1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/MIRParser/MIParser.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/LegacyPassManager.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Target/TargetLoweringObjectFile.h" 44 #include "llvm/Transforms/IPO.h" 45 #include "llvm/Transforms/IPO/AlwaysInliner.h" 46 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 47 #include "llvm/Transforms/Scalar.h" 48 #include "llvm/Transforms/Scalar/GVN.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Vectorize.h" 51 #include <memory> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> EnableR600IfConvert( 72 "r600-if-convert", 73 cl::desc("Use if conversion pass"), 74 cl::ReallyHidden, 75 cl::init(true)); 76 77 // Option to disable vectorizer for tests. 78 static cl::opt<bool> EnableLoadStoreVectorizer( 79 "amdgpu-load-store-vectorizer", 80 cl::desc("Enable load store vectorizer"), 81 cl::init(true), 82 cl::Hidden); 83 84 // Option to control global loads scalarization 85 static cl::opt<bool> ScalarizeGlobal( 86 "amdgpu-scalarize-global-loads", 87 cl::desc("Enable global load scalarization"), 88 cl::init(true), 89 cl::Hidden); 90 91 // Option to run internalize pass. 92 static cl::opt<bool> InternalizeSymbols( 93 "amdgpu-internalize-symbols", 94 cl::desc("Enable elimination of non-kernel functions and unused globals"), 95 cl::init(false), 96 cl::Hidden); 97 98 // Option to inline all early. 99 static cl::opt<bool> EarlyInlineAll( 100 "amdgpu-early-inline-all", 101 cl::desc("Inline all functions early"), 102 cl::init(false), 103 cl::Hidden); 104 105 static cl::opt<bool> EnableSDWAPeephole( 106 "amdgpu-sdwa-peephole", 107 cl::desc("Enable SDWA peepholer"), 108 cl::init(true)); 109 110 static cl::opt<bool> EnableDPPCombine( 111 "amdgpu-dpp-combine", 112 cl::desc("Enable DPP combiner"), 113 cl::init(true)); 114 115 // Enable address space based alias analysis 116 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 117 cl::desc("Enable AMDGPU Alias Analysis"), 118 cl::init(true)); 119 120 // Option to run late CFG structurizer 121 static cl::opt<bool, true> LateCFGStructurize( 122 "amdgpu-late-structurize", 123 cl::desc("Enable late CFG structurization"), 124 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 125 cl::Hidden); 126 127 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 128 "amdgpu-function-calls", 129 cl::desc("Enable AMDGPU function call support"), 130 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 131 cl::init(true), 132 cl::Hidden); 133 134 // Enable lib calls simplifications 135 static cl::opt<bool> EnableLibCallSimplify( 136 "amdgpu-simplify-libcall", 137 cl::desc("Enable amdgpu library simplifications"), 138 cl::init(true), 139 cl::Hidden); 140 141 static cl::opt<bool> EnableLowerKernelArguments( 142 "amdgpu-ir-lower-kernel-arguments", 143 cl::desc("Lower kernel argument loads in IR pass"), 144 cl::init(true), 145 cl::Hidden); 146 147 // Enable atomic optimization 148 static cl::opt<bool> EnableAtomicOptimizations( 149 "amdgpu-atomic-optimizations", 150 cl::desc("Enable atomic optimizations"), 151 cl::init(false), 152 cl::Hidden); 153 154 // Enable Mode register optimization 155 static cl::opt<bool> EnableSIModeRegisterPass( 156 "amdgpu-mode-register", 157 cl::desc("Enable mode register pass"), 158 cl::init(true), 159 cl::Hidden); 160 161 extern "C" void LLVMInitializeAMDGPUTarget() { 162 // Register the target 163 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 164 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 165 166 PassRegistry *PR = PassRegistry::getPassRegistry(); 167 initializeR600ClauseMergePassPass(*PR); 168 initializeR600ControlFlowFinalizerPass(*PR); 169 initializeR600PacketizerPass(*PR); 170 initializeR600ExpandSpecialInstrsPassPass(*PR); 171 initializeR600VectorRegMergerPass(*PR); 172 initializeGlobalISel(*PR); 173 initializeAMDGPUDAGToDAGISelPass(*PR); 174 initializeGCNDPPCombinePass(*PR); 175 initializeSILowerI1CopiesPass(*PR); 176 initializeSIFixSGPRCopiesPass(*PR); 177 initializeSIFixVGPRCopiesPass(*PR); 178 