 833 834 // FIXME: We need to run a pass to propagate the attributes when calls are 835 // supported. 836 837 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 838 // regions formed by them. 839 addPass(&AMDGPUUnifyDivergentExitNodesID); 840 if (!LateCFGStructurize) { 841 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 842 } 843 addPass(createSinkingPass()); 844 addPass(createAMDGPUAnnotateUniformValues()); 845 if (!LateCFGStructurize) { 846 addPass(createSIAnnotateControlFlowPass()); 847 } 848 addPass(createLCSSAPass()); 849 850 return false; 851 } 852 853 void GCNPassConfig::addMachineSSAOptimization() { 854 TargetPassConfig::addMachineSSAOptimization(); 855 856 // We want to fold operands after PeepholeOptimizer has run (or as part of 857 // it), because it will eliminate extra copies making it easier to fold the 858 // real source operand. We want to eliminate dead instructions after, so that 859 // we see fewer uses of the copies. We then need to clean up the dead 860 // instructions leftover after the operands are folded as well. 861 // 862 // XXX - Can we get away without running DeadMachineInstructionElim again? 863 addPass(&SIFoldOperandsID); 864 if (EnableDPPCombine) 865 addPass(&GCNDPPCombineID); 866 addPass(&DeadMachineInstructionElimID); 867 addPass(&SILoadStoreOptimizerID); 868 if (EnableSDWAPeephole) { 869 addPass(&SIPeepholeSDWAID); 870 addPass(&EarlyMachineLICMID); 871 addPass(&MachineCSEID); 872 addPass(&SIFoldOperandsID); 873 addPass(&DeadMachineInstructionElimID); 874 } 875 addPass(createSIShrinkInstructionsPass()); 876 } 877 878 bool GCNPassConfig::addILPOpts() { 879 if (EnableEarlyIfConversion) 880 addPass(&EarlyIfConverterID); 881 882 TargetPassConfig::addILPOpts(); 883 return false; 884 } 885 886 bool GCNPassConfig::addInstSelector() { 887 AMDGPUPassConfig::addInstSelector(); 888 addPass(&SIFixSGPRCopiesID); 889 addPass(createSILowerI1CopiesPass()); 890 addPass(createSIFixupVectorISelPass()); 891 addPass(createSIAddIMGInitPass()); 892 return false; 893 } 894 895 bool GCNPassConfig::addIRTranslator() { 896 addPass(new IRTranslator()); 897 return false; 898 } 899 900 void GCNPassConfig::addPreLegalizeMachineIR() { 901 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 902 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 903 } 904 905 bool GCNPassConfig::addLegalizeMachineIR() { 906 addPass(new Legalizer()); 907 return false; 908 } 909 910 bool GCNPassConfig::addRegBankSelect() { 911 addPass(new RegBankSelect()); 912 return false; 913 } 914 915 bool GCNPassConfig::addGlobalInstructionSelect() { 916 addPass(new InstructionSelect()); 917 return false; 918 } 919 920 void GCNPassConfig::addPreRegAlloc() { 921 if (LateCFGStructurize) { 922 addPass(createAMDGPUMachineCFGStructurizerPass()); 923 } 924 addPass(createSIWholeQuadModePass()); 925 } 926 927 void GCNPassConfig::addFastRegAlloc() { 928 // FIXME: We have to disable the verifier here because of PHIElimination + 929 // TwoAddressInstructions disabling it. 930 931 // This must be run immediately after phi elimination and before 932 // TwoAddressInstructions, otherwise the processing of the tied operand of 933 // SI_ELSE will introduce a copy of the tied operand source after the else. 934 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 935 936 // This must be run just after RegisterCoalescing. 937 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 938 939 TargetPassConfig::addFastRegAlloc(); 940 } 941 942 void GCNPassConfig::addOptimizedRegAlloc() { 943 if (OptExecMaskPreRA) { 944 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 945 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 946 } else { 947 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 948 } 949 950 // This must be run immediately after phi elimination and before 951 // TwoAddressInstructions, otherwise the processing of the tied operand of 952 // SI_ELSE will introduce a copy of the tied operand source after the else. 953 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 954 955 // This must be run just after RegisterCoalescing. 956 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 957 958 if (EnableDCEInRA) 959 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 960 961 TargetPassConfig::addOptimizedRegAlloc(); 962 } 963 964 bool GCNPassConfig::addPreRewrite() { 965 if (EnableRegReassign) { 966 addPass(&GCNNSAReassignID); 967 addPass(&GCNRegBankReassignID); 968 } 969 return true; 970 } 971 972 void GCNPassConfig::addPostRegAlloc() { 973 addPass(&SIFixVGPRCopiesID); 974 if (getOptLevel() > CodeGenOpt::None) 975 addPass(&SIOptimizeExecMaskingID); 976 TargetPassConfig::addPostRegAlloc(); 977 978 // Equivalent of PEI for SGPRs. 979 addPass(&SILowerSGPRSpillsID); 980 } 981 982 void GCNPassConfig::addPreSched2() { 983 } 984 985 void GCNPassConfig::addPreEmitPass() { 986 addPass(createSIMemoryLegalizerPass()); 987 addPass(createSIInsertWaitcntsPass()); 988 addPass(createSIShrinkInstructionsPass()); 989 addPass(createSIModeRegisterPass()); 990 991 // The hazard recognizer that runs as part of the post-ra scheduler does not 992 // guarantee to be able handle all hazards correctly. This is because if there 993 // are multiple scheduling regions in a basic block, the regions are scheduled 994 // bottom up, so when we begin to schedule a region we don't know what 995 // instructions were emitted directly before it. 996 // 997 // Here we add a stand-alone hazard recognizer pass which can handle all 998 // cases. 999 // 1000 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1001 // be better for it to emit S_NOP <N> when possible. 