1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/GVN.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Vectorize.h" 56 #include <memory> 57 58 using namespace llvm; 59 60 static cl::opt<bool> EnableR600StructurizeCFG( 61 "r600-ir-structurize", 62 cl::desc("Use StructurizeCFG IR pass"), 63 cl::init(true)); 64 65 static cl::opt<bool> EnableSROA( 66 "amdgpu-sroa", 67 cl::desc("Run SROA after promote alloca pass"), 68 cl::ReallyHidden, 69 cl::init(true)); 70 71 static cl::opt<bool> 72 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 73 cl::desc("Run early if-conversion"), 74 cl::init(false)); 75 76 static cl::opt<bool> 77 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 78 cl::desc("Run pre-RA exec mask optimizations"), 79 cl::init(true)); 80 81 static cl::opt<bool> EnableR600IfConvert( 82 "r600-if-convert", 83 cl::desc("Use if conversion pass"), 84 cl::ReallyHidden, 85 cl::init(true)); 86 87 // Option to disable vectorizer for tests. 88 static cl::opt<bool> EnableLoadStoreVectorizer( 89 "amdgpu-load-store-vectorizer", 90 cl::desc("Enable load store vectorizer"), 91 cl::init(true), 92 cl::Hidden); 93 94 // Option to control global loads scalarization 95 static cl::opt<bool> ScalarizeGlobal( 96 "amdgpu-scalarize-global-loads", 97 cl::desc("Enable global load scalarization"), 98 cl::init(true), 99 cl::Hidden); 100 101 // Option to run internalize pass. 102 static cl::opt<bool> InternalizeSymbols( 103 "amdgpu-internalize-symbols", 104 cl::desc("Enable elimination of non-kernel functions and unused globals"), 105 cl::init(false), 106 cl::Hidden); 107 108 // Option to inline all early. 109 static cl::opt<bool> EarlyInlineAll( 110 "amdgpu-early-inline-all", 111 cl::desc("Inline all functions early"), 112 cl::init(false), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableSDWAPeephole( 116 "amdgpu-sdwa-peephole", 117 cl::desc("Enable SDWA peepholer"), 118 cl::init(true)); 119 120 static cl::opt<bool> EnableDPPCombine( 121 "amdgpu-dpp-combine", 122 cl::desc("Enable DPP combiner"), 123 cl::init(true)); 124 125 // Enable address space based alias analysis 126 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 127 cl::desc("Enable AMDGPU Alias Analysis"), 128 cl::init(true)); 129 130 // Option to run late CFG structurizer 131 static cl::opt<bool, true> LateCFGStructurize( 132 "amdgpu-late-structurize", 133 cl::desc("Enable late CFG structurization"), 134 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 135 cl::Hidden); 136 137 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 138 "amdgpu-function-calls", 139 cl::desc("Enable AMDGPU function call support"), 140 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 141 cl::init(true), 142 cl::Hidden); 143 144 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 145 "amdgpu-fixed-function-abi", 146 cl::desc("Enable all implicit function arguments"), 147 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 148 cl::init(false), 149 cl::Hidden); 150 151 // Enable lib calls simplifications 152 static cl::opt<bool> EnableLibCallSimplify( 153 "amdgpu-simplify-libcall", 154 cl::desc("Enable amdgpu library simplifications"), 155 cl::init(true), 156 cl::Hidden); 157 158 static cl::opt<bool> EnableLowerKernelArguments( 159 "amdgpu-ir-lower-kernel-arguments", 160 cl::desc("Lower kernel argument loads in IR pass"), 161 cl::init(true), 162 cl::Hidden); 163 164 static cl::opt<bool> EnableRegReassign( 165 "amdgpu-reassign-regs", 166 cl::desc("Enable register reassign optimizations on gfx10+"), 167 cl::init(true), 168 cl::Hidden); 169 170 // Enable atomic optimization 171 static cl::opt<bool> EnableAtomicOptimizations( 172 "amdgpu-atomic-optimizations", 173 cl::desc("Enable atomic optimizations"), 174 cl::init(false), 175 cl::Hidden); 176 177 // Enable Mode register optimization 178 static cl::opt<bool> EnableSIModeRegisterPass( 179 "amdgpu-mode-register", 180 cl::desc("Enable mode register pass"), 181 cl::init(true), 182 cl::Hidden); 183 184 // Option is used in lit tests to prevent deadcoding of patterns inspected. 185 static cl::opt<bool> 186 EnableDCEInRA("amdgpu-dce-in-ra", 187 cl::init(true), cl::Hidden, 188 cl::desc("Enable machine DCE inside regalloc")); 189 190 static cl::opt<bool> EnableScalarIRPasses( 191 "amdgpu-scalar-ir-passes", 192 cl::desc("Enable scalar IR passes"), 193 cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> EnableStructurizerWorkarounds( 197 "amdgpu-enable-structurizer-workarounds", 198 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPUPromoteAllocaPass(*PR); 237 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 238 initializeAMDGPUCodeGenPreparePass(*PR); 239 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 240 initializeAMDGPUPropagateAttributesLatePass(*PR); 241 initializeAMDGPURewriteOutArgumentsPass(*PR); 242 