initializeSIFixupVectorISelPass(*PR); 179 initializeSIFoldOperandsPass(*PR); 180 initializeSIPeepholeSDWAPass(*PR); 181 initializeSIShrinkInstructionsPass(*PR); 182 initializeSIOptimizeExecMaskingPreRAPass(*PR); 183 initializeSILoadStoreOptimizerPass(*PR); 184 initializeAMDGPUFixFunctionBitcastsPass(*PR); 185 initializeAMDGPUAlwaysInlinePass(*PR); 186 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 187 initializeAMDGPUAnnotateUniformValuesPass(*PR); 188 initializeAMDGPUArgumentUsageInfoPass(*PR); 189 initializeAMDGPUAtomicOptimizerPass(*PR); 190 initializeAMDGPULowerKernelArgumentsPass(*PR); 191 initializeAMDGPULowerKernelAttributesPass(*PR); 192 initializeAMDGPULowerIntrinsicsPass(*PR); 193 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 194 initializeAMDGPUPromoteAllocaPass(*PR); 195 initializeAMDGPUCodeGenPreparePass(*PR); 196 initializeAMDGPURewriteOutArgumentsPass(*PR); 197 initializeAMDGPUUnifyMetadataPass(*PR); 198 initializeSIAnnotateControlFlowPass(*PR); 199 initializeSIInsertWaitcntsPass(*PR); 200 initializeSIModeRegisterPass(*PR); 201 initializeSIWholeQuadModePass(*PR); 202 initializeSILowerControlFlowPass(*PR); 203 initializeSIInsertSkipsPass(*PR); 204 initializeSIMemoryLegalizerPass(*PR); 205 initializeSIOptimizeExecMaskingPass(*PR); 206 initializeSIFixWWMLivenessPass(*PR); 207 initializeSIFormMemoryClausesPass(*PR); 208 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 209 initializeAMDGPUAAWrapperPassPass(*PR); 210 initializeAMDGPUExternalAAWrapperPass(*PR); 211 initializeAMDGPUUseNativeCallsPass(*PR); 212 initializeAMDGPUSimplifyLibCallsPass(*PR); 213 initializeAMDGPUInlinerPass(*PR); 214 } 215 216 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 217 return llvm::make_unique<AMDGPUTargetObjectFile>(); 218 } 219 220 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 221 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 222 } 223 224 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 225 return new SIScheduleDAGMI(C); 226 } 227 228 static ScheduleDAGInstrs * 229 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 230 ScheduleDAGMILive *DAG = 231 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 232 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 233 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 234 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 235 return DAG; 236 } 237 238 static ScheduleDAGInstrs * 239 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 240 auto DAG = new GCNIterativeScheduler(C, 241 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 242 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 243 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 244 return DAG; 245 } 246 247 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 248 return new GCNIterativeScheduler(C, 249 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 250 } 251 252 static ScheduleDAGInstrs * 253 createIterativeILPMachineScheduler(MachineSchedContext *C) { 254 auto DAG = new GCNIterativeScheduler(C, 255 GCNIterativeScheduler::SCHEDULE_ILP); 256 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 257 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 258 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 259 return DAG; 260 } 261 262 static MachineSchedRegistry 263 R600SchedRegistry("r600", "Run R600's custom scheduler", 264 createR600MachineScheduler); 265 266 static MachineSchedRegistry 267 SISchedRegistry("si", "Run SI's custom scheduler", 268 createSIMachineScheduler); 269 270 static MachineSchedRegistry 271 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 272 "Run GCN scheduler to maximize occupancy", 273 createGCNMaxOccupancyMachineScheduler); 274 275 static MachineSchedRegistry 276 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 277 "Run GCN scheduler to maximize occupancy (experimental)", 278 createIterativeGCNMaxOccupancyMachineScheduler); 279 280 static MachineSchedRegistry 281 GCNMinRegSchedRegistry("gcn-minreg", 282 "Run GCN iterative scheduler for minimal register usage (experimental)", 283 createMinRegScheduler); 284 285 static MachineSchedRegistry 286 GCNILPSchedRegistry("gcn-ilp", 287 "Run GCN iterative scheduler for ILP scheduling (experimental)", 288 createIterativeILPMachineScheduler); 289 290 static StringRef computeDataLayout(const Triple &TT) { 291 if (TT.getArch() == Triple::r600) { 292 // 32-bit pointers. 