1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #ifdef LLVM_BUILD_GLOBAL_ISEL 23 #include "AMDGPURegisterBankInfo.h" 24 #endif 25 #include "AMDGPUTargetObjectFile.h" 26 #include "AMDGPUTargetTransformInfo.h" 27 #include "GCNIterativeScheduler.h" 28 #include "GCNSchedStrategy.h" 29 #include "R600MachineScheduler.h" 30 #include "SIMachineScheduler.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/AlwaysInliner.h" 40 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Scalar/GVN.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/LegacyPassManager.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include <memory> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> EnableR600IfConvert( 72 "r600-if-convert", 73 cl::desc("Use if conversion pass"), 74 cl::ReallyHidden, 75 cl::init(true)); 76 77 // Option to disable vectorizer for tests. 78 static cl::opt<bool> EnableLoadStoreVectorizer( 79 "amdgpu-load-store-vectorizer", 80 cl::desc("Enable load store vectorizer"), 81 cl::init(true), 82 cl::Hidden); 83 84 // Option to to control global loads scalarization 85 static cl::opt<bool> ScalarizeGlobal( 86 "amdgpu-scalarize-global-loads", 87 cl::desc("Enable global load scalarization"), 88 cl::init(false), 89 cl::Hidden); 90 91 // Option to run internalize pass. 92 static cl::opt<bool> InternalizeSymbols( 93 "amdgpu-internalize-symbols", 94 cl::desc("Enable elimination of non-kernel functions and unused globals"), 95 cl::init(false), 96 cl::Hidden); 97 98 // Option to inline all early. 99 static cl::opt<bool> EarlyInlineAll( 100 "amdgpu-early-inline-all", 101 cl::desc("Inline all functions early"), 102 cl::init(false), 103 cl::Hidden); 104 105 static cl::opt<bool> EnableSDWAPeephole( 106 "amdgpu-sdwa-peephole", 107 cl::desc("Enable SDWA peepholer"), 108 cl::init(true)); 109 110 // Enable address space based alias analysis 111 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 112 cl::desc("Enable AMDGPU Alias Analysis"), 113 cl::init(true)); 114 115 // Option to enable new waitcnt insertion pass. 116 static cl::opt<bool> EnableSIInsertWaitcntsPass( 117 "enable-si-insert-waitcnts", 118 cl::desc("Use new waitcnt insertion pass"), 119 cl::init(false)); 120 121 extern "C" void LLVMInitializeAMDGPUTarget() { 122 // Register the target 123 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 124 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 125 126 PassRegistry *PR = PassRegistry::getPassRegistry(); 127 initializeSILowerI1CopiesPass(*PR); 128 initializeSIFixSGPRCopiesPass(*PR); 129 initializeSIFixVGPRCopiesPass(*PR); 130 initializeSIFoldOperandsPass(*PR); 131 initializeSIPeepholeSDWAPass(*PR); 132 initializeSIShrinkInstructionsPass(*PR); 133 initializeSIFixControlFlowLiveIntervalsPass(*PR); 134 initializeSILoadStoreOptimizerPass(*PR); 135 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 136 initializeAMDGPUAnnotateUniformValuesPass(*PR); 137 initializeAMDGPULowerIntrinsicsPass(*PR); 138 initializeAMDGPUPromoteAllocaPass(*PR); 139 initializeAMDGPUCodeGenPreparePass(*PR); 140 initializeAMDGPUUnifyMetadataPass(*PR); 141 initializeSIAnnotateControlFlowPass(*PR); 142 initializeSIInsertWaitsPass(*PR); 143 initializeSIInsertWaitcntsPass(*PR); 144 initializeSIWholeQuadModePass(*PR); 145 initializeSILowerControlFlowPass(*PR); 146 initializeSIInsertSkipsPass(*PR); 147 initializeSIDebuggerInsertNopsPass(*PR); 148 initializeSIOptimizeExecMaskingPass(*PR); 149 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 150 initializeAMDGPUAAWrapperPassPass(*PR); 151 } 152 153 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 154 return llvm::make_unique<AMDGPUTargetObjectFile>(); 155 } 156 157 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 158 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 159 } 160 161 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 162 return new SIScheduleDAGMI(C); 163 } 164 165 static ScheduleDAGInstrs * 166 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 167 ScheduleDAGMILive *DAG = 168 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 169 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 170 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 171 return DAG; 172 } 173 174 static ScheduleDAGInstrs * 175 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 176 auto DAG = new GCNIterativeScheduler(C, 177 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 