1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/Analysis/CGSCCPassManager.h" 33 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 34 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 35 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 36 #include "llvm/CodeGen/GlobalISel/Localizer.h" 37 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 38 #include "llvm/CodeGen/MIRParser/MIParser.h" 39 #include "llvm/CodeGen/Passes.h" 40 #include "llvm/CodeGen/TargetPassConfig.h" 41 #include "llvm/IR/Attributes.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/LegacyPassManager.h" 44 #include "llvm/IR/PassManager.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Passes/PassBuilder.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/TargetRegistry.h" 51 #include "llvm/Target/TargetLoweringObjectFile.h" 52 #include "llvm/Transforms/IPO.h" 53 #include "llvm/Transforms/IPO/AlwaysInliner.h" 54 #include "llvm/Transforms/IPO/GlobalDCE.h" 55 #include "llvm/Transforms/IPO/Internalize.h" 56 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 57 #include "llvm/Transforms/Scalar.h" 58 #include "llvm/Transforms/Scalar/GVN.h" 59 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 60 #include "llvm/Transforms/Utils.h" 61 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 62 #include "llvm/Transforms/Vectorize.h" 63 #include <memory> 64 65 using namespace llvm; 66 67 static cl::opt<bool> EnableR600StructurizeCFG( 68 "r600-ir-structurize", 69 cl::desc("Use StructurizeCFG IR pass"), 70 cl::init(true)); 71 72 static cl::opt<bool> EnableSROA( 73 "amdgpu-sroa", 74 cl::desc("Run SROA after promote alloca pass"), 75 cl::ReallyHidden, 76 cl::init(true)); 77 78 static cl::opt<bool> 79 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 80 cl::desc("Run early if-conversion"), 81 cl::init(false)); 82 83 static cl::opt<bool> 84 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 85 cl::desc("Run pre-RA exec mask optimizations"), 86 cl::init(true)); 87 88 static cl::opt<bool> EnableR600IfConvert( 89 "r600-if-convert", 90 cl::desc("Use if conversion pass"), 91 cl::ReallyHidden, 92 cl::init(true)); 93 94 // Option to disable vectorizer for tests. 95 static cl::opt<bool> EnableLoadStoreVectorizer( 96 "amdgpu-load-store-vectorizer", 97 cl::desc("Enable load store vectorizer"), 98 cl::init(true), 99 cl::Hidden); 100 101 // Option to control global loads scalarization 102 static cl::opt<bool> ScalarizeGlobal( 103 "amdgpu-scalarize-global-loads", 104 cl::desc("Enable global load scalarization"), 105 cl::init(true), 106 cl::Hidden); 107 108 // Option to run internalize pass. 109 static cl::opt<bool> InternalizeSymbols( 110 "amdgpu-internalize-symbols", 111 cl::desc("Enable elimination of non-kernel functions and unused globals"), 112 cl::init(false), 113 cl::Hidden); 114 115 // Option to inline all early. 116 static cl::opt<bool> EarlyInlineAll( 117 "amdgpu-early-inline-all", 118 cl::desc("Inline all functions early"), 119 cl::init(false), 120 cl::Hidden); 121 122 static cl::opt<bool> EnableSDWAPeephole( 123 "amdgpu-sdwa-peephole", 124 cl::desc("Enable SDWA peepholer"), 125 cl::init(true)); 126 127 static cl::opt<bool> EnableDPPCombine( 128 "amdgpu-dpp-combine", 129 cl::desc("Enable DPP combiner"), 130 cl::init(true)); 131 132 // Enable address space based alias analysis 133 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 134 cl::desc("Enable AMDGPU Alias Analysis"), 135 cl::init(true)); 136 137 // Option to run late CFG structurizer 138 static cl::opt<bool, true> LateCFGStructurize( 139 "amdgpu-late-structurize", 140 cl::desc("Enable late CFG structurization"), 141 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 142 cl::Hidden); 143 144 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 145 "amdgpu-function-calls", 146 cl::desc("Enable AMDGPU function call support"), 147 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 148 cl::init(true), 149 cl::Hidden); 150 151 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 152 "amdgpu-fixed-function-abi", 153 cl::desc("Enable all implicit function arguments"), 154 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 155 cl::init(false), 156 cl::Hidden); 157 158 // Enable lib calls simplifications 159 static cl::opt<bool> EnableLibCallSimplify( 160 "amdgpu-simplify-libcall", 161 cl::desc("Enable amdgpu library simplifications"), 162 cl::init(true), 163 cl::Hidden); 164 165 static cl::opt<bool> EnableLowerKernelArguments( 166 "amdgpu-ir-lower-kernel-arguments", 167 cl::desc("Lower kernel argument loads in IR pass"), 168 cl::init(true), 169 cl::Hidden); 170 171 static cl::opt<bool> EnableRegReassign( 172 "amdgpu-reassign-regs", 173 cl::desc("Enable register reassign optimizations on gfx10+"), 174 cl::init(true), 175 cl::Hidden); 176 177 // Enable atomic optimization 178 static cl::opt<bool> EnableAtomicOptimizations( 179 "amdgpu-atomic-optimizations", 180 cl::desc("Enable atomic optimizations"), 181 cl::init(false), 182 cl::Hidden); 183 184 // Enable Mode register optimization 185 static cl::opt<bool> EnableSIModeRegisterPass( 186 "amdgpu-mode-register", 187 cl::desc("Enable mode register pass"), 188 cl::init(true), 189 cl::Hidden); 190 191 // Option is used in lit tests to prevent deadcoding of patterns inspected. 