293 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 294 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 295 } 296 297 // 32-bit private, local, and region pointers. 64-bit global, constant and 298 // flat, non-integral buffer fat pointers. 299 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 300 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 301 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 302 "-ni:7"; 303 } 304 305 LLVM_READNONE 306 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 307 if (!GPU.empty()) 308 return GPU; 309 310 // Need to default to a target with flat support for HSA. 311 if (TT.getArch() == Triple::amdgcn) 312 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 313 314 return "r600"; 315 } 316 317 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 318 // The AMDGPU toolchain only supports generating shared objects, so we 319 // must always use PIC. 320 return Reloc::PIC_; 321 } 322 323 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 324 StringRef CPU, StringRef FS, 325 TargetOptions Options, 326 Optional<Reloc::Model> RM, 327 Optional<CodeModel::Model> CM, 328 CodeGenOpt::Level OptLevel) 329 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 330 FS, Options, getEffectiveRelocModel(RM), 331 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 332 TLOF(createTLOF(getTargetTriple())) { 333 initAsmInfo(); 334 } 335 336 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 337 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 338 339 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 340 341 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 342 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 343 return GPUAttr.hasAttribute(Attribute::None) ? 344 getTargetCPU() : GPUAttr.getValueAsString(); 345 } 346 347 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 348 Attribute FSAttr = F.getFnAttribute("target-features"); 349 350 return FSAttr.hasAttribute(Attribute::None) ? 351 getTargetFeatureString() : 352 FSAttr.getValueAsString(); 353 } 354 355 /// Predicate for Internalize pass. 356 static bool mustPreserveGV(const GlobalValue &GV) { 357 if (const Function *F = dyn_cast<Function>(&GV)) 358 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 359 360 return !GV.use_empty(); 361 } 362 363 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 364 Builder.DivergentTarget = true; 365 366 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 367 bool Internalize = InternalizeSymbols; 368 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 369 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 370 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 371 372 if (EnableFunctionCalls) { 373 delete Builder.Inliner; 374 Builder.Inliner = createAMDGPUFunctionInliningPass(); 375 } 376 377 Builder.addExtension( 378 PassManagerBuilder::EP_ModuleOptimizerEarly, 379 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 380 legacy::PassManagerBase &PM) { 381 if (AMDGPUAA) { 382 PM.add(createAMDGPUAAWrapperPass()); 383 PM.add(createAMDGPUExternalAAWrapperPass()); 384 } 385 PM.add(createAMDGPUUnifyMetadataPass()); 386 if (Internalize) { 387 PM.add(createInternalizePass(mustPreserveGV)); 388 PM.add(createGlobalDCEPass()); 389 } 390 if (EarlyInline) 391 PM.add(createAMDGPUAlwaysInlinePass(false)); 392 }); 393 394 const auto &Opt = Options; 395 Builder.addExtension( 396 PassManagerBuilder::EP_EarlyAsPossible, 397 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 398 legacy::PassManagerBase &PM) { 399 if (AMDGPUAA) { 400 PM.add(createAMDGPUAAWrapperPass()); 401 PM.add(createAMDGPUExternalAAWrapperPass()); 402 } 403 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 404 if (LibCallSimplify) 405 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 406 }); 407 408 Builder.addExtension( 409 PassManagerBuilder::EP_CGSCCOptimizerLate, 410 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 411 // Add infer address spaces pass to the opt pipeline after inlining 412 // but before SROA to increase SROA opportunities. 