1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> 197 DisableLowerModuleLDS("amdgpu-disable-lower-module-lds", cl::Hidden, 198 cl::desc("Disable lower module lds pass"), 199 cl::init(false)); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPURegBankCombinerPass(*PR); 237 initializeAMDGPUPromoteAllocaPass(*PR); 238 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 239 initializeAMDGPUCodeGenPreparePass(*PR); 240 initializeAMDGPULateCodeGenPreparePass(*PR); 241 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 242 initializeAMDGPUPropagateAttributesLatePass(*PR); 243 initializeAMDGPULowerModuleLDSPass(*PR); 244 initializeAMDGPURewriteOutArgumentsPass(*PR); 245 initializeAMDGPUUnifyMetadataPass(*PR); 246 initializeSIAnnotateControlFlowPass(*PR); 247 initializeSIInsertHardClausesPass(*PR); 248 initializeSIInsertWaitcntsPass(*PR); 249 initializeSIModeRegisterPass(*PR); 250 initializeSIWholeQuadModePass(*PR); 251 initializeSILowerControlFlowPass(*PR); 252 initializeSIPreEmitPeepholePass(*PR); 253 initializeSILateBranchLoweringPass(*PR); 254 initializeSIMemoryLegalizerPass(*PR); 255 initializeSIOptimizeExecMaskingPass(*PR); 256 initializeSIPreAllocateWWMRegsPass(*PR); 257 initializeSIFormMemoryClausesPass(*PR); 258 initializeSIPostRABundlerPass(*PR); 259 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 260 initializeAMDGPUAAWrapperPassPass(*PR); 261 initializeAMDGPUExternalAAWrapperPass(*PR); 262 initializeAMDGPUUseNativeCallsPass(*PR); 263 initializeAMDGPUSimplifyLibCallsPass(*PR); 264 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 265 initializeGCNRegBankReassignPass(*PR); 266 initializeGCNNSAReassignPass(*PR); 267 initializeSIAddIMGInitPass(*PR); 268 } 269 270 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 271 return std::make_unique<AMDGPUTargetObjectFile>(); 272 } 273 274 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 275 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 276 } 277 278 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 279 return new SIScheduleDAGMI(C); 280 } 281 282 static ScheduleDAGInstrs * 283 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 284 ScheduleDAGMILive *DAG = 285 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 286 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 288 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 289 return DAG; 290 } 291 292 static ScheduleDAGInstrs * 293 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 294 auto DAG = new GCNIterativeScheduler(C, 295 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 296 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 297 return DAG; 298 } 299 300 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 301 return new GCNIterativeScheduler(C, 302 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 303 } 304 305 static ScheduleDAGInstrs * 306 createIterativeILPMachineScheduler(MachineSchedContext *C) { 307 auto DAG = new GCNIterativeScheduler(C, 308 GCNIterativeScheduler::SCHEDULE_ILP); 309 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 310 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 311 return DAG; 312 } 313 314 static MachineSchedRegistry 315 R600SchedRegistry("r600", "Run R600's custom scheduler", 316 createR600MachineScheduler); 317 318 static MachineSchedRegistry 319 SISchedRegistry("si", "Run SI's custom scheduler", 320 createSIMachineScheduler); 321 322 static MachineSchedRegistry 323 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 324 "Run GCN scheduler to maximize occupancy", 325 createGCNMaxOccupancyMachineScheduler); 326 327 static MachineSchedRegistry 328 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 329 "Run GCN scheduler to maximize occupancy (experimental)", 330 createIterativeGCNMaxOccupancyMachineScheduler); 331 332 static MachineSchedRegistry 333 GCNMinRegSchedRegistry("gcn-minreg", 334 "Run GCN iterative scheduler for minimal register usage (experimental)", 335 createMinRegScheduler); 336 337 static MachineSchedRegistry 338 GCNILPSchedRegistry("gcn-ilp", 339 "Run GCN iterative scheduler for ILP scheduling (experimental)", 340 createIterativeILPMachineScheduler); 341 342 static StringRef computeDataLayout(const Triple &TT) { 343 if (TT.getArch() == Triple::r600) { 344 // 32-bit pointers. 345 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 346 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 347 } 348 349 // 32-bit private, local, and region pointers. 64-bit global, constant and 350 // flat, non-integral buffer fat pointers. 