192 static cl::opt<bool> 193 EnableDCEInRA("amdgpu-dce-in-ra", 194 cl::init(true), cl::Hidden, 195 cl::desc("Enable machine DCE inside regalloc")); 196 197 static cl::opt<bool> EnableScalarIRPasses( 198 "amdgpu-scalar-ir-passes", 199 cl::desc("Enable scalar IR passes"), 200 cl::init(true), 201 cl::Hidden); 202 203 static cl::opt<bool> EnableStructurizerWorkarounds( 204 "amdgpu-enable-structurizer-workarounds", 205 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 206 cl::Hidden); 207 208 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 209 // Register the target 210 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 211 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 212 213 PassRegistry *PR = PassRegistry::getPassRegistry(); 214 initializeR600ClauseMergePassPass(*PR); 215 initializeR600ControlFlowFinalizerPass(*PR); 216 initializeR600PacketizerPass(*PR); 217 initializeR600ExpandSpecialInstrsPassPass(*PR); 218 initializeR600VectorRegMergerPass(*PR); 219 initializeGlobalISel(*PR); 220 initializeAMDGPUDAGToDAGISelPass(*PR); 221 initializeGCNDPPCombinePass(*PR); 222 initializeSILowerI1CopiesPass(*PR); 223 initializeSILowerSGPRSpillsPass(*PR); 224 initializeSIFixSGPRCopiesPass(*PR); 225 initializeSIFixVGPRCopiesPass(*PR); 226 initializeSIFoldOperandsPass(*PR); 227 initializeSIPeepholeSDWAPass(*PR); 228 initializeSIShrinkInstructionsPass(*PR); 229 initializeSIOptimizeExecMaskingPreRAPass(*PR); 230 initializeSILoadStoreOptimizerPass(*PR); 231 initializeAMDGPUFixFunctionBitcastsPass(*PR); 232 initializeAMDGPUAlwaysInlinePass(*PR); 233 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 234 initializeAMDGPUAnnotateUniformValuesPass(*PR); 235 initializeAMDGPUArgumentUsageInfoPass(*PR); 236 initializeAMDGPUAtomicOptimizerPass(*PR); 237 initializeAMDGPULowerKernelArgumentsPass(*PR); 238 initializeAMDGPULowerKernelAttributesPass(*PR); 239 initializeAMDGPULowerIntrinsicsPass(*PR); 240 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 241 initializeAMDGPUPostLegalizerCombinerPass(*PR); 242 initializeAMDGPUPreLegalizerCombinerPass(*PR); 243 initializeAMDGPUPromoteAllocaPass(*PR); 244 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 245 initializeAMDGPUCodeGenPreparePass(*PR); 246 initializeAMDGPULateCodeGenPreparePass(*PR); 247 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 248 initializeAMDGPUPropagateAttributesLatePass(*PR); 249 initializeAMDGPURewriteOutArgumentsPass(*PR); 250 initializeAMDGPUUnifyMetadataPass(*PR); 251 initializeSIAnnotateControlFlowPass(*PR); 252 initializeSIInsertHardClausesPass(*PR); 253 initializeSIInsertWaitcntsPass(*PR); 254 initializeSIModeRegisterPass(*PR); 255 initializeSIWholeQuadModePass(*PR); 256 initializeSILowerControlFlowPass(*PR); 257 initializeSIRemoveShortExecBranchesPass(*PR); 258 initializeSIPreEmitPeepholePass(*PR); 259 initializeSIInsertSkipsPass(*PR); 260 initializeSIMemoryLegalizerPass(*PR); 261 initializeSIOptimizeExecMaskingPass(*PR); 262 initializeSIPreAllocateWWMRegsPass(*PR); 263 initializeSIFormMemoryClausesPass(*PR); 264 initializeSIPostRABundlerPass(*PR); 265 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 266 initializeAMDGPUAAWrapperPassPass(*PR); 267 initializeAMDGPUExternalAAWrapperPass(*PR); 268 initializeAMDGPUUseNativeCallsPass(*PR); 269 initializeAMDGPUSimplifyLibCallsPass(*PR); 270 initializeAMDGPUInlinerPass(*PR); 271 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 272 initializeGCNRegBankReassignPass(*PR); 273 initializeGCNNSAReassignPass(*PR); 274 initializeSIAddIMGInitPass(*PR); 275 } 276 277 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 278 return std::make_unique<AMDGPUTargetObjectFile>(); 279 } 280 281 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 282 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 283 } 284 285 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 286 return new SIScheduleDAGMI(C); 287 } 288 289 static ScheduleDAGInstrs * 290 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 291 ScheduleDAGMILive *DAG = 292 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 293 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 294 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 295 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 296 return DAG; 297 } 298 299 static ScheduleDAGInstrs * 300 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 301 auto DAG = new GCNIterativeScheduler(C, 302 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 303 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 