178 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 179 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 180 return DAG; 181 } 182 183 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 184 return new GCNIterativeScheduler(C, 185 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 186 } 187 188 static MachineSchedRegistry 189 R600SchedRegistry("r600", "Run R600's custom scheduler", 190 createR600MachineScheduler); 191 192 static MachineSchedRegistry 193 SISchedRegistry("si", "Run SI's custom scheduler", 194 createSIMachineScheduler); 195 196 static MachineSchedRegistry 197 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 198 "Run GCN scheduler to maximize occupancy", 199 createGCNMaxOccupancyMachineScheduler); 200 201 static MachineSchedRegistry 202 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 203 "Run GCN scheduler to maximize occupancy (experimental)", 204 createIterativeGCNMaxOccupancyMachineScheduler); 205 206 static MachineSchedRegistry 207 GCNMinRegSchedRegistry("gcn-minreg", 208 "Run GCN iterative scheduler for minimal register usage (experimental)", 209 createMinRegScheduler); 210 211 static StringRef computeDataLayout(const Triple &TT) { 212 if (TT.getArch() == Triple::r600) { 213 // 32-bit pointers. 214 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 215 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 216 } 217 218 // 32-bit private, local, and region pointers. 64-bit global, constant and 219 // flat. 220 if (TT.getEnvironmentName() == "amdgiz" || 221 TT.getEnvironmentName() == "amdgizcl") 222 return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32" 223 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 224 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5"; 225 return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" 226 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 227 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 228 } 229 230 LLVM_READNONE 231 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 232 if (!GPU.empty()) 233 return GPU; 234 235 // HSA only supports CI+, so change the default GPU to a CI for HSA. 236 if (TT.getArch() == Triple::amdgcn) 237 return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; 238 239 return "r600"; 240 } 241 242 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 243 // The AMDGPU toolchain only supports generating shared objects, so we 244 // must always use PIC. 245 return Reloc::PIC_; 246 } 247 248 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 249 StringRef CPU, StringRef FS, 250 TargetOptions Options, 251 Optional<Reloc::Model> RM, 252 CodeModel::Model CM, 253 CodeGenOpt::Level OptLevel) 254 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 255 FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), 256 TLOF(createTLOF(getTargetTriple())) { 257 AS = AMDGPU::getAMDGPUAS(TT); 258 initAsmInfo(); 259 } 260 261 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 262 263 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 264 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 265 return GPUAttr.hasAttribute(Attribute::None) ? 266 getTargetCPU() : GPUAttr.getValueAsString(); 267 } 268 269 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 270 Attribute FSAttr = F.getFnAttribute("target-features"); 271 272 return FSAttr.hasAttribute(Attribute::None) ? 273 getTargetFeatureString() : 274 FSAttr.getValueAsString(); 275 } 276 277 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 278 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 279 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 280 AAR.addAAResult(WrapperPass->getResult()); 281 }); 282 } 283 284 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 285 Builder.DivergentTarget = true; 286 287 bool Internalize = InternalizeSymbols && 288 (getOptLevel() > CodeGenOpt::None) && 289 (getTargetTriple().getArch() == Triple::amdgcn); 290 bool EarlyInline = EarlyInlineAll && 291 (getOptLevel() > CodeGenOpt::None); 292 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && getOptLevel() > CodeGenOpt::None; 293 294 Builder.addExtension( 295 PassManagerBuilder::EP_ModuleOptimizerEarly, 296 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 297 legacy::PassManagerBase &PM) { 298 if (AMDGPUAA) { 299 PM.add(createAMDGPUAAWrapperPass()); 300 PM.add(createAMDGPUExternalAAWrapperPass()); 