initializeAMDGPUUnifyMetadataPass(*PR); 243 initializeSIAnnotateControlFlowPass(*PR); 244 initializeSIInsertHardClausesPass(*PR); 245 initializeSIInsertWaitcntsPass(*PR); 246 initializeSIModeRegisterPass(*PR); 247 initializeSIWholeQuadModePass(*PR); 248 initializeSILowerControlFlowPass(*PR); 249 initializeSIRemoveShortExecBranchesPass(*PR); 250 initializeSIPreEmitPeepholePass(*PR); 251 initializeSIInsertSkipsPass(*PR); 252 initializeSIMemoryLegalizerPass(*PR); 253 initializeSIOptimizeExecMaskingPass(*PR); 254 initializeSIPreAllocateWWMRegsPass(*PR); 255 initializeSIFormMemoryClausesPass(*PR); 256 initializeSIPostRABundlerPass(*PR); 257 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 258 initializeAMDGPUAAWrapperPassPass(*PR); 259 initializeAMDGPUExternalAAWrapperPass(*PR); 260 initializeAMDGPUUseNativeCallsPass(*PR); 261 initializeAMDGPUSimplifyLibCallsPass(*PR); 262 initializeAMDGPUInlinerPass(*PR); 263 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 264 initializeGCNRegBankReassignPass(*PR); 265 initializeGCNNSAReassignPass(*PR); 266 initializeSIAddIMGInitPass(*PR); 267 } 268 269 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 270 return std::make_unique<AMDGPUTargetObjectFile>(); 271 } 272 273 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 274 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 275 } 276 277 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 278 return new SIScheduleDAGMI(C); 279 } 280 281 static ScheduleDAGInstrs * 282 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 283 ScheduleDAGMILive *DAG = 284 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 285 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 286 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 287 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 288 return DAG; 289 } 290 291 static ScheduleDAGInstrs * 292 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 293 auto DAG = new GCNIterativeScheduler(C, 294 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 295 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 296 return DAG; 297 } 298 299 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 300 return new GCNIterativeScheduler(C, 301 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 302 } 303 304 static ScheduleDAGInstrs * 305 createIterativeILPMachineScheduler(MachineSchedContext *C) { 306 auto DAG = new GCNIterativeScheduler(C, 307 GCNIterativeScheduler::SCHEDULE_ILP); 308 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 309 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 310 return DAG; 311 } 312 313 static MachineSchedRegistry 314 R600SchedRegistry("r600", "Run R600's custom scheduler", 315 createR600MachineScheduler); 316 317 static MachineSchedRegistry 318 SISchedRegistry("si", "Run SI's custom scheduler", 319 createSIMachineScheduler); 320 321 static MachineSchedRegistry 322 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 323 "Run GCN scheduler to maximize occupancy", 324 createGCNMaxOccupancyMachineScheduler); 325 326 static MachineSchedRegistry 327 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 328 "Run GCN scheduler to maximize occupancy (experimental)", 329 createIterativeGCNMaxOccupancyMachineScheduler); 330 331 static MachineSchedRegistry 332 GCNMinRegSchedRegistry("gcn-minreg", 333 "Run GCN iterative scheduler for minimal register usage (experimental)", 334 createMinRegScheduler); 335 336 static MachineSchedRegistry 337 GCNILPSchedRegistry("gcn-ilp", 338 "Run GCN iterative scheduler for ILP scheduling (experimental)", 339 createIterativeILPMachineScheduler); 340 341 static StringRef computeDataLayout(const Triple &TT) { 342 if (TT.getArch() == Triple::r600) { 343 // 32-bit pointers. 344 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 345 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 346 } 347 348 // 32-bit private, local, and region pointers. 64-bit global, constant and 349 // flat, non-integral buffer fat pointers. 350 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 351 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 352 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 353 "-ni:7"; 354 } 355 356 LLVM_READNONE 357 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 358 if (!GPU.empty()) 359 return GPU; 360 361 // Need to default to a target with flat support for HSA. 362 if (TT.getArch() == Triple::amdgcn) 363 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 364 365 return "r600"; 366 } 367 368 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 369 // The AMDGPU toolchain only supports generating shared objects, so we 370 // must always use PIC. 371 return Reloc::PIC_; 372 } 373 374 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 375 StringRef CPU, StringRef FS, 376 TargetOptions Options, 377 Optional<Reloc::Model> RM, 