304 return DAG; 305 } 306 307 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 308 return new GCNIterativeScheduler(C, 309 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 310 } 311 312 static ScheduleDAGInstrs * 313 createIterativeILPMachineScheduler(MachineSchedContext *C) { 314 auto DAG = new GCNIterativeScheduler(C, 315 GCNIterativeScheduler::SCHEDULE_ILP); 316 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 317 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 318 return DAG; 319 } 320 321 static MachineSchedRegistry 322 R600SchedRegistry("r600", "Run R600's custom scheduler", 323 createR600MachineScheduler); 324 325 static MachineSchedRegistry 326 SISchedRegistry("si", "Run SI's custom scheduler", 327 createSIMachineScheduler); 328 329 static MachineSchedRegistry 330 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 331 "Run GCN scheduler to maximize occupancy", 332 createGCNMaxOccupancyMachineScheduler); 333 334 static MachineSchedRegistry 335 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 336 "Run GCN scheduler to maximize occupancy (experimental)", 337 createIterativeGCNMaxOccupancyMachineScheduler); 338 339 static MachineSchedRegistry 340 GCNMinRegSchedRegistry("gcn-minreg", 341 "Run GCN iterative scheduler for minimal register usage (experimental)", 342 createMinRegScheduler); 343 344 static MachineSchedRegistry 345 GCNILPSchedRegistry("gcn-ilp", 346 "Run GCN iterative scheduler for ILP scheduling (experimental)", 347 createIterativeILPMachineScheduler); 348 349 static StringRef computeDataLayout(const Triple &TT) { 350 if (TT.getArch() == Triple::r600) { 351 // 32-bit pointers. 352 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 353 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 354 } 355 356 // 32-bit private, local, and region pointers. 64-bit global, constant and 357 // flat, non-integral buffer fat pointers. 358 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 359 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 360 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 361 "-ni:7"; 362 } 363 364 LLVM_READNONE 365 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 366 if (!GPU.empty()) 367 return GPU; 368 369 // Need to default to a target with flat support for HSA. 370 if (TT.getArch() == Triple::amdgcn) 371 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 372 373 return "r600"; 374 } 375 376 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 377 // The AMDGPU toolchain only supports generating shared objects, so we 378 // must always use PIC. 379 return Reloc::PIC_; 380 } 381 382 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 383 StringRef CPU, StringRef FS, 384 TargetOptions Options, 385 Optional<Reloc::Model> RM, 386 Optional<CodeModel::Model> CM, 387 CodeGenOpt::Level OptLevel) 388 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 389 FS, Options, getEffectiveRelocModel(RM), 390 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 391 TLOF(createTLOF(getTargetTriple())) { 392 initAsmInfo(); 393 if (TT.getArch() == Triple::amdgcn) { 394 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 395 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 396 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 397 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 398 } 399 } 400 401 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 402 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 403 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 404 405 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 406 407 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 408 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 409 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 410 } 411 412 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 413 Attribute FSAttr = F.getFnAttribute("target-features"); 414 415 return FSAttr.isValid() ? FSAttr.getValueAsString() 416 : getTargetFeatureString(); 417 } 418 419 /// Predicate for Internalize pass. 420 static bool mustPreserveGV(const GlobalValue &GV) { 421 if (const Function *F = dyn_cast<Function>(&GV)) 422 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 423 424 return !GV.use_empty(); 425 } 426 427 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 428 Builder.DivergentTarget = true; 429 430 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 431 bool Internalize = InternalizeSymbols; 432 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 433 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 434 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 435 436 if (EnableFunctionCalls) { 437 delete Builder.Inliner; 438 Builder.Inliner = createAMDGPUFunctionInliningPass(); 439 } 440 441 Builder.addExtension( 442 PassManagerBuilder::EP_ModuleOptimizerEarly, 443 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 444 