351 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 352 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 353 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 354 "-ni:7"; 355 } 356 357 LLVM_READNONE 358 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 359 if (!GPU.empty()) 360 return GPU; 361 362 // Need to default to a target with flat support for HSA. 363 if (TT.getArch() == Triple::amdgcn) 364 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 365 366 return "r600"; 367 } 368 369 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 370 // The AMDGPU toolchain only supports generating shared objects, so we 371 // must always use PIC. 372 return Reloc::PIC_; 373 } 374 375 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 376 StringRef CPU, StringRef FS, 377 TargetOptions Options, 378 Optional<Reloc::Model> RM, 379 Optional<CodeModel::Model> CM, 380 CodeGenOpt::Level OptLevel) 381 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 382 FS, Options, getEffectiveRelocModel(RM), 383 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 384 TLOF(createTLOF(getTargetTriple())) { 385 initAsmInfo(); 386 if (TT.getArch() == Triple::amdgcn) { 387 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 388 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 389 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 390 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 391 } 392 // Set -fixed-function-abi to true if not provided.. 393 if (TT.getOS() == Triple::AMDHSA && 394 EnableAMDGPUFixedFunctionABIOpt.getNumOccurrences() == 0) 395 EnableFixedFunctionABI = true; 396 } 397 398 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 399 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 400 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 401 402 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 403 404 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 405 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 406 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 407 } 408 409 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 410 Attribute FSAttr = F.getFnAttribute("target-features"); 411 412 return FSAttr.isValid() ? FSAttr.getValueAsString() 413 : getTargetFeatureString(); 414 } 415 416 /// Predicate for Internalize pass. 417 static bool mustPreserveGV(const GlobalValue &GV) { 418 if (const Function *F = dyn_cast<Function>(&GV)) 419 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 420 421 return !GV.use_empty(); 422 } 423 424 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 425 Builder.DivergentTarget = true; 426 427 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 428 bool Internalize = InternalizeSymbols; 429 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 430 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 431 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 432 433 if (EnableFunctionCalls) { 434 delete Builder.Inliner; 435 Builder.Inliner = createFunctionInliningPass(); 436 } 437 438 Builder.addExtension( 439 PassManagerBuilder::EP_ModuleOptimizerEarly, 440 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 441 legacy::PassManagerBase &PM) { 442 if (AMDGPUAA) { 443 PM.add(createAMDGPUAAWrapperPass()); 444 PM.add(createAMDGPUExternalAAWrapperPass()); 445 } 446 PM.add(createAMDGPUUnifyMetadataPass()); 447 PM.add(createAMDGPUPrintfRuntimeBinding()); 448 if (Internalize) 449 PM.add(createInternalizePass(mustPreserveGV)); 450 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 451 if (Internalize) 452 PM.add(createGlobalDCEPass()); 453 if (EarlyInline) 454 PM.add(createAMDGPUAlwaysInlinePass(false)); 455 }); 456 457 Builder.addExtension( 458 PassManagerBuilder::EP_EarlyAsPossible, 459 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 460 legacy::PassManagerBase &PM) { 461 if (AMDGPUAA) { 462 PM.add(createAMDGPUAAWrapperPass()); 463 PM.add(createAMDGPUExternalAAWrapperPass()); 464 } 465 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 466 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 467 if (LibCallSimplify) 468 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 469 }); 470 471 Builder.addExtension( 472 PassManagerBuilder::EP_CGSCCOptimizerLate, 473 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 474 // Add infer address spaces pass to the opt pipeline after inlining 475 // but before SROA to increase SROA opportunities. 476 PM.add(createInferAddressSpacesPass()); 477 478 // This should run after inlining to have any chance of doing anything, 479 // and before other cleanup optimizations. 480 PM.add(createAMDGPULowerKernelAttributesPass()); 481 482 // Promote alloca to vector before SROA and loop unroll. If we manage 483 // to eliminate allocas before unroll we may choose to unroll less. 484 if (EnableOpt) 485 PM.add(createAMDGPUPromoteAllocaToVector()); 486 }); 487 } 488 489 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 490 AAM.registerFunctionAnalysis<AMDGPUAA>(); 491 } 492 493 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 494 bool DebugPassManager) { 495 PB.registerPipelineParsingCallback( 496 [this](StringRef PassName, ModulePassManager &PM, 497 ArrayRef<PassBuilder::PipelineElement>) { 498 if (PassName == "amdgpu-propagate-attributes-late") { 499 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 500 return true; 501 } 502 if (PassName == "amdgpu-unify-metadata") { 503 PM.addPass(AMDGPUUnifyMetadataPass()); 504 return true; 505 } 506 if (PassName == "amdgpu-printf-runtime-binding") { 507 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 508 return true; 509 } 510 if (PassName == "amdgpu-always-inline") { 511 PM.addPass(AMDGPUAlwaysInlinePass()); 