378 Optional<CodeModel::Model> CM, 379 CodeGenOpt::Level OptLevel) 380 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 381 FS, Options, getEffectiveRelocModel(RM), 382 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 383 TLOF(createTLOF(getTargetTriple())) { 384 initAsmInfo(); 385 if (TT.getArch() == Triple::amdgcn) { 386 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 387 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 388 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 389 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 390 } 391 } 392 393 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 394 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 395 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 396 397 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 398 399 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 400 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 401 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 402 } 403 404 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 405 Attribute FSAttr = F.getFnAttribute("target-features"); 406 407 return FSAttr.isValid() ? FSAttr.getValueAsString() 408 : getTargetFeatureString(); 409 } 410 411 /// Predicate for Internalize pass. 412 static bool mustPreserveGV(const GlobalValue &GV) { 413 if (const Function *F = dyn_cast<Function>(&GV)) 414 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 415 416 return !GV.use_empty(); 417 } 418 419 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 420 Builder.DivergentTarget = true; 421 422 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 423 bool Internalize = InternalizeSymbols; 424 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 425 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 426 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 427 428 if (EnableFunctionCalls) { 429 delete Builder.Inliner; 430 Builder.Inliner = createAMDGPUFunctionInliningPass(); 431 } 432 433 Builder.addExtension( 434 PassManagerBuilder::EP_ModuleOptimizerEarly, 435 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 436 legacy::PassManagerBase &PM) { 437 if (AMDGPUAA) { 438 PM.add(createAMDGPUAAWrapperPass()); 439 PM.add(createAMDGPUExternalAAWrapperPass()); 440 } 441 PM.add(createAMDGPUUnifyMetadataPass()); 442 PM.add(createAMDGPUPrintfRuntimeBinding()); 443 if (Internalize) 444 PM.add(createInternalizePass(mustPreserveGV)); 445 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 446 if (Internalize) 447 PM.add(createGlobalDCEPass()); 448 if (EarlyInline) 449 PM.add(createAMDGPUAlwaysInlinePass(false)); 450 }); 451 452 Builder.addExtension( 453 PassManagerBuilder::EP_EarlyAsPossible, 454 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 455 legacy::PassManagerBase &PM) { 456 if (AMDGPUAA) { 457 PM.add(createAMDGPUAAWrapperPass()); 458 PM.add(createAMDGPUExternalAAWrapperPass()); 459 } 460 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 461 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 462 if (LibCallSimplify) 463 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 464 }); 465 466 Builder.addExtension( 467 PassManagerBuilder::EP_CGSCCOptimizerLate, 468 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 469 // Add infer address spaces pass to the opt pipeline after inlining 470 // but before SROA to increase SROA opportunities. 471 PM.add(createInferAddressSpacesPass()); 472 473 // This should run after inlining to have any chance of doing anything, 474 // and before other cleanup optimizations. 475 PM.add(createAMDGPULowerKernelAttributesPass()); 476 477 // Promote alloca to vector before SROA and loop unroll. If we manage 478 // to eliminate allocas before unroll we may choose to unroll less. 479 if (EnableOpt) 480 PM.add(createAMDGPUPromoteAllocaToVector()); 481 }); 482 } 483 484 //===----------------------------------------------------------------------===// 485 // R600 Target Machine (R600 -> Cayman) 486 //===----------------------------------------------------------------------===// 487 488 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 489 StringRef CPU, StringRef FS, 490 TargetOptions Options, 491 Optional<Reloc::Model> RM, 492 Optional<CodeModel::Model> CM, 493 CodeGenOpt::Level OL, bool JIT) 494 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 495 setRequiresStructuredCFG(true); 496 497 // Override the default since calls aren't supported for r600. 498 if (EnableFunctionCalls && 499 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 500 EnableFunctionCalls = false; 501 } 502 503 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 504 const Function &F) const { 505 StringRef GPU = getGPUName(F); 506 StringRef FS = getFeatureString(F); 507 508 SmallString<128> SubtargetKey(GPU); 509 SubtargetKey.append(FS); 510 511 auto &I = SubtargetMap[SubtargetKey]; 512 if (!I) { 513 // This needs to be done before we create a new subtarget since any 514 // creation will depend on the TM and the code generation flags on the 515 // function that reside in TargetOptions. 