413 PM.add(createInferAddressSpacesPass()); 414 415 // This should run after inlining to have any chance of doing anything, 416 // and before other cleanup optimizations. 417 PM.add(createAMDGPULowerKernelAttributesPass()); 418 }); 419 } 420 421 //===----------------------------------------------------------------------===// 422 // R600 Target Machine (R600 -> Cayman) 423 //===----------------------------------------------------------------------===// 424 425 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 426 StringRef CPU, StringRef FS, 427 TargetOptions Options, 428 Optional<Reloc::Model> RM, 429 Optional<CodeModel::Model> CM, 430 CodeGenOpt::Level OL, bool JIT) 431 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 432 setRequiresStructuredCFG(true); 433 434 // Override the default since calls aren't supported for r600. 435 if (EnableFunctionCalls && 436 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 437 EnableFunctionCalls = false; 438 } 439 440 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 441 const Function &F) const { 442 StringRef GPU = getGPUName(F); 443 StringRef FS = getFeatureString(F); 444 445 SmallString<128> SubtargetKey(GPU); 446 SubtargetKey.append(FS); 447 448 auto &I = SubtargetMap[SubtargetKey]; 449 if (!I) { 450 // This needs to be done before we create a new subtarget since any 451 // creation will depend on the TM and the code generation flags on the 452 // function that reside in TargetOptions. 453 resetTargetOptions(F); 454 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 455 } 456 457 return I.get(); 458 } 459 460 TargetTransformInfo 461 R600TargetMachine::getTargetTransformInfo(const Function &F) { 462 return TargetTransformInfo(R600TTIImpl(this, F)); 463 } 464 465 //===----------------------------------------------------------------------===// 466 // GCN Target Machine (SI+) 467 //===----------------------------------------------------------------------===// 468 469 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 470 StringRef CPU, StringRef FS, 471 TargetOptions Options, 472 Optional<Reloc::Model> RM, 473 Optional<CodeModel::Model> CM, 474 CodeGenOpt::Level OL, bool JIT) 475 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 476 477 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 478 StringRef GPU = getGPUName(F); 479 StringRef FS = getFeatureString(F); 480 481 SmallString<128> SubtargetKey(GPU); 482 SubtargetKey.append(FS); 483 484 auto &I = SubtargetMap[SubtargetKey]; 485 if (!I) { 486 // This needs to be done before we create a new subtarget since any 487 // creation will depend on the TM and the code generation flags on the 488 // function that reside in TargetOptions. 489 resetTargetOptions(F); 490 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 491 } 492 493 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 494 495 return I.get(); 496 } 497 498 TargetTransformInfo 499 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 500 return TargetTransformInfo(GCNTTIImpl(this, F)); 501 } 502 503 //===----------------------------------------------------------------------===// 504 // AMDGPU Pass Setup 505 //===----------------------------------------------------------------------===// 506 507 namespace { 508 509 class AMDGPUPassConfig : public TargetPassConfig { 510 public: 511 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 512 : TargetPassConfig(TM, PM) { 513 // Exceptions and StackMaps are not supported, so these passes will never do 514 // anything. 