512 return true; 513 } 514 if (PassName == "amdgpu-lower-module-lds") { 515 PM.addPass(AMDGPULowerModuleLDSPass()); 516 return true; 517 } 518 return false; 519 }); 520 PB.registerPipelineParsingCallback( 521 [this](StringRef PassName, FunctionPassManager &PM, 522 ArrayRef<PassBuilder::PipelineElement>) { 523 if (PassName == "amdgpu-simplifylib") { 524 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 525 return true; 526 } 527 if (PassName == "amdgpu-usenative") { 528 PM.addPass(AMDGPUUseNativeCallsPass()); 529 return true; 530 } 531 if (PassName == "amdgpu-promote-alloca") { 532 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 533 return true; 534 } 535 if (PassName == "amdgpu-promote-alloca-to-vector") { 536 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 537 return true; 538 } 539 if (PassName == "amdgpu-lower-kernel-attributes") { 540 PM.addPass(AMDGPULowerKernelAttributesPass()); 541 return true; 542 } 543 if (PassName == "amdgpu-propagate-attributes-early") { 544 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 545 return true; 546 } 547 return false; 548 }); 549 550 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 551 FAM.registerPass([&] { return AMDGPUAA(); }); 552 }); 553 554 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 555 if (AAName == "amdgpu-aa") { 556 AAM.registerFunctionAnalysis<AMDGPUAA>(); 557 return true; 558 } 559 return false; 560 }); 561 562 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 563 ModulePassManager &PM, 564 PassBuilder::OptimizationLevel Level) { 565 FunctionPassManager FPM(DebugPassManager); 566 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 567 FPM.addPass(AMDGPUUseNativeCallsPass()); 568 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 569 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 570 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 571 }); 572 573 PB.registerPipelineEarlySimplificationEPCallback( 574 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 575 if (Level == PassBuilder::OptimizationLevel::O0) 576 return; 577 578 PM.addPass(AMDGPUUnifyMetadataPass()); 579 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 580 581 if (InternalizeSymbols) { 582 PM.addPass(InternalizePass(mustPreserveGV)); 583 } 584 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 585 if (InternalizeSymbols) { 586 PM.addPass(GlobalDCEPass()); 587 } 588 if (EarlyInlineAll && !EnableFunctionCalls) 589 PM.addPass(AMDGPUAlwaysInlinePass()); 590 }); 591 592 PB.registerCGSCCOptimizerLateEPCallback( 593 [this, DebugPassManager](CGSCCPassManager &PM, 594 PassBuilder::OptimizationLevel Level) { 595 if (Level == PassBuilder::OptimizationLevel::O0) 596 return; 597 598 FunctionPassManager FPM(DebugPassManager); 599 600 // Add infer address spaces pass to the opt pipeline after inlining 601 // but before SROA to increase SROA opportunities. 602 FPM.addPass(InferAddressSpacesPass()); 603 604 // This should run after inlining to have any chance of doing 605 // anything, and before other cleanup optimizations. 606 FPM.addPass(AMDGPULowerKernelAttributesPass()); 607 608 if (Level != PassBuilder::OptimizationLevel::O0) { 609 // Promote alloca to vector before SROA and loop unroll. If we 610 // manage to eliminate allocas before unroll we may choose to unroll 611 // less. 612 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 613 } 614 615 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 616 }); 617 } 618 619 //===----------------------------------------------------------------------===// 620 // R600 Target Machine (R600 -> Cayman) 621 //===----------------------------------------------------------------------===// 622 623 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 624 StringRef CPU, StringRef FS, 625 TargetOptions Options, 626 Optional<Reloc::Model> RM, 627 Optional<CodeModel::Model> CM, 628 CodeGenOpt::Level OL, bool JIT) 629 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 630 setRequiresStructuredCFG(true); 631 632 // Override the default since calls aren't supported for r600. 633 if (EnableFunctionCalls && 634 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 635 EnableFunctionCalls = false; 636 } 637 638 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 639 const Function &F) const { 640 StringRef GPU = getGPUName(F); 641 StringRef FS = getFeatureString(F); 642 643 SmallString<128> SubtargetKey(GPU); 644 SubtargetKey.append(FS); 645 646 auto &I = SubtargetMap[SubtargetKey]; 647 if (!I) { 648 // This needs to be done before we create a new subtarget since any 649 // creation will depend on the TM and the code generation flags on the 650 // function that reside in TargetOptions. 651 resetTargetOptions(F); 652 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 653 } 654 655 return I.get(); 656 } 657 658 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 659 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 660 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 661 AddrSpace == AMDGPUAS::REGION_ADDRESS) 662 ? -1 663 : 0; 664 } 665 666 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 667 unsigned DestAS) const { 668 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 669 AMDGPU::isFlatGlobalAddrSpace(DestAS); 670 } 671 672 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 673 const auto *LD = dyn_cast<LoadInst>(V); 674 if (!LD) 675 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 676 677 // It must be a generic pointer loaded. 