516 resetTargetOptions(F); 517 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 518 } 519 520 return I.get(); 521 } 522 523 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 524 unsigned DestAS) const { 525 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 526 AMDGPU::isFlatGlobalAddrSpace(DestAS); 527 } 528 529 TargetTransformInfo 530 R600TargetMachine::getTargetTransformInfo(const Function &F) { 531 return TargetTransformInfo(R600TTIImpl(this, F)); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // GCN Target Machine (SI+) 536 //===----------------------------------------------------------------------===// 537 538 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 539 StringRef CPU, StringRef FS, 540 TargetOptions Options, 541 Optional<Reloc::Model> RM, 542 Optional<CodeModel::Model> CM, 543 CodeGenOpt::Level OL, bool JIT) 544 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 545 546 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 547 StringRef GPU = getGPUName(F); 548 StringRef FS = getFeatureString(F); 549 550 SmallString<128> SubtargetKey(GPU); 551 SubtargetKey.append(FS); 552 553 auto &I = SubtargetMap[SubtargetKey]; 554 if (!I) { 555 // This needs to be done before we create a new subtarget since any 556 // creation will depend on the TM and the code generation flags on the 557 // function that reside in TargetOptions. 558 resetTargetOptions(F); 559 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 560 } 561 562 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 563 564 return I.get(); 565 } 566 567 TargetTransformInfo 568 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 569 return TargetTransformInfo(GCNTTIImpl(this, F)); 570 } 571 572 //===----------------------------------------------------------------------===// 573 // AMDGPU Pass Setup 574 //===----------------------------------------------------------------------===// 575 576 namespace { 577 578 class AMDGPUPassConfig : public TargetPassConfig { 579 public: 580 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 581 : TargetPassConfig(TM, PM) { 582 // Exceptions and StackMaps are not supported, so these passes will never do 583 // anything. 584 disablePass(&StackMapLivenessID); 585 disablePass(&FuncletLayoutID); 586 } 587 588 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 589 return getTM<AMDGPUTargetMachine>(); 590 } 591 592 ScheduleDAGInstrs * 593 createMachineScheduler(MachineSchedContext *C) const override { 594 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 595 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 596 return DAG; 597 } 598 599 void addEarlyCSEOrGVNPass(); 600 void addStraightLineScalarOptimizationPasses(); 601 void addIRPasses() override; 602 void addCodeGenPrepare() override; 603 bool addPreISel() override; 604 bool addInstSelector() override; 605 bool addGCPasses() override; 606 607 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 608 }; 609 610 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 611 return getStandardCSEConfigForOpt(TM->getOptLevel()); 612 } 613 614 class R600PassConfig final : public AMDGPUPassConfig { 615 public: 616 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 617 : AMDGPUPassConfig(TM, PM) {} 618 619 ScheduleDAGInstrs *createMachineScheduler( 620 MachineSchedContext *C) const override { 621 return createR600MachineScheduler(C); 622 } 623 624 bool addPreISel() override; 625 bool addInstSelector() override; 626 void addPreRegAlloc() override; 627 void addPreSched2() override; 628 void addPreEmitPass() override; 629 }; 630 631 class GCNPassConfig final : public AMDGPUPassConfig { 632 public: 633 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 634 : AMDGPUPassConfig(TM, PM) { 635 // It is necessary to know the register usage of the entire call graph. We 636 // allow calls without EnableAMDGPUFunctionCalls if they are marked 637 // noinline, so this is always required. 