301 } 302 PM.add(createAMDGPUUnifyMetadataPass()); 303 if (Internalize) { 304 PM.add(createInternalizePass([=](const GlobalValue &GV) -> bool { 305 if (const Function *F = dyn_cast<Function>(&GV)) { 306 if (F->isDeclaration()) 307 return true; 308 switch (F->getCallingConv()) { 309 default: 310 return false; 311 case CallingConv::AMDGPU_VS: 312 case CallingConv::AMDGPU_HS: 313 case CallingConv::AMDGPU_GS: 314 case CallingConv::AMDGPU_PS: 315 case CallingConv::AMDGPU_CS: 316 case CallingConv::AMDGPU_KERNEL: 317 case CallingConv::SPIR_KERNEL: 318 return true; 319 } 320 } 321 return !GV.use_empty(); 322 })); 323 PM.add(createGlobalDCEPass()); 324 } 325 if (EarlyInline) 326 PM.add(createAMDGPUAlwaysInlinePass(false)); 327 }); 328 329 Builder.addExtension( 330 PassManagerBuilder::EP_EarlyAsPossible, 331 [AMDGPUAA](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 332 if (AMDGPUAA) { 333 PM.add(createAMDGPUAAWrapperPass()); 334 PM.add(createAMDGPUExternalAAWrapperPass()); 335 } 336 }); 337 } 338 339 //===----------------------------------------------------------------------===// 340 // R600 Target Machine (R600 -> Cayman) 341 //===----------------------------------------------------------------------===// 342 343 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 344 StringRef CPU, StringRef FS, 345 TargetOptions Options, 346 Optional<Reloc::Model> RM, 347 CodeModel::Model CM, CodeGenOpt::Level OL) 348 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 349 setRequiresStructuredCFG(true); 350 } 351 352 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 353 const Function &F) const { 354 StringRef GPU = getGPUName(F); 355 StringRef FS = getFeatureString(F); 356 357 SmallString<128> SubtargetKey(GPU); 358 SubtargetKey.append(FS); 359 360 auto &I = SubtargetMap[SubtargetKey]; 361 if (!I) { 362 // This needs to be done before we create a new subtarget since any 363 // creation will depend on the TM and the code generation flags on the 364 // function that reside in TargetOptions. 365 resetTargetOptions(F); 366 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 367 } 368 369 return I.get(); 370 } 371 372 //===----------------------------------------------------------------------===// 373 // GCN Target Machine (SI+) 374 //===----------------------------------------------------------------------===// 375 376 #ifdef LLVM_BUILD_GLOBAL_ISEL 377 namespace { 378 379 struct SIGISelActualAccessor : public GISelAccessor { 380 std::unique_ptr<AMDGPUCallLowering> CallLoweringInfo; 381 std::unique_ptr<InstructionSelector> InstSelector; 382 std::unique_ptr<LegalizerInfo> Legalizer; 383 std::unique_ptr<RegisterBankInfo> RegBankInfo; 384 const AMDGPUCallLowering *getCallLowering() const override { 385 return CallLoweringInfo.get(); 386 } 387 const InstructionSelector *getInstructionSelector() const override { 388 return InstSelector.get(); 389 } 390 const LegalizerInfo *getLegalizerInfo() const override { 391 return Legalizer.get(); 392 } 393 const RegisterBankInfo *getRegBankInfo() const override { 394 return RegBankInfo.get(); 395 } 396 }; 397 398 } // end anonymous namespace 399 #endif 400 401 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 402 StringRef CPU, StringRef FS, 403 TargetOptions Options, 404 Optional<Reloc::Model> RM, 405 CodeModel::Model CM, CodeGenOpt::Level OL) 406 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 407 408 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 409 StringRef GPU = getGPUName(F); 410 StringRef FS = getFeatureString(F); 411 412 SmallString<128> SubtargetKey(GPU); 413 SubtargetKey.append(FS); 414 415 auto &I = SubtargetMap[SubtargetKey]; 416 if (!I) { 417 // This needs to be done before we create a new subtarget since any 418 // creation will depend on the TM and the code generation flags on the 419 // function that reside in TargetOptions. 