678 assert(V->getType()->isPointerTy() && 679 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 680 681 const auto *Ptr = LD->getPointerOperand(); 682 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 683 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 684 // For a generic pointer loaded from the constant memory, it could be assumed 685 // as a global pointer since the constant memory is only populated on the 686 // host side. As implied by the offload programming model, only global 687 // pointers could be referenced on the host side. 688 return AMDGPUAS::GLOBAL_ADDRESS; 689 } 690 691 TargetTransformInfo 692 R600TargetMachine::getTargetTransformInfo(const Function &F) { 693 return TargetTransformInfo(R600TTIImpl(this, F)); 694 } 695 696 //===----------------------------------------------------------------------===// 697 // GCN Target Machine (SI+) 698 //===----------------------------------------------------------------------===// 699 700 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 701 StringRef CPU, StringRef FS, 702 TargetOptions Options, 703 Optional<Reloc::Model> RM, 704 Optional<CodeModel::Model> CM, 705 CodeGenOpt::Level OL, bool JIT) 706 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 707 708 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 709 StringRef GPU = getGPUName(F); 710 StringRef FS = getFeatureString(F); 711 712 SmallString<128> SubtargetKey(GPU); 713 SubtargetKey.append(FS); 714 715 auto &I = SubtargetMap[SubtargetKey]; 716 if (!I) { 717 // This needs to be done before we create a new subtarget since any 718 // creation will depend on the TM and the code generation flags on the 719 // function that reside in TargetOptions. 720 resetTargetOptions(F); 721 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 722 } 723 724 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 725 726 return I.get(); 727 } 728 729 TargetTransformInfo 730 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 731 return TargetTransformInfo(GCNTTIImpl(this, F)); 732 } 733 734 //===----------------------------------------------------------------------===// 735 // AMDGPU Pass Setup 736 //===----------------------------------------------------------------------===// 737 738 namespace { 739 740 class AMDGPUPassConfig : public TargetPassConfig { 741 public: 742 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 743 : TargetPassConfig(TM, PM) { 744 // Exceptions and StackMaps are not supported, so these passes will never do 745 // anything. 746 disablePass(&StackMapLivenessID); 747 disablePass(&FuncletLayoutID); 748 } 749 750 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 751 return getTM<AMDGPUTargetMachine>(); 752 } 753 754 ScheduleDAGInstrs * 755 createMachineScheduler(MachineSchedContext *C) const override { 756 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 757 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 758 return DAG; 759 } 760 761 void addEarlyCSEOrGVNPass(); 762 void addStraightLineScalarOptimizationPasses(); 763 void addIRPasses() override; 764 void addCodeGenPrepare() override; 765 bool addPreISel() override; 766 bool addInstSelector() override; 767 bool addGCPasses() override; 768 769 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 770 }; 771 772 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 773 return getStandardCSEConfigForOpt(TM->getOptLevel()); 774 } 775 776 class R600PassConfig final : public AMDGPUPassConfig { 777 public: 778 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 779 : AMDGPUPassConfig(TM, PM) {} 780 781 ScheduleDAGInstrs *createMachineScheduler( 782 MachineSchedContext *C) const override { 783 return createR600MachineScheduler(C); 784 } 785 786 bool addPreISel() override; 787 bool addInstSelector() override; 788 void addPreRegAlloc() override; 789 void addPreSched2() override; 790 void addPreEmitPass() override; 791 }; 792 793 class GCNPassConfig final : public AMDGPUPassConfig { 794 public: 795 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 796 : AMDGPUPassConfig(TM, PM) { 797 // It is necessary to know the register usage of the entire call graph. We 798 // allow calls without EnableAMDGPUFunctionCalls if they are marked 799 // noinline, so this is always required. 