638 setRequiresCodeGenSCCOrder(true); 639 } 640 641 GCNTargetMachine &getGCNTargetMachine() const { 642 return getTM<GCNTargetMachine>(); 643 } 644 645 ScheduleDAGInstrs * 646 createMachineScheduler(MachineSchedContext *C) const override; 647 648 bool addPreISel() override; 649 void addMachineSSAOptimization() override; 650 bool addILPOpts() override; 651 bool addInstSelector() override; 652 bool addIRTranslator() override; 653 void addPreLegalizeMachineIR() override; 654 bool addLegalizeMachineIR() override; 655 void addPreRegBankSelect() override; 656 bool addRegBankSelect() override; 657 bool addGlobalInstructionSelect() override; 658 void addFastRegAlloc() override; 659 void addOptimizedRegAlloc() override; 660 void addPreRegAlloc() override; 661 bool addPreRewrite() override; 662 void addPostRegAlloc() override; 663 void addPreSched2() override; 664 void addPreEmitPass() override; 665 }; 666 667 } // end anonymous namespace 668 669 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 670 if (getOptLevel() == CodeGenOpt::Aggressive) 671 addPass(createGVNPass()); 672 else 673 addPass(createEarlyCSEPass()); 674 } 675 676 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 677 addPass(createLICMPass()); 678 addPass(createSeparateConstOffsetFromGEPPass()); 679 addPass(createSpeculativeExecutionPass()); 680 // ReassociateGEPs exposes more opportunites for SLSR. See 681 // the example in reassociate-geps-and-slsr.ll. 682 addPass(createStraightLineStrengthReducePass()); 683 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 684 // EarlyCSE can reuse. 685 addEarlyCSEOrGVNPass(); 686 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 687 addPass(createNaryReassociatePass()); 688 // NaryReassociate on GEPs creates redundant common expressions, so run 689 // EarlyCSE after it. 690 addPass(createEarlyCSEPass()); 691 } 692 693 void AMDGPUPassConfig::addIRPasses() { 694 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 695 696 // There is no reason to run these. 697 disablePass(&StackMapLivenessID); 698 disablePass(&FuncletLayoutID); 699 disablePass(&PatchableFunctionID); 700 701 addPass(createAMDGPUPrintfRuntimeBinding()); 702 703 // This must occur before inlining, as the inliner will not look through 704 // bitcast calls. 705 addPass(createAMDGPUFixFunctionBitcastsPass()); 706 707 // A call to propagate attributes pass in the backend in case opt was not run. 708 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 709 710 addPass(createAtomicExpandPass()); 711 712 713 addPass(createAMDGPULowerIntrinsicsPass()); 714 715 // Function calls are not supported, so make sure we inline everything. 716 addPass(createAMDGPUAlwaysInlinePass()); 717 addPass(createAlwaysInlinerLegacyPass()); 718 // We need to add the barrier noop pass, otherwise adding the function 719 // inlining pass will cause all of the PassConfigs passes to be run 720 // one function at a time, which means if we have a nodule with two 721 // functions, then we will generate code for the first function 722 // without ever running any passes on the second. 723 addPass(createBarrierNoopPass()); 724 725 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 726 if (TM.getTargetTriple().getArch() == Triple::r600) 727 addPass(createR600OpenCLImageTypeLoweringPass()); 728 729 // Replace OpenCL enqueued block function pointers with global variables. 730 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 731 732 if (TM.getOptLevel() > CodeGenOpt::None) { 733 addPass(createInferAddressSpacesPass()); 734 addPass(createAMDGPUPromoteAlloca()); 735 736 if (EnableSROA) 737 addPass(createSROAPass()); 738 739 if (EnableScalarIRPasses) 740 addStraightLineScalarOptimizationPasses(); 741 742 if (EnableAMDGPUAliasAnalysis) { 743 addPass(createAMDGPUAAWrapperPass()); 744 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 745 AAResults &AAR) { 746 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 747 AAR.addAAResult(WrapperPass->getResult()); 748 })); 749 } 750 } 751 752 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 753 // TODO: May want to move later or split into an early and late one. 754 addPass(createAMDGPUCodeGenPreparePass()); 755 } 756 757 TargetPassConfig::addIRPasses(); 758 759 // EarlyCSE is not always strong enough to clean up what LSR produces. For 760 // example, GVN can combine 761 // 762 // %0 = add %a, %b 763 // %1 = add %b, %a 764 // 765 // and 766 // 767 // %0 = shl nsw %a, 2 768 // %1 = shl %a, 2 769 // 770 // but EarlyCSE can do neither of them. 771 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 772 addEarlyCSEOrGVNPass(); 773 } 774 775 void AMDGPUPassConfig::addCodeGenPrepare() { 776 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 777 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 778 779 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 780 EnableLowerKernelArguments) 781 addPass(createAMDGPULowerKernelArgumentsPass()); 782 783 addPass(&AMDGPUPerfHintAnalysisID); 784 785 TargetPassConfig::addCodeGenPrepare(); 786 787 if (EnableLoadStoreVectorizer) 788 addPass(createLoadStoreVectorizerPass()); 789 790 // LowerSwitch pass may introduce unreachable blocks that can 791 // cause unexpected behavior for subsequent passes. Placing it 792 // here seems better that these blocks would get cleaned up by 793 // UnreachableBlockElim inserted next in the pass flow. 794 addPass(createLowerSwitchPass()); 795 } 796 797 bool AMDGPUPassConfig::addPreISel() { 798 addPass(createFlattenCFGPass()); 799 return false; 800 } 801 802 bool AMDGPUPassConfig::addInstSelector() { 803 // Defer the verifier until FinalizeISel. 