legacy::PassManagerBase &PM) { 445 if (AMDGPUAA) { 446 PM.add(createAMDGPUAAWrapperPass()); 447 PM.add(createAMDGPUExternalAAWrapperPass()); 448 } 449 PM.add(createAMDGPUUnifyMetadataPass()); 450 PM.add(createAMDGPUPrintfRuntimeBinding()); 451 if (Internalize) 452 PM.add(createInternalizePass(mustPreserveGV)); 453 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 454 if (Internalize) 455 PM.add(createGlobalDCEPass()); 456 if (EarlyInline) 457 PM.add(createAMDGPUAlwaysInlinePass(false)); 458 }); 459 460 Builder.addExtension( 461 PassManagerBuilder::EP_EarlyAsPossible, 462 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 463 legacy::PassManagerBase &PM) { 464 if (AMDGPUAA) { 465 PM.add(createAMDGPUAAWrapperPass()); 466 PM.add(createAMDGPUExternalAAWrapperPass()); 467 } 468 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 469 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 470 if (LibCallSimplify) 471 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 472 }); 473 474 Builder.addExtension( 475 PassManagerBuilder::EP_CGSCCOptimizerLate, 476 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 477 // Add infer address spaces pass to the opt pipeline after inlining 478 // but before SROA to increase SROA opportunities. 479 PM.add(createInferAddressSpacesPass()); 480 481 // This should run after inlining to have any chance of doing anything, 482 // and before other cleanup optimizations. 483 PM.add(createAMDGPULowerKernelAttributesPass()); 484 485 // Promote alloca to vector before SROA and loop unroll. If we manage 486 // to eliminate allocas before unroll we may choose to unroll less. 487 if (EnableOpt) 488 PM.add(createAMDGPUPromoteAllocaToVector()); 489 }); 490 } 491 492 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 493 AAM.registerFunctionAnalysis<AMDGPUAA>(); 494 } 495 496 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 497 bool DebugPassManager) { 498 PB.registerPipelineParsingCallback( 499 [this](StringRef PassName, ModulePassManager &PM, 500 ArrayRef<PassBuilder::PipelineElement>) { 501 if (PassName == "amdgpu-propagate-attributes-late") { 502 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 503 return true; 504 } 505 if (PassName == "amdgpu-unify-metadata") { 506 PM.addPass(AMDGPUUnifyMetadataPass()); 507 return true; 508 } 509 if (PassName == "amdgpu-printf-runtime-binding") { 510 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 511 return true; 512 } 513 if (PassName == "amdgpu-always-inline") { 514 PM.addPass(AMDGPUAlwaysInlinePass()); 515 return true; 516 } 517 return false; 518 }); 519 PB.registerPipelineParsingCallback( 520 [this](StringRef PassName, FunctionPassManager &PM, 521 ArrayRef<PassBuilder::PipelineElement>) { 522 if (PassName == "amdgpu-simplifylib") { 523 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 524 return true; 525 } 526 if (PassName == "amdgpu-usenative") { 527 PM.addPass(AMDGPUUseNativeCallsPass()); 528 return true; 529 } 530 if (PassName == "amdgpu-promote-alloca") { 531 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 532 return true; 533 } 534 if (PassName == "amdgpu-promote-alloca-to-vector") { 535 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 536 return true; 537 } 538 if (PassName == "amdgpu-lower-kernel-attributes") { 539 PM.addPass(AMDGPULowerKernelAttributesPass()); 540 return true; 541 } 542 if (PassName == "amdgpu-propagate-attributes-early") { 543 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 544 return true; 545 } 546 547 return false; 548 }); 549 550 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 551 FAM.registerPass([&] { return AMDGPUAA(); }); 552 }); 553 554 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 555 if (AAName == "amdgpu-aa") { 556 AAM.registerFunctionAnalysis<AMDGPUAA>(); 557 return true; 558 } 559 return false; 560 }); 561 562 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 563 ModulePassManager &PM, 564 PassBuilder::OptimizationLevel Level) { 565 FunctionPassManager FPM(DebugPassManager); 566 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 567 FPM.addPass(AMDGPUUseNativeCallsPass()); 568 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 569 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 570 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 571 }); 572 573 PB.registerPipelineEarlySimplificationEPCallback( 574 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 575 if (Level == PassBuilder::OptimizationLevel::O0) 576 return; 577 578 PM.addPass(AMDGPUUnifyMetadataPass()); 579 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 580 581 if (InternalizeSymbols) { 582 PM.addPass(InternalizePass(mustPreserveGV)); 583 } 584 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 585 if (InternalizeSymbols) { 586 PM.addPass(GlobalDCEPass()); 587 } 588 if (EarlyInlineAll && !EnableFunctionCalls) 589 PM.addPass(AMDGPUAlwaysInlinePass()); 590 }); 591 592 PB.registerCGSCCOptimizerLateEPCallback( 593 [this, DebugPassManager](CGSCCPassManager &PM, 594 PassBuilder::OptimizationLevel Level) { 595 FunctionPassManager FPM(DebugPassManager); 596 597 // Add infer address spaces pass to the opt pipeline after inlining 598 // but before SROA to increase SROA opportunities. 