800 setRequiresCodeGenSCCOrder(true); 801 } 802 803 GCNTargetMachine &getGCNTargetMachine() const { 804 return getTM<GCNTargetMachine>(); 805 } 806 807 ScheduleDAGInstrs * 808 createMachineScheduler(MachineSchedContext *C) const override; 809 810 bool addPreISel() override; 811 void addMachineSSAOptimization() override; 812 bool addILPOpts() override; 813 bool addInstSelector() override; 814 bool addIRTranslator() override; 815 void addPreLegalizeMachineIR() override; 816 bool addLegalizeMachineIR() override; 817 void addPreRegBankSelect() override; 818 bool addRegBankSelect() override; 819 void addPreGlobalInstructionSelect() override; 820 bool addGlobalInstructionSelect() override; 821 void addFastRegAlloc() override; 822 void addOptimizedRegAlloc() override; 823 void addPreRegAlloc() override; 824 bool addPreRewrite() override; 825 void addPostRegAlloc() override; 826 void addPreSched2() override; 827 void addPreEmitPass() override; 828 }; 829 830 } // end anonymous namespace 831 832 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 833 if (getOptLevel() == CodeGenOpt::Aggressive) 834 addPass(createGVNPass()); 835 else 836 addPass(createEarlyCSEPass()); 837 } 838 839 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 840 addPass(createLICMPass()); 841 addPass(createSeparateConstOffsetFromGEPPass()); 842 addPass(createSpeculativeExecutionPass()); 843 // ReassociateGEPs exposes more opportunites for SLSR. See 844 // the example in reassociate-geps-and-slsr.ll. 845 addPass(createStraightLineStrengthReducePass()); 846 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 847 // EarlyCSE can reuse. 848 addEarlyCSEOrGVNPass(); 849 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 850 addPass(createNaryReassociatePass()); 851 // NaryReassociate on GEPs creates redundant common expressions, so run 852 // EarlyCSE after it. 853 addPass(createEarlyCSEPass()); 854 } 855 856 void AMDGPUPassConfig::addIRPasses() { 857 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 858 859 // There is no reason to run these. 860 disablePass(&StackMapLivenessID); 861 disablePass(&FuncletLayoutID); 862 disablePass(&PatchableFunctionID); 863 864 addPass(createAMDGPUPrintfRuntimeBinding()); 865 866 // This must occur before inlining, as the inliner will not look through 867 // bitcast calls. 868 addPass(createAMDGPUFixFunctionBitcastsPass()); 869 870 // A call to propagate attributes pass in the backend in case opt was not run. 871 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 872 873 addPass(createAtomicExpandPass()); 874 875 876 addPass(createAMDGPULowerIntrinsicsPass()); 877 878 // Function calls are not supported, so make sure we inline everything. 879 addPass(createAMDGPUAlwaysInlinePass()); 880 addPass(createAlwaysInlinerLegacyPass()); 881 // We need to add the barrier noop pass, otherwise adding the function 882 // inlining pass will cause all of the PassConfigs passes to be run 883 // one function at a time, which means if we have a nodule with two 884 // functions, then we will generate code for the first function 885 // without ever running any passes on the second. 886 addPass(createBarrierNoopPass()); 887 888 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 889 if (TM.getTargetTriple().getArch() == Triple::r600) 890 addPass(createR600OpenCLImageTypeLoweringPass()); 891 892 // Replace OpenCL enqueued block function pointers with global variables. 893 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 894 895 // Can increase LDS used by kernel so runs before PromoteAlloca 896 if (!DisableLowerModuleLDS) 897 addPass(createAMDGPULowerModuleLDSPass()); 898 899 if (TM.getOptLevel() > CodeGenOpt::None) { 900 addPass(createInferAddressSpacesPass()); 901 addPass(createAMDGPUPromoteAlloca()); 902 903 if (EnableSROA) 904 addPass(createSROAPass()); 905 906 if (EnableScalarIRPasses) 907 addStraightLineScalarOptimizationPasses(); 908 909 if (EnableAMDGPUAliasAnalysis) { 910 addPass(createAMDGPUAAWrapperPass()); 911 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 912 AAResults &AAR) { 913 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 914 AAR.addAAResult(WrapperPass->getResult()); 915 })); 916 } 917 } 918 919 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 920 // TODO: May want to move later or split into an early and late one. 921 addPass(createAMDGPUCodeGenPreparePass()); 922 } 923 924 TargetPassConfig::addIRPasses(); 925 926 // EarlyCSE is not always strong enough to clean up what LSR produces. For 927 // example, GVN can combine 928 // 929 // %0 = add %a, %b 930 // %1 = add %b, %a 931 // 932 // and 933 // 934 // %0 = shl nsw %a, 2 935 // %1 = shl %a, 2 936 // 937 // but EarlyCSE can do neither of them. 938 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 939 addEarlyCSEOrGVNPass(); 940 } 941 942 void AMDGPUPassConfig::addCodeGenPrepare() { 943 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 944 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 945 946 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 947 EnableLowerKernelArguments) 948 addPass(createAMDGPULowerKernelArgumentsPass()); 949 950 addPass(&AMDGPUPerfHintAnalysisID); 951 952 TargetPassConfig::addCodeGenPrepare(); 953 954 if (EnableLoadStoreVectorizer) 955 addPass(createLoadStoreVectorizerPass()); 956 957 // LowerSwitch pass may introduce unreachable blocks that can 958 // cause unexpected behavior for subsequent passes. Placing it 959 // here seems better that these blocks would get cleaned up by 960 // UnreachableBlockElim inserted next in the pass flow. 961 addPass(createLowerSwitchPass()); 962 } 963 964 bool AMDGPUPassConfig::addPreISel() { 965 addPass(createFlattenCFGPass()); 966 return false; 967 } 968 969 bool AMDGPUPassConfig::addInstSelector() { 970 // Defer the verifier until FinalizeISel. 