804 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 805 return false; 806 } 807 808 bool AMDGPUPassConfig::addGCPasses() { 809 // Do nothing. GC is not supported. 810 return false; 811 } 812 813 //===----------------------------------------------------------------------===// 814 // R600 Pass Setup 815 //===----------------------------------------------------------------------===// 816 817 bool R600PassConfig::addPreISel() { 818 AMDGPUPassConfig::addPreISel(); 819 820 if (EnableR600StructurizeCFG) 821 addPass(createStructurizeCFGPass()); 822 return false; 823 } 824 825 bool R600PassConfig::addInstSelector() { 826 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 827 return false; 828 } 829 830 void R600PassConfig::addPreRegAlloc() { 831 addPass(createR600VectorRegMerger()); 832 } 833 834 void R600PassConfig::addPreSched2() { 835 addPass(createR600EmitClauseMarkers(), false); 836 if (EnableR600IfConvert) 837 addPass(&IfConverterID, false); 838 addPass(createR600ClauseMergePass(), false); 839 } 840 841 void R600PassConfig::addPreEmitPass() { 842 addPass(createAMDGPUCFGStructurizerPass(), false); 843 addPass(createR600ExpandSpecialInstrsPass(), false); 844 addPass(&FinalizeMachineBundlesID, false); 845 addPass(createR600Packetizer(), false); 846 addPass(createR600ControlFlowFinalizer(), false); 847 } 848 849 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 850 return new R600PassConfig(*this, PM); 851 } 852 853 //===----------------------------------------------------------------------===// 854 // GCN Pass Setup 855 //===----------------------------------------------------------------------===// 856 857 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 858 MachineSchedContext *C) const { 859 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 860 if (ST.enableSIScheduler()) 861 return createSIMachineScheduler(C); 862 return createGCNMaxOccupancyMachineScheduler(C); 863 } 864 865 bool GCNPassConfig::addPreISel() { 866 AMDGPUPassConfig::addPreISel(); 867 868 if (EnableAtomicOptimizations) { 869 addPass(createAMDGPUAtomicOptimizerPass()); 870 } 871 872 // FIXME: We need to run a pass to propagate the attributes when calls are 873 // supported. 874 875 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 876 // regions formed by them. 877 addPass(&AMDGPUUnifyDivergentExitNodesID); 878 if (!LateCFGStructurize) { 879 if (EnableStructurizerWorkarounds) { 880 addPass(createFixIrreduciblePass()); 881 addPass(createUnifyLoopExitsPass()); 882 } 883 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 884 } 885 addPass(createSinkingPass()); 886 addPass(createAMDGPUAnnotateUniformValues()); 887 if (!LateCFGStructurize) { 888 addPass(createSIAnnotateControlFlowPass()); 889 } 890 addPass(createLCSSAPass()); 891 892 return false; 893 } 894 895 void GCNPassConfig::addMachineSSAOptimization() { 896 TargetPassConfig::addMachineSSAOptimization(); 897 898 // We want to fold operands after PeepholeOptimizer has run (or as part of 899 // it), because it will eliminate extra copies making it easier to fold the 900 // real source operand. We want to eliminate dead instructions after, so that 901 // we see fewer uses of the copies. We then need to clean up the dead 902 // instructions leftover after the operands are folded as well. 903 // 904 // XXX - Can we get away without running DeadMachineInstructionElim again? 905 addPass(&SIFoldOperandsID); 906 if (EnableDPPCombine) 907 addPass(&GCNDPPCombineID); 908 addPass(&DeadMachineInstructionElimID); 909 addPass(&SILoadStoreOptimizerID); 910 if (EnableSDWAPeephole) { 911 addPass(&SIPeepholeSDWAID); 912 addPass(&EarlyMachineLICMID); 913 addPass(&MachineCSEID); 914 addPass(&SIFoldOperandsID); 915 addPass(&DeadMachineInstructionElimID); 916 } 917 addPass(createSIShrinkInstructionsPass()); 918 } 919 920 bool GCNPassConfig::addILPOpts() { 921 if (EnableEarlyIfConversion) 922 addPass(&EarlyIfConverterID); 923 924 TargetPassConfig::addILPOpts(); 925 return false; 926 } 927 928 bool GCNPassConfig::addInstSelector() { 929 AMDGPUPassConfig::addInstSelector(); 930 addPass(&SIFixSGPRCopiesID); 931 addPass(createSILowerI1CopiesPass()); 932 addPass(createSIAddIMGInitPass()); 933 return false; 934 } 935 936 bool GCNPassConfig::addIRTranslator() { 937 addPass(new IRTranslator(getOptLevel())); 938 return false; 939 } 940 941 void GCNPassConfig::addPreLegalizeMachineIR() { 942 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 943 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 944 addPass(new Localizer()); 945 } 946 947 bool GCNPassConfig::addLegalizeMachineIR() { 948 addPass(new Legalizer()); 949 return false; 950 } 951 952 void GCNPassConfig::addPreRegBankSelect() { 