515 disablePass(&StackMapLivenessID); 516 disablePass(&FuncletLayoutID); 517 } 518 519 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 520 return getTM<AMDGPUTargetMachine>(); 521 } 522 523 ScheduleDAGInstrs * 524 createMachineScheduler(MachineSchedContext *C) const override { 525 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 526 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 527 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 528 return DAG; 529 } 530 531 void addEarlyCSEOrGVNPass(); 532 void addStraightLineScalarOptimizationPasses(); 533 void addIRPasses() override; 534 void addCodeGenPrepare() override; 535 bool addPreISel() override; 536 bool addInstSelector() override; 537 bool addGCPasses() override; 538 }; 539 540 class R600PassConfig final : public AMDGPUPassConfig { 541 public: 542 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 543 : AMDGPUPassConfig(TM, PM) {} 544 545 ScheduleDAGInstrs *createMachineScheduler( 546 MachineSchedContext *C) const override { 547 return createR600MachineScheduler(C); 548 } 549 550 bool addPreISel() override; 551 bool addInstSelector() override; 552 void addPreRegAlloc() override; 553 void addPreSched2() override; 554 void addPreEmitPass() override; 555 }; 556 557 class GCNPassConfig final : public AMDGPUPassConfig { 558 public: 559 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 560 : AMDGPUPassConfig(TM, PM) { 561 // It is necessary to know the register usage of the entire call graph. We 562 // allow calls without EnableAMDGPUFunctionCalls if they are marked 563 // noinline, so this is always required. 564 setRequiresCodeGenSCCOrder(true); 565 } 566 567 GCNTargetMachine &getGCNTargetMachine() const { 568 return getTM<GCNTargetMachine>(); 569 } 570 571 ScheduleDAGInstrs * 572 createMachineScheduler(MachineSchedContext *C) const override; 573 574 bool addPreISel() override; 575 void addMachineSSAOptimization() override; 576 bool addILPOpts() override; 577 bool addInstSelector() override; 578 bool addIRTranslator() override; 579 bool addLegalizeMachineIR() override; 580 bool addRegBankSelect() override; 581 bool addGlobalInstructionSelect() override; 582 void addFastRegAlloc() override; 583 void addOptimizedRegAlloc() override; 584 void addPreRegAlloc() override; 585 void addPostRegAlloc() override; 586 void addPreSched2() override; 587 void addPreEmitPass() override; 588 }; 589 590 } // end anonymous namespace 591 592 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 593 if (getOptLevel() == CodeGenOpt::Aggressive) 594 addPass(createGVNPass()); 595 else 596 addPass(createEarlyCSEPass()); 597 } 598 599 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 600 addPass(createLICMPass()); 601 addPass(createSeparateConstOffsetFromGEPPass()); 602 addPass(createSpeculativeExecutionPass()); 603 // ReassociateGEPs exposes more opportunites for SLSR. See 604 // the example in reassociate-geps-and-slsr.ll. 605 addPass(createStraightLineStrengthReducePass()); 606 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 607 // EarlyCSE can reuse. 608 addEarlyCSEOrGVNPass(); 609 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 610 addPass(createNaryReassociatePass()); 611 // NaryReassociate on GEPs creates redundant common expressions, so run 612 // EarlyCSE after it. 613 addPass(createEarlyCSEPass()); 614 } 615 616 void AMDGPUPassConfig::addIRPasses() { 617 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 618 619 // There is no reason to run these. 620 disablePass(&StackMapLivenessID); 621 disablePass(&FuncletLayoutID); 622 disablePass(&PatchableFunctionID); 623 624 addPass(createAtomicExpandPass()); 625 626 // This must occur before inlining, as the inliner will not look through 627 // bitcast calls. 628 addPass(createAMDGPUFixFunctionBitcastsPass()); 629 630 addPass(createAMDGPULowerIntrinsicsPass()); 631 632 // Function calls are not supported, so make sure we inline everything. 633 addPass(createAMDGPUAlwaysInlinePass()); 634 addPass(createAlwaysInlinerLegacyPass()); 635 // We need to add the barrier noop pass, otherwise adding the function 636 // inlining pass will cause all of the PassConfigs passes to be run 637 // one function at a time, which means if we have a nodule with two 638 // functions, then we will generate code for the first function 639 // without ever running any passes on the second. 