971 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 972 return false; 973 } 974 975 bool AMDGPUPassConfig::addGCPasses() { 976 // Do nothing. GC is not supported. 977 return false; 978 } 979 980 //===----------------------------------------------------------------------===// 981 // R600 Pass Setup 982 //===----------------------------------------------------------------------===// 983 984 bool R600PassConfig::addPreISel() { 985 AMDGPUPassConfig::addPreISel(); 986 987 if (EnableR600StructurizeCFG) 988 addPass(createStructurizeCFGPass()); 989 return false; 990 } 991 992 bool R600PassConfig::addInstSelector() { 993 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 994 return false; 995 } 996 997 void R600PassConfig::addPreRegAlloc() { 998 addPass(createR600VectorRegMerger()); 999 } 1000 1001 void R600PassConfig::addPreSched2() { 1002 addPass(createR600EmitClauseMarkers(), false); 1003 if (EnableR600IfConvert) 1004 addPass(&IfConverterID, false); 1005 addPass(createR600ClauseMergePass(), false); 1006 } 1007 1008 void R600PassConfig::addPreEmitPass() { 1009 addPass(createAMDGPUCFGStructurizerPass(), false); 1010 addPass(createR600ExpandSpecialInstrsPass(), false); 1011 addPass(&FinalizeMachineBundlesID, false); 1012 addPass(createR600Packetizer(), false); 1013 addPass(createR600ControlFlowFinalizer(), false); 1014 } 1015 1016 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1017 return new R600PassConfig(*this, PM); 1018 } 1019 1020 //===----------------------------------------------------------------------===// 1021 // GCN Pass Setup 1022 //===----------------------------------------------------------------------===// 1023 1024 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1025 MachineSchedContext *C) const { 1026 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1027 if (ST.enableSIScheduler()) 1028 return createSIMachineScheduler(C); 1029 return createGCNMaxOccupancyMachineScheduler(C); 1030 } 1031 1032 bool GCNPassConfig::addPreISel() { 1033 AMDGPUPassConfig::addPreISel(); 1034 1035 addPass(createAMDGPULateCodeGenPreparePass()); 1036 if (EnableAtomicOptimizations) { 1037 addPass(createAMDGPUAtomicOptimizerPass()); 1038 } 1039 1040 // FIXME: We need to run a pass to propagate the attributes when calls are 1041 // supported. 1042 1043 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1044 // regions formed by them. 1045 addPass(&AMDGPUUnifyDivergentExitNodesID); 1046 if (!LateCFGStructurize) { 1047 if (EnableStructurizerWorkarounds) { 1048 addPass(createFixIrreduciblePass()); 1049 addPass(createUnifyLoopExitsPass()); 1050 } 1051 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1052 } 1053 addPass(createSinkingPass()); 1054 addPass(createAMDGPUAnnotateUniformValues()); 1055 if (!LateCFGStructurize) { 1056 addPass(createSIAnnotateControlFlowPass()); 1057 } 1058 addPass(createLCSSAPass()); 1059 1060 return false; 1061 } 1062 1063 void GCNPassConfig::addMachineSSAOptimization() { 1064 TargetPassConfig::addMachineSSAOptimization(); 1065 1066 // We want to fold operands after PeepholeOptimizer has run (or as part of 1067 // it), because it will eliminate extra copies making it easier to fold the 1068 // real source operand. We want to eliminate dead instructions after, so that 1069 // we see fewer uses of the copies. We then need to clean up the dead 1070 // instructions leftover after the operands are folded as well. 1071 // 1072 // XXX - Can we get away without running DeadMachineInstructionElim again? 1073 addPass(&SIFoldOperandsID); 1074 if (EnableDPPCombine) 1075 addPass(&GCNDPPCombineID); 1076 addPass(&DeadMachineInstructionElimID); 1077 addPass(&SILoadStoreOptimizerID); 1078 if (EnableSDWAPeephole) { 1079 addPass(&SIPeepholeSDWAID); 1080 addPass(&EarlyMachineLICMID); 1081 addPass(&MachineCSEID); 1082 addPass(&SIFoldOperandsID); 1083 addPass(&DeadMachineInstructionElimID); 1084 } 1085 addPass(createSIShrinkInstructionsPass()); 1086 } 1087 1088 bool GCNPassConfig::addILPOpts() { 1089 if (EnableEarlyIfConversion) 1090 addPass(&EarlyIfConverterID); 1091 1092 TargetPassConfig::addILPOpts(); 1093 return false; 1094 } 1095 1096 bool GCNPassConfig::addInstSelector() { 1097 AMDGPUPassConfig::addInstSelector(); 1098 addPass(&SIFixSGPRCopiesID); 1099 addPass(createSILowerI1CopiesPass()); 1100 addPass(createSIAddIMGInitPass()); 1101 return false; 1102 } 1103 1104 bool GCNPassConfig::addIRTranslator() { 1105 addPass(new IRTranslator(getOptLevel())); 1106 return false; 1107 } 1108 1109 void GCNPassConfig::addPreLegalizeMachineIR() { 1110 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1111 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1112 addPass(new Localizer()); 1113 } 1114 1115 bool GCNPassConfig::addLegalizeMachineIR() { 1116 addPass(new Legalizer()); 1117 return false; 1118 } 1119 1120 void GCNPassConfig::addPreRegBankSelect() { 1121 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1122 