953 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 954 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 955 } 956 957 bool GCNPassConfig::addRegBankSelect() { 958 addPass(new RegBankSelect()); 959 return false; 960 } 961 962 bool GCNPassConfig::addGlobalInstructionSelect() { 963 addPass(new InstructionSelect()); 964 return false; 965 } 966 967 void GCNPassConfig::addPreRegAlloc() { 968 if (LateCFGStructurize) { 969 addPass(createAMDGPUMachineCFGStructurizerPass()); 970 } 971 addPass(createSIWholeQuadModePass()); 972 } 973 974 void GCNPassConfig::addFastRegAlloc() { 975 // FIXME: We have to disable the verifier here because of PHIElimination + 976 // TwoAddressInstructions disabling it. 977 978 // This must be run immediately after phi elimination and before 979 // TwoAddressInstructions, otherwise the processing of the tied operand of 980 // SI_ELSE will introduce a copy of the tied operand source after the else. 981 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 982 983 // This must be run just after RegisterCoalescing. 984 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 985 986 TargetPassConfig::addFastRegAlloc(); 987 } 988 989 void GCNPassConfig::addOptimizedRegAlloc() { 990 if (OptExecMaskPreRA) 991 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 992 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 993 994 // This must be run immediately after phi elimination and before 995 // TwoAddressInstructions, otherwise the processing of the tied operand of 996 // SI_ELSE will introduce a copy of the tied operand source after the else. 997 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 998 999 // This must be run just after RegisterCoalescing. 1000 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 1001 1002 if (EnableDCEInRA) 1003 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1004 1005 TargetPassConfig::addOptimizedRegAlloc(); 1006 } 1007 1008 bool GCNPassConfig::addPreRewrite() { 1009 if (EnableRegReassign) { 1010 addPass(&GCNNSAReassignID); 1011 addPass(&GCNRegBankReassignID); 1012 } 1013 return true; 1014 } 1015 1016 void GCNPassConfig::addPostRegAlloc() { 1017 addPass(&SIFixVGPRCopiesID); 1018 if (getOptLevel() > CodeGenOpt::None) 1019 addPass(&SIOptimizeExecMaskingID); 1020 TargetPassConfig::addPostRegAlloc(); 1021 1022 // Equivalent of PEI for SGPRs. 1023 addPass(&SILowerSGPRSpillsID); 1024 } 1025 1026 void GCNPassConfig::addPreSched2() { 1027 addPass(&SIPostRABundlerID); 1028 } 1029 1030 void GCNPassConfig::addPreEmitPass() { 1031 addPass(createSIMemoryLegalizerPass()); 1032 addPass(createSIInsertWaitcntsPass()); 1033 addPass(createSIShrinkInstructionsPass()); 1034 addPass(createSIModeRegisterPass()); 1035 1036 // The hazard recognizer that runs as part of the post-ra scheduler does not 1037 // guarantee to be able handle all hazards correctly. This is because if there 1038 // are multiple scheduling regions in a basic block, the regions are scheduled 1039 // bottom up, so when we begin to schedule a region we don't know what 1040 // instructions were emitted directly before it. 1041 // 1042 // Here we add a stand-alone hazard recognizer pass which can handle all 1043 // cases. 1044 // 1045 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1046 // be better for it to emit S_NOP <N> when possible. 1047 addPass(&PostRAHazardRecognizerID); 1048 if (getOptLevel() > CodeGenOpt::None) 1049 addPass(&SIInsertHardClausesID); 1050 1051 addPass(&SIRemoveShortExecBranchesID); 1052 addPass(&SIInsertSkipsPassID); 1053 addPass(&SIPreEmitPeepholeID); 1054 addPass(&BranchRelaxationPassID); 1055 } 1056 1057 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1058 return new GCNPassConfig(*this, PM); 1059 } 1060 1061 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1062 return new yaml::SIMachineFunctionInfo(); 1063 } 1064 1065 yaml::MachineFunctionInfo * 1066 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1067 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1068 return new yaml::SIMachineFunctionInfo(*MFI, 1069 *MF.getSubtarget().getRegisterInfo()); 1070 } 1071 1072 bool GCNTargetMachine::parseMachineFunctionInfo( 1073 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1074 SMDiagnostic &Error, SMRange &SourceRange) const { 1075 const yaml::SIMachineFunctionInfo &YamlMFI = 1076 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1077 MachineFunction &MF = PFS.MF; 1078 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1079 1080 MFI->initializeBaseYamlFields(YamlMFI); 1081 1082 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1083 Register TempReg; 1084 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1085 SourceRange = RegName.SourceRange; 1086 return true; 1087 } 1088 RegVal = TempReg; 1089 1090 return false; 1091 }; 1092 1093 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1094 // Create a diagnostic for a the register string literal. 