640 addPass(createBarrierNoopPass()); 641 642 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 643 // TODO: May want to move later or split into an early and late one. 644 645 addPass(createAMDGPUCodeGenPreparePass()); 646 } 647 648 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 649 if (TM.getTargetTriple().getArch() == Triple::r600) 650 addPass(createR600OpenCLImageTypeLoweringPass()); 651 652 // Replace OpenCL enqueued block function pointers with global variables. 653 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 654 655 if (TM.getOptLevel() > CodeGenOpt::None) { 656 addPass(createInferAddressSpacesPass()); 657 addPass(createAMDGPUPromoteAlloca()); 658 659 if (EnableSROA) 660 addPass(createSROAPass()); 661 662 addStraightLineScalarOptimizationPasses(); 663 664 if (EnableAMDGPUAliasAnalysis) { 665 addPass(createAMDGPUAAWrapperPass()); 666 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 667 AAResults &AAR) { 668 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 669 AAR.addAAResult(WrapperPass->getResult()); 670 })); 671 } 672 } 673 674 TargetPassConfig::addIRPasses(); 675 676 // EarlyCSE is not always strong enough to clean up what LSR produces. For 677 // example, GVN can combine 678 // 679 // %0 = add %a, %b 680 // %1 = add %b, %a 681 // 682 // and 683 // 684 // %0 = shl nsw %a, 2 685 // %1 = shl %a, 2 686 // 687 // but EarlyCSE can do neither of them. 688 if (getOptLevel() != CodeGenOpt::None) 689 addEarlyCSEOrGVNPass(); 690 } 691 692 void AMDGPUPassConfig::addCodeGenPrepare() { 693 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 694 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 695 696 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 697 EnableLowerKernelArguments) 698 addPass(createAMDGPULowerKernelArgumentsPass()); 699 700 TargetPassConfig::addCodeGenPrepare(); 701 702 if (EnableLoadStoreVectorizer) 703 addPass(createLoadStoreVectorizerPass()); 704 } 705 706 bool AMDGPUPassConfig::addPreISel() { 707 addPass(createLowerSwitchPass()); 708 addPass(createFlattenCFGPass()); 709 return false; 710 } 711 712 bool AMDGPUPassConfig::addInstSelector() { 713 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 714 return false; 715 } 716 717 bool AMDGPUPassConfig::addGCPasses() { 718 // Do nothing. GC is not supported. 719 return false; 720 } 721 722 //===----------------------------------------------------------------------===// 723 // R600 Pass Setup 724 //===----------------------------------------------------------------------===// 725 726 bool R600PassConfig::addPreISel() { 727 AMDGPUPassConfig::addPreISel(); 728 729 if (EnableR600StructurizeCFG) 730 addPass(createStructurizeCFGPass()); 731 return false; 732 } 733 734 bool R600PassConfig::addInstSelector() { 735 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 736 return false; 737 } 738 739 void R600PassConfig::addPreRegAlloc() { 740 addPass(createR600VectorRegMerger()); 741 } 742 743 void R600PassConfig::addPreSched2() { 744 addPass(createR600EmitClauseMarkers(), false); 745 if (EnableR600IfConvert) 746 addPass(&IfConverterID, false); 747 addPass(createR600ClauseMergePass(), false); 748 } 749 750 void R600PassConfig::addPreEmitPass() { 751 addPass(createAMDGPUCFGStructurizerPass(), false); 752 addPass(createR600ExpandSpecialInstrsPass(), false); 753 addPass(&FinalizeMachineBundlesID, false); 754 addPass(createR600Packetizer(), false); 755 addPass(createR600ControlFlowFinalizer(), false); 756 } 757 758 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 759 return new R600PassConfig(*this, PM); 760 } 761 762 //===----------------------------------------------------------------------===// 763 // GCN Pass Setup 764 //===----------------------------------------------------------------------===// 765 766 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 767 MachineSchedContext *C) const { 768 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 769 if (ST.enableSIScheduler()) 770 return createSIMachineScheduler(C); 771 return createGCNMaxOccupancyMachineScheduler(C); 772 } 773 774 bool GCNPassConfig::addPreISel() { 775 AMDGPUPassConfig::addPreISel(); 776 777 if (EnableAtomicOptimizations) { 778 addPass(createAMDGPUAtomicOptimizerPass()); 779 } 780 781 // FIXME: We need to run a pass to propagate the attributes when calls are 782 // supported. 