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1123 } 1124 1125 bool GCNPassConfig::addRegBankSelect() { 1126 addPass(new RegBankSelect()); 1127 return false; 1128 } 1129 1130 void GCNPassConfig::addPreGlobalInstructionSelect() { 1131 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1132 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1133 } 1134 1135 bool GCNPassConfig::addGlobalInstructionSelect() { 1136 addPass(new InstructionSelect(getOptLevel())); 1137 // TODO: Fix instruction selection to do the right thing for image 1138 // instructions with tfe or lwe in the first place, instead of running a 1139 // separate pass to fix them up? 1140 addPass(createSIAddIMGInitPass()); 1141 return false; 1142 } 1143 1144 void GCNPassConfig::addPreRegAlloc() { 1145 if (LateCFGStructurize) { 1146 addPass(createAMDGPUMachineCFGStructurizerPass()); 1147 } 1148 } 1149 1150 void GCNPassConfig::addFastRegAlloc() { 1151 // FIXME: We have to disable the verifier here because of PHIElimination + 1152 // TwoAddressInstructions disabling it. 1153 1154 // This must be run immediately after phi elimination and before 1155 // TwoAddressInstructions, otherwise the processing of the tied operand of 1156 // SI_ELSE will introduce a copy of the tied operand source after the else. 1157 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1158 1159 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1160 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1161 1162 TargetPassConfig::addFastRegAlloc(); 1163 } 1164 1165 void GCNPassConfig::addOptimizedRegAlloc() { 1166 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1167 // instructions that cause scheduling barriers. 1168 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1169 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1170 1171 if (OptExecMaskPreRA) 1172 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1173 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1174 1175 // This must be run immediately after phi elimination and before 1176 // TwoAddressInstructions, otherwise the processing of the tied operand of 1177 // SI_ELSE will introduce a copy of the tied operand source after the else. 1178 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1179 1180 if (EnableDCEInRA) 1181 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1182 1183 TargetPassConfig::addOptimizedRegAlloc(); 1184 } 1185 1186 bool GCNPassConfig::addPreRewrite() { 1187 if (EnableRegReassign) { 1188 addPass(&GCNNSAReassignID); 1189 addPass(&GCNRegBankReassignID); 1190 } 1191 return true; 1192 } 1193 1194 void GCNPassConfig::addPostRegAlloc() { 1195 addPass(&SIFixVGPRCopiesID); 1196 if (getOptLevel() > CodeGenOpt::None) 1197 addPass(&SIOptimizeExecMaskingID); 1198 TargetPassConfig::addPostRegAlloc(); 1199 1200 // Equivalent of PEI for SGPRs. 1201 addPass(&SILowerSGPRSpillsID); 1202 } 1203 1204 void GCNPassConfig::addPreSched2() { 1205 addPass(&SIPostRABundlerID); 1206 } 1207 1208 void GCNPassConfig::addPreEmitPass() { 1209 addPass(createSIMemoryLegalizerPass()); 1210 addPass(createSIInsertWaitcntsPass()); 1211 addPass(createSIShrinkInstructionsPass()); 1212 addPass(createSIModeRegisterPass()); 1213 1214 if (getOptLevel() > CodeGenOpt::None) 1215 addPass(&SIInsertHardClausesID); 1216 1217 addPass(&SILateBranchLoweringPassID); 1218 if (getOptLevel() > CodeGenOpt::None) 1219 addPass(&SIPreEmitPeepholeID); 1220 // The hazard recognizer that runs as part of the post-ra scheduler does not 1221 // guarantee to be able handle all hazards correctly. This is because if there 1222 // are multiple scheduling regions in a basic block, the regions are scheduled 1223 // bottom up, so when we begin to schedule a region we don't know what 1224 // instructions were emitted directly before it. 1225 // 1226 // Here we add a stand-alone hazard recognizer pass which can handle all 1227 // cases. 1228 addPass(&PostRAHazardRecognizerID); 1229 addPass(&BranchRelaxationPassID); 1230 } 1231 1232 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1233 return new GCNPassConfig(*this, PM); 1234 } 1235 1236 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1237 return new yaml::SIMachineFunctionInfo(); 1238 } 1239 1240 yaml::MachineFunctionInfo * 1241 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1242 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1243 return new yaml::SIMachineFunctionInfo(*MFI, 1244 *MF.getSubtarget().getRegisterInfo()); 1245 } 1246 1247 bool GCNTargetMachine::parseMachineFunctionInfo( 1248 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1249 SMDiagnostic &Error, SMRange &SourceRange) const { 1250 const yaml::SIMachineFunctionInfo &YamlMFI = 1251 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1252 MachineFunction &MF = PFS.MF; 1253 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1254 1255 MFI->initializeBaseYamlFields(YamlMFI); 1256 1257 if (MFI->Occupancy == 0) { 1258 // Fixup the subtarget dependent default value. 