1095 const MemoryBuffer &Buffer = 1096 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1097 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1098 RegName.Value.size(), SourceMgr::DK_Error, 1099 "incorrect register class for field", RegName.Value, 1100 None, None); 1101 SourceRange = RegName.SourceRange; 1102 return true; 1103 }; 1104 1105 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1106 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1107 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1108 return true; 1109 1110 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1111 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1112 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1113 } 1114 1115 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1116 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1117 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1118 } 1119 1120 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1121 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1122 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1123 } 1124 1125 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1126 const TargetRegisterClass &RC, 1127 ArgDescriptor &Arg, unsigned UserSGPRs, 1128 unsigned SystemSGPRs) { 1129 // Skip parsing if it's not present. 1130 if (!A) 1131 return false; 1132 1133 if (A->IsRegister) { 1134 Register Reg; 1135 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1136 SourceRange = A->RegisterName.SourceRange; 1137 return true; 1138 } 1139 if (!RC.contains(Reg)) 1140 return diagnoseRegisterClass(A->RegisterName); 1141 Arg = ArgDescriptor::createRegister(Reg); 1142 } else 1143 Arg = ArgDescriptor::createStack(A->StackOffset); 1144 // Check and apply the optional mask. 1145 if (A->Mask) 1146 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1147 1148 MFI->NumUserSGPRs += UserSGPRs; 1149 MFI->NumSystemSGPRs += SystemSGPRs; 1150 return false; 1151 }; 1152 1153 if (YamlMFI.ArgInfo && 1154 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1155 AMDGPU::SGPR_128RegClass, 1156 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1157 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1158 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1159 2, 0) || 1160 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1161 MFI->ArgInfo.QueuePtr, 2, 0) || 1162 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1163 AMDGPU::SReg_64RegClass, 1164 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1165 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1166 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1167 2, 0) || 1168 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1169 AMDGPU::SReg_64RegClass, 1170 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1171 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1172 AMDGPU::SGPR_32RegClass, 1173 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1174 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1175 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1176 0, 1) || 1177 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1178 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1179 0, 1) || 1180 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1181 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1182 0, 1) || 1183 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1184 AMDGPU::SGPR_32RegClass, 1185 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1186 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1187 AMDGPU::SGPR_32RegClass, 1188 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1189 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1190 AMDGPU::SReg_64RegClass, 1191 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1192 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1193 AMDGPU::SReg_64RegClass, 1194 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1195 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1196 AMDGPU::VGPR_32RegClass, 1197 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1198 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1199 AMDGPU::VGPR_32RegClass, 1200 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1201 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1202 AMDGPU::VGPR_32RegClass, 1203 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1204 return true; 1205 1206 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1207 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1208 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1209 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1210 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1211 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1212 1213 return false; 1214 } 1215