783 784 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 785 // regions formed by them. 786 addPass(&AMDGPUUnifyDivergentExitNodesID); 787 if (!LateCFGStructurize) { 788 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 789 } 790 addPass(createSinkingPass()); 791 addPass(createAMDGPUAnnotateUniformValues()); 792 if (!LateCFGStructurize) { 793 addPass(createSIAnnotateControlFlowPass()); 794 } 795 796 return false; 797 } 798 799 void GCNPassConfig::addMachineSSAOptimization() { 800 TargetPassConfig::addMachineSSAOptimization(); 801 802 // We want to fold operands after PeepholeOptimizer has run (or as part of 803 // it), because it will eliminate extra copies making it easier to fold the 804 // real source operand. We want to eliminate dead instructions after, so that 805 // we see fewer uses of the copies. We then need to clean up the dead 806 // instructions leftover after the operands are folded as well. 807 // 808 // XXX - Can we get away without running DeadMachineInstructionElim again? 809 addPass(&SIFoldOperandsID); 810 if (EnableDPPCombine) 811 addPass(&GCNDPPCombineID); 812 addPass(&DeadMachineInstructionElimID); 813 addPass(&SILoadStoreOptimizerID); 814 if (EnableSDWAPeephole) { 815 addPass(&SIPeepholeSDWAID); 816 addPass(&EarlyMachineLICMID); 817 addPass(&MachineCSEID); 818 addPass(&SIFoldOperandsID); 819 addPass(&DeadMachineInstructionElimID); 820 } 821 addPass(createSIShrinkInstructionsPass()); 822 } 823 824 bool GCNPassConfig::addILPOpts() { 825 if (EnableEarlyIfConversion) 826 addPass(&EarlyIfConverterID); 827 828 TargetPassConfig::addILPOpts(); 829 return false; 830 } 831 832 bool GCNPassConfig::addInstSelector() { 833 AMDGPUPassConfig::addInstSelector(); 834 addPass(&SIFixSGPRCopiesID); 835 addPass(createSILowerI1CopiesPass()); 836 addPass(createSIFixupVectorISelPass()); 837 addPass(createSIAddIMGInitPass()); 838 return false; 839 } 840 841 bool GCNPassConfig::addIRTranslator() { 842 addPass(new IRTranslator()); 843 return false; 844 } 845 846 bool GCNPassConfig::addLegalizeMachineIR() { 847 addPass(new Legalizer()); 848 return false; 849 } 850 851 bool GCNPassConfig::addRegBankSelect() { 852 addPass(new RegBankSelect()); 853 return false; 854 } 855 856 bool GCNPassConfig::addGlobalInstructionSelect() { 857 addPass(new InstructionSelect()); 858 return false; 859 } 860 861 void GCNPassConfig::addPreRegAlloc() { 862 if (LateCFGStructurize) { 863 addPass(createAMDGPUMachineCFGStructurizerPass()); 864 } 865 addPass(createSIWholeQuadModePass()); 866 } 867 868 void GCNPassConfig::addFastRegAlloc() { 869 // FIXME: We have to disable the verifier here because of PHIElimination + 870 // TwoAddressInstructions disabling it. 871 872 // This must be run immediately after phi elimination and before 873 // TwoAddressInstructions, otherwise the processing of the tied operand of 874 // SI_ELSE will introduce a copy of the tied operand source after the else. 875 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 876 877 // This must be run after SILowerControlFlow, since it needs to use the 878 // machine-level CFG, but before register allocation. 879 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 880 881 TargetPassConfig::addFastRegAlloc(); 882 } 883 884 void GCNPassConfig::addOptimizedRegAlloc() { 885 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 886 887 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 888 889 // This must be run immediately after phi elimination and before 890 // TwoAddressInstructions, otherwise the processing of the tied operand of 891 // SI_ELSE will introduce a copy of the tied operand source after the else. 892 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 893 894 // This must be run after SILowerControlFlow, since it needs to use the 895 // machine-level CFG, but before register allocation. 