1002 addPass(&PostRAHazardRecognizerID); 1003 1004 addPass(&SIRemoveShortExecBranchesID); 1005 addPass(&SIInsertSkipsPassID); 1006 addPass(&BranchRelaxationPassID); 1007 } 1008 1009 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1010 return new GCNPassConfig(*this, PM); 1011 } 1012 1013 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1014 return new yaml::SIMachineFunctionInfo(); 1015 } 1016 1017 yaml::MachineFunctionInfo * 1018 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1019 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1020 return new yaml::SIMachineFunctionInfo(*MFI, 1021 *MF.getSubtarget().getRegisterInfo()); 1022 } 1023 1024 bool GCNTargetMachine::parseMachineFunctionInfo( 1025 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1026 SMDiagnostic &Error, SMRange &SourceRange) const { 1027 const yaml::SIMachineFunctionInfo &YamlMFI = 1028 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1029 MachineFunction &MF = PFS.MF; 1030 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1031 1032 MFI->initializeBaseYamlFields(YamlMFI); 1033 1034 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1035 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1036 SourceRange = RegName.SourceRange; 1037 return true; 1038 } 1039 1040 return false; 1041 }; 1042 1043 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1044 // Create a diagnostic for a the register string literal. 1045 const MemoryBuffer &Buffer = 1046 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1047 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1048 RegName.Value.size(), SourceMgr::DK_Error, 1049 "incorrect register class for field", RegName.Value, 1050 None, None); 1051 SourceRange = RegName.SourceRange; 1052 return true; 1053 }; 1054 1055 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1056 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1057 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1058 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1059 return true; 1060 1061 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1062 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1063 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1064 } 1065 1066 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1067 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1068 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1069 } 1070 1071 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1072 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1073 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1074 } 1075 1076 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1077 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1078 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1079 } 1080 1081 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1082 const TargetRegisterClass &RC, 1083 ArgDescriptor &Arg, unsigned UserSGPRs, 1084 unsigned SystemSGPRs) { 1085 // Skip parsing if it's not present. 1086 if (!A) 1087 return false; 1088 1089 if (A->IsRegister) { 1090 unsigned Reg; 1091 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1092 SourceRange = A->RegisterName.SourceRange; 1093 return true; 1094 } 1095 if (!RC.contains(Reg)) 1096 return diagnoseRegisterClass(A->RegisterName); 1097 Arg = ArgDescriptor::createRegister(Reg); 1098 } else 1099 Arg = ArgDescriptor::createStack(A->StackOffset); 1100 // Check and apply the optional mask. 1101 if (A->Mask) 1102 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1103 1104 MFI->NumUserSGPRs += UserSGPRs; 1105 MFI->NumSystemSGPRs += SystemSGPRs; 1106 return false; 1107 }; 1108 1109 if (YamlMFI.ArgInfo && 1110 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1111 AMDGPU::SGPR_128RegClass, 1112 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1113 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1114 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1115 2, 0) || 1116 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1117 MFI->ArgInfo.QueuePtr, 2, 0) || 1118 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1119 AMDGPU::SReg_64RegClass, 1120 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1121 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1122 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1123 2, 0) || 1124 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1125 AMDGPU::SReg_64RegClass, 1126 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1127 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1128 AMDGPU::SGPR_32RegClass, 1129 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1130 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1131 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1132 0, 1) || 1133 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1134 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1135 0, 1) || 1136 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1137 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1138 0, 1) || 1139 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1140 AMDGPU::SGPR_32RegClass, 1141 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1142 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1143 AMDGPU::SGPR_32RegClass, 1144 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1145 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1146 AMDGPU::SReg_64RegClass, 1147 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1148 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1149 AMDGPU::SReg_64RegClass, 1150 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1151 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1152 AMDGPU::VGPR_32RegClass, 1153 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1154 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1155 AMDGPU::VGPR_32RegClass, 1156 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1157 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1158 AMDGPU::VGPR_32RegClass, 1159 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1160 return true; 1161 1162 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1163 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1164 MFI->Mode.FP32Denormals = YamlMFI.Mode.FP32Denormals; 1165 MFI->Mode.FP64FP16Denormals = YamlMFI.Mode.FP64FP16Denormals; 1166 1167 return false; 1168 } 1169