599 FPM.addPass(InferAddressSpacesPass()); 600 601 // This should run after inlining to have any chance of doing 602 // anything, and before other cleanup optimizations. 603 FPM.addPass(AMDGPULowerKernelAttributesPass()); 604 605 if (Level != PassBuilder::OptimizationLevel::O0) { 606 // Promote alloca to vector before SROA and loop unroll. If we 607 // manage to eliminate allocas before unroll we may choose to unroll 608 // less. 609 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 610 } 611 612 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 613 }); 614 } 615 616 //===----------------------------------------------------------------------===// 617 // R600 Target Machine (R600 -> Cayman) 618 //===----------------------------------------------------------------------===// 619 620 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 621 StringRef CPU, StringRef FS, 622 TargetOptions Options, 623 Optional<Reloc::Model> RM, 624 Optional<CodeModel::Model> CM, 625 CodeGenOpt::Level OL, bool JIT) 626 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 627 setRequiresStructuredCFG(true); 628 629 // Override the default since calls aren't supported for r600. 630 if (EnableFunctionCalls && 631 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 632 EnableFunctionCalls = false; 633 } 634 635 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 636 const Function &F) const { 637 StringRef GPU = getGPUName(F); 638 StringRef FS = getFeatureString(F); 639 640 SmallString<128> SubtargetKey(GPU); 641 SubtargetKey.append(FS); 642 643 auto &I = SubtargetMap[SubtargetKey]; 644 if (!I) { 645 // This needs to be done before we create a new subtarget since any 646 // creation will depend on the TM and the code generation flags on the 647 // function that reside in TargetOptions. 648 resetTargetOptions(F); 649 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 650 } 651 652 return I.get(); 653 } 654 655 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 656 unsigned DestAS) const { 657 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 658 AMDGPU::isFlatGlobalAddrSpace(DestAS); 659 } 660 661 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 662 const auto *LD = dyn_cast<LoadInst>(V); 663 if (!LD) 664 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 665 666 // It must be a generic pointer loaded. 667 assert(V->getType()->isPointerTy() && 668 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 669 670 const auto *Ptr = LD->getPointerOperand(); 671 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 672 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 673 // For a generic pointer loaded from the constant memory, it could be assumed 674 // as a global pointer since the constant memory is only populated on the 675 // host side. As implied by the offload programming model, only global 676 // pointers could be referenced on the host side. 677 return AMDGPUAS::GLOBAL_ADDRESS; 678 } 679 680 TargetTransformInfo 681 R600TargetMachine::getTargetTransformInfo(const Function &F) { 682 return TargetTransformInfo(R600TTIImpl(this, F)); 683 } 684 685 //===----------------------------------------------------------------------===// 686 // GCN Target Machine (SI+) 687 //===----------------------------------------------------------------------===// 688 689 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 690 StringRef CPU, StringRef FS, 691 TargetOptions Options, 692 Optional<Reloc::Model> RM, 693 Optional<CodeModel::Model> CM, 694 CodeGenOpt::Level OL, bool JIT) 695 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 696 697 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 698 StringRef GPU = getGPUName(F); 699 StringRef FS = getFeatureString(F); 700 701 SmallString<128> SubtargetKey(GPU); 702 SubtargetKey.append(FS); 703 704 auto &I = SubtargetMap[SubtargetKey]; 705 if (!I) { 706 // This needs to be done before we create a new subtarget since any 707 // creation will depend on the TM and the code generation flags on the 708 // function that reside in TargetOptions. 709 resetTargetOptions(F); 710 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 711 } 712 713 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 714 715 return I.get(); 716 } 717 718 TargetTransformInfo 719 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 720 return TargetTransformInfo(GCNTTIImpl(this, F)); 721 } 722 723 //===----------------------------------------------------------------------===// 724 // AMDGPU Pass Setup 725 //===----------------------------------------------------------------------===// 726 727 namespace { 728 729 class AMDGPUPassConfig : public TargetPassConfig { 730 public: 731 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 732 : TargetPassConfig(TM, PM) { 733 // Exceptions and StackMaps are not supported, so these passes will never do 734 // anything. 