896 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 897 898 TargetPassConfig::addOptimizedRegAlloc(); 899 } 900 901 void GCNPassConfig::addPostRegAlloc() { 902 addPass(&SIFixVGPRCopiesID); 903 if (getOptLevel() > CodeGenOpt::None) 904 addPass(&SIOptimizeExecMaskingID); 905 TargetPassConfig::addPostRegAlloc(); 906 } 907 908 void GCNPassConfig::addPreSched2() { 909 } 910 911 void GCNPassConfig::addPreEmitPass() { 912 addPass(createSIMemoryLegalizerPass()); 913 addPass(createSIInsertWaitcntsPass()); 914 addPass(createSIShrinkInstructionsPass()); 915 addPass(createSIModeRegisterPass()); 916 917 // The hazard recognizer that runs as part of the post-ra scheduler does not 918 // guarantee to be able handle all hazards correctly. This is because if there 919 // are multiple scheduling regions in a basic block, the regions are scheduled 920 // bottom up, so when we begin to schedule a region we don't know what 921 // instructions were emitted directly before it. 922 // 923 // Here we add a stand-alone hazard recognizer pass which can handle all 924 // cases. 925 // 926 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 927 // be better for it to emit S_NOP <N> when possible. 928 addPass(&PostRAHazardRecognizerID); 929 930 addPass(&SIInsertSkipsPassID); 931 addPass(&BranchRelaxationPassID); 932 } 933 934 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 935 return new GCNPassConfig(*this, PM); 936 } 937 938 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 939 return new yaml::SIMachineFunctionInfo(); 940 } 941 942 yaml::MachineFunctionInfo * 943 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 944 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 945 return new yaml::SIMachineFunctionInfo(*MFI, 946 *MF.getSubtarget().getRegisterInfo()); 947 } 948 949 bool GCNTargetMachine::parseMachineFunctionInfo( 950 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 951 SMDiagnostic &Error, SMRange &SourceRange) const { 952 const yaml::SIMachineFunctionInfo &YamlMFI = 953 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 954 MachineFunction &MF = PFS.MF; 955 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 956 957 MFI->initializeBaseYamlFields(YamlMFI); 958 959 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 960 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 961 SourceRange = RegName.SourceRange; 962 return true; 963 } 964 965 return false; 966 }; 967 968 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 969 // Create a diagnostic for a the register string literal. 970 const MemoryBuffer &Buffer = 971 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 972 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 973 RegName.Value.size(), SourceMgr::DK_Error, 974 "incorrect register class for field", RegName.Value, 975 None, None); 976 SourceRange = RegName.SourceRange; 977 return true; 978 }; 979 980 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 981 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 982 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 983 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 984 return true; 985 986 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 987 !AMDGPU::SReg_128RegClass.contains(MFI->ScratchRSrcReg)) { 988 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 989 } 990 991 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 992 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 993 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 994 } 995 996 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 997 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 998 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 999 } 1000 1001 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1002 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1003 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1004 } 1005 1006 return false; 1007 } 1008