420 resetTargetOptions(F); 421 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 422 423 #ifndef LLVM_BUILD_GLOBAL_ISEL 424 GISelAccessor *GISel = new GISelAccessor(); 425 #else 426 SIGISelActualAccessor *GISel = new SIGISelActualAccessor(); 427 GISel->CallLoweringInfo.reset( 428 new AMDGPUCallLowering(*I->getTargetLowering())); 429 GISel->Legalizer.reset(new AMDGPULegalizerInfo()); 430 431 GISel->RegBankInfo.reset(new AMDGPURegisterBankInfo(*I->getRegisterInfo())); 432 GISel->InstSelector.reset(new AMDGPUInstructionSelector(*I, 433 *static_cast<AMDGPURegisterBankInfo*>(GISel->RegBankInfo.get()))); 434 #endif 435 436 I->setGISelAccessor(*GISel); 437 } 438 439 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 440 441 return I.get(); 442 } 443 444 //===----------------------------------------------------------------------===// 445 // AMDGPU Pass Setup 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 450 class AMDGPUPassConfig : public TargetPassConfig { 451 public: 452 AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM) 453 : TargetPassConfig(TM, PM) { 454 // Exceptions and StackMaps are not supported, so these passes will never do 455 // anything. 456 disablePass(&StackMapLivenessID); 457 disablePass(&FuncletLayoutID); 458 } 459 460 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 461 return getTM<AMDGPUTargetMachine>(); 462 } 463 464 ScheduleDAGInstrs * 465 createMachineScheduler(MachineSchedContext *C) const override { 466 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 467 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 468 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 469 return DAG; 470 } 471 472 void addEarlyCSEOrGVNPass(); 473 void addStraightLineScalarOptimizationPasses(); 474 void addIRPasses() override; 475 void addCodeGenPrepare() override; 476 bool addPreISel() override; 477 bool addInstSelector() override; 478 bool addGCPasses() override; 479 }; 480 481 class R600PassConfig final : public AMDGPUPassConfig { 482 public: 483 R600PassConfig(TargetMachine *TM, PassManagerBase &PM) 484 : AMDGPUPassConfig(TM, PM) {} 485 486 ScheduleDAGInstrs *createMachineScheduler( 487 MachineSchedContext *C) const override { 488 return createR600MachineScheduler(C); 489 } 490 491 bool addPreISel() override; 492 void addPreRegAlloc() override; 493 void addPreSched2() override; 494 void addPreEmitPass() override; 495 }; 496 497 class GCNPassConfig final : public AMDGPUPassConfig { 498 public: 499 GCNPassConfig(TargetMachine *TM, PassManagerBase &PM) 500 : AMDGPUPassConfig(TM, PM) {} 501 502 GCNTargetMachine &getGCNTargetMachine() const { 503 return getTM<GCNTargetMachine>(); 504 } 505 506 ScheduleDAGInstrs * 507 createMachineScheduler(MachineSchedContext *C) const override; 508 509 bool addPreISel() override; 510 void addMachineSSAOptimization() override; 511 bool addILPOpts() override; 512 bool addInstSelector() override; 513 #ifdef LLVM_BUILD_GLOBAL_ISEL 514 bool addIRTranslator() override; 515 bool addLegalizeMachineIR() override; 516 bool addRegBankSelect() override; 517 bool addGlobalInstructionSelect() override; 518 #endif 519 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 520 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 521 void addPreRegAlloc() override; 522 void addPostRegAlloc() override; 523 void addPreSched2() override; 524 void addPreEmitPass() override; 525 }; 526 527 } // end anonymous namespace 528 529 TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { 530 return TargetIRAnalysis([this](const Function &F) { 531 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 532 }); 533 } 534 535 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 536 if (getOptLevel() == CodeGenOpt::Aggressive) 537 addPass(createGVNPass()); 538 else 539 addPass(createEarlyCSEPass()); 540 } 541 542 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 543 addPass(createSeparateConstOffsetFromGEPPass()); 544 addPass(createSpeculativeExecutionPass()); 545 // ReassociateGEPs exposes more opportunites for SLSR. See 546 // the example in reassociate-geps-and-slsr.ll. 547 addPass(createStraightLineStrengthReducePass()); 548 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 549 // EarlyCSE can reuse. 550 addEarlyCSEOrGVNPass(); 551 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 552 addPass(createNaryReassociatePass()); 553 // NaryReassociate on GEPs creates redundant common expressions, so run 554 // EarlyCSE after it. 555 addPass(createEarlyCSEPass()); 556 } 557 558 void AMDGPUPassConfig::addIRPasses() { 559 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 560 561 // There is no reason to run these. 562 disablePass(&StackMapLivenessID); 563 disablePass(&FuncletLayoutID); 564 disablePass(&PatchableFunctionID); 565 566 addPass(createAMDGPULowerIntrinsicsPass(&TM)); 567 568 // Function calls are not supported, so make sure we inline everything. 