735 disablePass(&StackMapLivenessID); 736 disablePass(&FuncletLayoutID); 737 } 738 739 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 740 return getTM<AMDGPUTargetMachine>(); 741 } 742 743 ScheduleDAGInstrs * 744 createMachineScheduler(MachineSchedContext *C) const override { 745 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 746 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 747 return DAG; 748 } 749 750 void addEarlyCSEOrGVNPass(); 751 void addStraightLineScalarOptimizationPasses(); 752 void addIRPasses() override; 753 void addCodeGenPrepare() override; 754 bool addPreISel() override; 755 bool addInstSelector() override; 756 bool addGCPasses() override; 757 758 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 759 }; 760 761 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 762 return getStandardCSEConfigForOpt(TM->getOptLevel()); 763 } 764 765 class R600PassConfig final : public AMDGPUPassConfig { 766 public: 767 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 768 : AMDGPUPassConfig(TM, PM) {} 769 770 ScheduleDAGInstrs *createMachineScheduler( 771 MachineSchedContext *C) const override { 772 return createR600MachineScheduler(C); 773 } 774 775 bool addPreISel() override; 776 bool addInstSelector() override; 777 void addPreRegAlloc() override; 778 void addPreSched2() override; 779 void addPreEmitPass() override; 780 }; 781 782 class GCNPassConfig final : public AMDGPUPassConfig { 783 public: 784 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 785 : AMDGPUPassConfig(TM, PM) { 786 // It is necessary to know the register usage of the entire call graph. We 787 // allow calls without EnableAMDGPUFunctionCalls if they are marked 788 // noinline, so this is always required. 789 setRequiresCodeGenSCCOrder(true); 790 } 791 792 GCNTargetMachine &getGCNTargetMachine() const { 793 return getTM<GCNTargetMachine>(); 794 } 795 796 ScheduleDAGInstrs * 797 createMachineScheduler(MachineSchedContext *C) const override; 798 799 bool addPreISel() override; 800 void addMachineSSAOptimization() override; 801 bool addILPOpts() override; 802 bool addInstSelector() override; 803 bool addIRTranslator() override; 804 void addPreLegalizeMachineIR() override; 805 bool addLegalizeMachineIR() override; 806 void addPreRegBankSelect() override; 807 bool addRegBankSelect() override; 808 bool addGlobalInstructionSelect() override; 809 void addFastRegAlloc() override; 810 void addOptimizedRegAlloc() override; 811 void addPreRegAlloc() override; 812 bool addPreRewrite() override; 813 void addPostRegAlloc() override; 814 void addPreSched2() override; 815 void addPreEmitPass() override; 816 }; 817 818 } // end anonymous namespace 819 820 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 821 if (getOptLevel() == CodeGenOpt::Aggressive) 822 addPass(createGVNPass()); 823 else 824 addPass(createEarlyCSEPass()); 825 } 826 827 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 828 addPass(createLICMPass()); 829 addPass(createSeparateConstOffsetFromGEPPass()); 830 addPass(createSpeculativeExecutionPass()); 831 // ReassociateGEPs exposes more opportunites for SLSR. See 832 // the example in reassociate-geps-and-slsr.ll. 833 addPass(createStraightLineStrengthReducePass()); 834 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 835 // EarlyCSE can reuse. 836 addEarlyCSEOrGVNPass(); 837 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 838 addPass(createNaryReassociatePass()); 839 // NaryReassociate on GEPs creates redundant common expressions, so run 840 // EarlyCSE after it. 841 addPass(createEarlyCSEPass()); 842 } 843 844 void AMDGPUPassConfig::addIRPasses() { 845 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 846 847 // There is no reason to run these. 848 disablePass(&StackMapLivenessID); 849 disablePass(&FuncletLayoutID); 850 disablePass(&PatchableFunctionID); 851 852 addPass(createAMDGPUPrintfRuntimeBinding()); 853 854 // This must occur before inlining, as the inliner will not look through 855 // bitcast calls. 856 addPass(createAMDGPUFixFunctionBitcastsPass()); 857 858 // A call to propagate attributes pass in the backend in case opt was not run. 859 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 860 861 addPass(createAtomicExpandPass()); 862 863 864 addPass(createAMDGPULowerIntrinsicsPass()); 865 866 // Function calls are not supported, so make sure we inline everything. 