1259 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1260 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1261 } 1262 1263 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1264 Register TempReg; 1265 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1266 SourceRange = RegName.SourceRange; 1267 return true; 1268 } 1269 RegVal = TempReg; 1270 1271 return false; 1272 }; 1273 1274 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1275 // Create a diagnostic for a the register string literal. 1276 const MemoryBuffer &Buffer = 1277 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1278 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1279 RegName.Value.size(), SourceMgr::DK_Error, 1280 "incorrect register class for field", RegName.Value, 1281 None, None); 1282 SourceRange = RegName.SourceRange; 1283 return true; 1284 }; 1285 1286 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1287 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1288 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1289 return true; 1290 1291 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1292 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1293 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1294 } 1295 1296 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1297 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1298 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1299 } 1300 1301 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1302 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1303 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1304 } 1305 1306 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1307 const TargetRegisterClass &RC, 1308 ArgDescriptor &Arg, unsigned UserSGPRs, 1309 unsigned SystemSGPRs) { 1310 // Skip parsing if it's not present. 1311 if (!A) 1312 return false; 1313 1314 if (A->IsRegister) { 1315 Register Reg; 1316 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1317 SourceRange = A->RegisterName.SourceRange; 1318 return true; 1319 } 1320 if (!RC.contains(Reg)) 1321 return diagnoseRegisterClass(A->RegisterName); 1322 Arg = ArgDescriptor::createRegister(Reg); 1323 } else 1324 Arg = ArgDescriptor::createStack(A->StackOffset); 1325 // Check and apply the optional mask. 1326 if (A->Mask) 1327 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1328 1329 MFI->NumUserSGPRs += UserSGPRs; 1330 MFI->NumSystemSGPRs += SystemSGPRs; 1331 return false; 1332 }; 1333 1334 if (YamlMFI.ArgInfo && 1335 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1336 AMDGPU::SGPR_128RegClass, 1337 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1338 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1339 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1340 2, 0) || 1341 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1342 MFI->ArgInfo.QueuePtr, 2, 0) || 1343 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1344 AMDGPU::SReg_64RegClass, 1345 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1346 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1347 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1348 2, 0) || 1349 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1350 AMDGPU::SReg_64RegClass, 1351 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1352 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1353 AMDGPU::SGPR_32RegClass, 1354 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1355 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1356 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1357 0, 1) || 1358 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1359 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1360 0, 1) || 1361 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1362 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1363 0, 1) || 1364 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1365 AMDGPU::SGPR_32RegClass, 1366 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1367 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1368 AMDGPU::SGPR_32RegClass, 1369 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1370 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1371 AMDGPU::SReg_64RegClass, 1372 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1373 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1374 AMDGPU::SReg_64RegClass, 1375 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1376 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1377 AMDGPU::VGPR_32RegClass, 1378 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1379 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1380 AMDGPU::VGPR_32RegClass, 1381 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1382 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1383 AMDGPU::VGPR_32RegClass, 1384 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1385 return true; 1386 1387 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1388 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1389 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1390 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1391 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1392 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1393 1394 return false; 1395 } 1396