569 addPass(createAMDGPUAlwaysInlinePass()); 570 addPass(createAlwaysInlinerLegacyPass()); 571 // We need to add the barrier noop pass, otherwise adding the function 572 // inlining pass will cause all of the PassConfigs passes to be run 573 // one function at a time, which means if we have a nodule with two 574 // functions, then we will generate code for the first function 575 // without ever running any passes on the second. 576 addPass(createBarrierNoopPass()); 577 578 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 579 // TODO: May want to move later or split into an early and late one. 580 581 addPass(createAMDGPUCodeGenPreparePass( 582 static_cast<const GCNTargetMachine *>(&TM))); 583 } 584 585 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 586 addPass(createAMDGPUOpenCLImageTypeLoweringPass()); 587 588 if (TM.getOptLevel() > CodeGenOpt::None) { 589 addPass(createInferAddressSpacesPass()); 590 addPass(createAMDGPUPromoteAlloca(&TM)); 591 592 if (EnableSROA) 593 addPass(createSROAPass()); 594 595 addStraightLineScalarOptimizationPasses(); 596 597 if (EnableAMDGPUAliasAnalysis) { 598 addPass(createAMDGPUAAWrapperPass()); 599 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 600 AAResults &AAR) { 601 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 602 AAR.addAAResult(WrapperPass->getResult()); 603 })); 604 } 605 } 606 607 TargetPassConfig::addIRPasses(); 608 609 // EarlyCSE is not always strong enough to clean up what LSR produces. For 610 // example, GVN can combine 611 // 612 // %0 = add %a, %b 613 // %1 = add %b, %a 614 // 615 // and 616 // 617 // %0 = shl nsw %a, 2 618 // %1 = shl %a, 2 619 // 620 // but EarlyCSE can do neither of them. 621 if (getOptLevel() != CodeGenOpt::None) 622 addEarlyCSEOrGVNPass(); 623 } 624 625 void AMDGPUPassConfig::addCodeGenPrepare() { 626 TargetPassConfig::addCodeGenPrepare(); 627 628 if (EnableLoadStoreVectorizer) 629 addPass(createLoadStoreVectorizerPass()); 630 } 631 632 bool AMDGPUPassConfig::addPreISel() { 633 addPass(createFlattenCFGPass()); 634 return false; 635 } 636 637 bool AMDGPUPassConfig::addInstSelector() { 638 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 639 return false; 640 } 641 642 bool AMDGPUPassConfig::addGCPasses() { 643 // Do nothing. GC is not supported. 644 return false; 645 } 646 647 //===----------------------------------------------------------------------===// 648 // R600 Pass Setup 649 //===----------------------------------------------------------------------===// 650 651 bool R600PassConfig::addPreISel() { 652 AMDGPUPassConfig::addPreISel(); 653 654 if (EnableR600StructurizeCFG) 655 addPass(createStructurizeCFGPass()); 656 return false; 657 } 658 659 void R600PassConfig::addPreRegAlloc() { 660 addPass(createR600VectorRegMerger(*TM)); 661 } 662 663 void R600PassConfig::addPreSched2() { 664 addPass(createR600EmitClauseMarkers(), false); 665 if (EnableR600IfConvert) 666 addPass(&IfConverterID, false); 667 addPass(createR600ClauseMergePass(*TM), false); 668 } 669 670 void R600PassConfig::addPreEmitPass() { 671 addPass(createAMDGPUCFGStructurizerPass(), false); 672 addPass(createR600ExpandSpecialInstrsPass(*TM), false); 673 addPass(&FinalizeMachineBundlesID, false); 674 addPass(createR600Packetizer(*TM), false); 675 addPass(createR600ControlFlowFinalizer(*TM), false); 676 } 677 678 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 679 return new R600PassConfig(this, PM); 680 } 681 682 //===----------------------------------------------------------------------===// 683 // GCN Pass Setup 684 //===----------------------------------------------------------------------===// 685 686 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 687 MachineSchedContext *C) const { 688 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 689 if (ST.enableSIScheduler()) 690 return createSIMachineScheduler(C); 691 return createGCNMaxOccupancyMachineScheduler(C); 692 } 693 694 bool GCNPassConfig::addPreISel() { 695 AMDGPUPassConfig::addPreISel(); 696 697 // FIXME: We need to run a pass to propagate the attributes when calls are 698 // supported. 