867 addPass(createAMDGPUAlwaysInlinePass()); 868 addPass(createAlwaysInlinerLegacyPass()); 869 // We need to add the barrier noop pass, otherwise adding the function 870 // inlining pass will cause all of the PassConfigs passes to be run 871 // one function at a time, which means if we have a nodule with two 872 // functions, then we will generate code for the first function 873 // without ever running any passes on the second. 874 addPass(createBarrierNoopPass()); 875 876 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 877 if (TM.getTargetTriple().getArch() == Triple::r600) 878 addPass(createR600OpenCLImageTypeLoweringPass()); 879 880 // Replace OpenCL enqueued block function pointers with global variables. 881 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 882 883 if (TM.getOptLevel() > CodeGenOpt::None) { 884 addPass(createInferAddressSpacesPass()); 885 addPass(createAMDGPUPromoteAlloca()); 886 887 if (EnableSROA) 888 addPass(createSROAPass()); 889 890 if (EnableScalarIRPasses) 891 addStraightLineScalarOptimizationPasses(); 892 893 if (EnableAMDGPUAliasAnalysis) { 894 addPass(createAMDGPUAAWrapperPass()); 895 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 896 AAResults &AAR) { 897 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 898 AAR.addAAResult(WrapperPass->getResult()); 899 })); 900 } 901 } 902 903 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 904 // TODO: May want to move later or split into an early and late one. 905 addPass(createAMDGPUCodeGenPreparePass()); 906 } 907 908 TargetPassConfig::addIRPasses(); 909 910 // EarlyCSE is not always strong enough to clean up what LSR produces. For 911 // example, GVN can combine 912 // 913 // %0 = add %a, %b 914 // %1 = add %b, %a 915 // 916 // and 917 // 918 // %0 = shl nsw %a, 2 919 // %1 = shl %a, 2 920 // 921 // but EarlyCSE can do neither of them. 922 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 923 addEarlyCSEOrGVNPass(); 924 } 925 926 void AMDGPUPassConfig::addCodeGenPrepare() { 927 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 928 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 929 930 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 931 EnableLowerKernelArguments) 932 addPass(createAMDGPULowerKernelArgumentsPass()); 933 934 addPass(&AMDGPUPerfHintAnalysisID); 935 936 TargetPassConfig::addCodeGenPrepare(); 937 938 if (EnableLoadStoreVectorizer) 939 addPass(createLoadStoreVectorizerPass()); 940 941 // LowerSwitch pass may introduce unreachable blocks that can 942 // cause unexpected behavior for subsequent passes. Placing it 943 // here seems better that these blocks would get cleaned up by 944 // UnreachableBlockElim inserted next in the pass flow. 945 addPass(createLowerSwitchPass()); 946 } 947 948 bool AMDGPUPassConfig::addPreISel() { 949 addPass(createFlattenCFGPass()); 950 return false; 951 } 952 953 bool AMDGPUPassConfig::addInstSelector() { 954 // Defer the verifier until FinalizeISel. 955 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 956 return false; 957 } 958 959 bool AMDGPUPassConfig::addGCPasses() { 960 // Do nothing. GC is not supported. 961 return false; 962 } 963 964 //===----------------------------------------------------------------------===// 965 // R600 Pass Setup 966 //===----------------------------------------------------------------------===// 967 968 bool R600PassConfig::addPreISel() { 969 AMDGPUPassConfig::addPreISel(); 970 971 if (EnableR600StructurizeCFG) 972 addPass(createStructurizeCFGPass()); 973 return false; 974 } 975 976 bool R600PassConfig::addInstSelector() { 977 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 978 return false; 979 } 980 981 void R600PassConfig::addPreRegAlloc() { 982 addPass(createR600VectorRegMerger()); 983 } 984 985 void R600PassConfig::addPreSched2() { 986 addPass(createR600EmitClauseMarkers(), false); 987 if (EnableR600IfConvert) 988 addPass(&IfConverterID, false); 989 addPass(createR600ClauseMergePass(), false); 990 } 991 992 void R600PassConfig::addPreEmitPass() { 993 addPass(createAMDGPUCFGStructurizerPass(), false); 994 addPass(createR600ExpandSpecialInstrsPass(), false); 995 addPass(&FinalizeMachineBundlesID, false); 996 addPass(createR600Packetizer(), false); 997 addPass(createR600ControlFlowFinalizer(), false); 998 } 999 1000 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1001 return new R600PassConfig(*this, PM); 1002 } 1003 1004 //===----------------------------------------------------------------------===// 1005 // GCN Pass Setup 1006 //===----------------------------------------------------------------------===// 1007 1008 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1009 MachineSchedContext *C) const { 1010 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1011 if (ST.enableSIScheduler()) 1012 return createSIMachineScheduler(C); 1013 return createGCNMaxOccupancyMachineScheduler(C); 1014 } 1015 1016 bool GCNPassConfig::addPreISel() { 1017 AMDGPUPassConfig::addPreISel(); 1018 1019 addPass(createAMDGPULateCodeGenPreparePass()); 1020 if (EnableAtomicOptimizations) { 1021 addPass(createAMDGPUAtomicOptimizerPass()); 1022 } 1023 1024 // FIXME: We need to run a pass to propagate the attributes when calls are 1025 // supported. 