699 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 700 addPass(createAMDGPUAnnotateKernelFeaturesPass(&TM)); 701 702 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 703 // regions formed by them. 704 addPass(&AMDGPUUnifyDivergentExitNodesID); 705 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 706 addPass(createSinkingPass()); 707 addPass(createSITypeRewriter()); 708 addPass(createAMDGPUAnnotateUniformValues()); 709 addPass(createSIAnnotateControlFlowPass()); 710 711 return false; 712 } 713 714 void GCNPassConfig::addMachineSSAOptimization() { 715 TargetPassConfig::addMachineSSAOptimization(); 716 717 // We want to fold operands after PeepholeOptimizer has run (or as part of 718 // it), because it will eliminate extra copies making it easier to fold the 719 // real source operand. We want to eliminate dead instructions after, so that 720 // we see fewer uses of the copies. We then need to clean up the dead 721 // instructions leftover after the operands are folded as well. 722 // 723 // XXX - Can we get away without running DeadMachineInstructionElim again? 724 addPass(&SIFoldOperandsID); 725 addPass(&DeadMachineInstructionElimID); 726 addPass(&SILoadStoreOptimizerID); 727 addPass(createSIShrinkInstructionsPass()); 728 if (EnableSDWAPeephole) { 729 addPass(&SIPeepholeSDWAID); 730 addPass(&DeadMachineInstructionElimID); 731 } 732 } 733 734 bool GCNPassConfig::addILPOpts() { 735 if (EnableEarlyIfConversion) 736 addPass(&EarlyIfConverterID); 737 738 TargetPassConfig::addILPOpts(); 739 return false; 740 } 741 742 bool GCNPassConfig::addInstSelector() { 743 AMDGPUPassConfig::addInstSelector(); 744 addPass(createSILowerI1CopiesPass()); 745 addPass(&SIFixSGPRCopiesID); 746 return false; 747 } 748 749 #ifdef LLVM_BUILD_GLOBAL_ISEL 750 bool GCNPassConfig::addIRTranslator() { 751 addPass(new IRTranslator()); 752 return false; 753 } 754 755 bool GCNPassConfig::addLegalizeMachineIR() { 756 addPass(new Legalizer()); 757 return false; 758 } 759 760 bool GCNPassConfig::addRegBankSelect() { 761 addPass(new RegBankSelect()); 762 return false; 763 } 764 765 bool GCNPassConfig::addGlobalInstructionSelect() { 766 addPass(new InstructionSelect()); 767 return false; 768 } 769 770 #endif 771 772 void GCNPassConfig::addPreRegAlloc() { 773 addPass(createSIWholeQuadModePass()); 774 } 775 776 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 777 // FIXME: We have to disable the verifier here because of PHIElimination + 778 // TwoAddressInstructions disabling it. 779 780 // This must be run immediately after phi elimination and before 781 // TwoAddressInstructions, otherwise the processing of the tied operand of 782 // SI_ELSE will introduce a copy of the tied operand source after the else. 783 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 784 785 TargetPassConfig::addFastRegAlloc(RegAllocPass); 786 } 787 788 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 789 // This needs to be run directly before register allocation because earlier 790 // passes might recompute live intervals. 791 insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); 792 793 // This must be run immediately after phi elimination and before 794 // TwoAddressInstructions, otherwise the processing of the tied operand of 795 // SI_ELSE will introduce a copy of the tied operand source after the else. 796 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 797 798 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 799 } 800 801 void GCNPassConfig::addPostRegAlloc() { 802 addPass(&SIFixVGPRCopiesID); 803 addPass(&SIOptimizeExecMaskingID); 804 TargetPassConfig::addPostRegAlloc(); 805 } 806 807 void GCNPassConfig::addPreSched2() { 808 } 809 810 void GCNPassConfig::addPreEmitPass() { 811 // The hazard recognizer that runs as part of the post-ra scheduler does not 812 // guarantee to be able handle all hazards correctly. This is because if there 813 // are multiple scheduling regions in a basic block, the regions are scheduled 814 // bottom up, so when we begin to schedule a region we don't know what 815 // instructions were emitted directly before it. 816 // 817 // Here we add a stand-alone hazard recognizer pass which can handle all 818 // cases. 819 addPass(&PostRAHazardRecognizerID); 820 821 if (EnableSIInsertWaitcntsPass) 822 addPass(createSIInsertWaitcntsPass()); 823 else 824 addPass(createSIInsertWaitsPass()); 825 addPass(createSIShrinkInstructionsPass()); 826 addPass(&SIInsertSkipsPassID); 827 addPass(createSIDebuggerInsertNopsPass()); 828 addPass(&BranchRelaxationPassID); 829 } 830 831 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 832 return new GCNPassConfig(this, PM); 833 } 834 835