1026 1027 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1028 // regions formed by them. 1029 addPass(&AMDGPUUnifyDivergentExitNodesID); 1030 if (!LateCFGStructurize) { 1031 if (EnableStructurizerWorkarounds) { 1032 addPass(createFixIrreduciblePass()); 1033 addPass(createUnifyLoopExitsPass()); 1034 } 1035 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1036 } 1037 addPass(createSinkingPass()); 1038 addPass(createAMDGPUAnnotateUniformValues()); 1039 if (!LateCFGStructurize) { 1040 addPass(createSIAnnotateControlFlowPass()); 1041 } 1042 addPass(createLCSSAPass()); 1043 1044 return false; 1045 } 1046 1047 void GCNPassConfig::addMachineSSAOptimization() { 1048 TargetPassConfig::addMachineSSAOptimization(); 1049 1050 // We want to fold operands after PeepholeOptimizer has run (or as part of 1051 // it), because it will eliminate extra copies making it easier to fold the 1052 // real source operand. We want to eliminate dead instructions after, so that 1053 // we see fewer uses of the copies. We then need to clean up the dead 1054 // instructions leftover after the operands are folded as well. 1055 // 1056 // XXX - Can we get away without running DeadMachineInstructionElim again? 1057 addPass(&SIFoldOperandsID); 1058 if (EnableDPPCombine) 1059 addPass(&GCNDPPCombineID); 1060 addPass(&DeadMachineInstructionElimID); 1061 addPass(&SILoadStoreOptimizerID); 1062 if (EnableSDWAPeephole) { 1063 addPass(&SIPeepholeSDWAID); 1064 addPass(&EarlyMachineLICMID); 1065 addPass(&MachineCSEID); 1066 addPass(&SIFoldOperandsID); 1067 addPass(&DeadMachineInstructionElimID); 1068 } 1069 addPass(createSIShrinkInstructionsPass()); 1070 } 1071 1072 bool GCNPassConfig::addILPOpts() { 1073 if (EnableEarlyIfConversion) 1074 addPass(&EarlyIfConverterID); 1075 1076 TargetPassConfig::addILPOpts(); 1077 return false; 1078 } 1079 1080 bool GCNPassConfig::addInstSelector() { 1081 AMDGPUPassConfig::addInstSelector(); 1082 addPass(&SIFixSGPRCopiesID); 1083 addPass(createSILowerI1CopiesPass()); 1084 addPass(createSIAddIMGInitPass()); 1085 return false; 1086 } 1087 1088 bool GCNPassConfig::addIRTranslator() { 1089 addPass(new IRTranslator(getOptLevel())); 1090 return false; 1091 } 1092 1093 void GCNPassConfig::addPreLegalizeMachineIR() { 1094 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1095 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1096 addPass(new Localizer()); 1097 } 1098 1099 bool GCNPassConfig::addLegalizeMachineIR() { 1100 addPass(new Legalizer()); 1101 return false; 1102 } 1103 1104 void GCNPassConfig::addPreRegBankSelect() { 1105 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1106 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1107 } 1108 1109 bool GCNPassConfig::addRegBankSelect() { 1110 addPass(new RegBankSelect()); 1111 return false; 1112 } 1113 1114 bool GCNPassConfig::addGlobalInstructionSelect() { 1115 addPass(new InstructionSelect()); 1116 return false; 1117 } 1118 1119 void GCNPassConfig::addPreRegAlloc() { 1120 if (LateCFGStructurize) { 1121 addPass(createAMDGPUMachineCFGStructurizerPass()); 1122 } 1123 } 1124 1125 void GCNPassConfig::addFastRegAlloc() { 1126 // FIXME: We have to disable the verifier here because of PHIElimination + 1127 // TwoAddressInstructions disabling it. 1128 1129 // This must be run immediately after phi elimination and before 1130 // TwoAddressInstructions, otherwise the processing of the tied operand of 1131 // SI_ELSE will introduce a copy of the tied operand source after the else. 1132 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1133 1134 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1135 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1136 1137 TargetPassConfig::addFastRegAlloc(); 1138 } 1139 1140 void GCNPassConfig::addOptimizedRegAlloc() { 1141 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1142 // instructions that cause scheduling barriers. 1143 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1144 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1145 1146 if (OptExecMaskPreRA) 1147 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1148 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1149 1150 // This must be run immediately after phi elimination and before 1151 // TwoAddressInstructions, otherwise the processing of the tied operand of 1152 // SI_ELSE will introduce a copy of the tied operand source after the else. 1153 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1154 1155 if (EnableDCEInRA) 1156 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1157 1158 TargetPassConfig::addOptimizedRegAlloc(); 1159 } 1160 1161 bool GCNPassConfig::addPreRewrite() { 1162 if (EnableRegReassign) { 1163 addPass(&GCNNSAReassignID); 1164 addPass(&GCNRegBankReassignID); 1165 } 1166 return true; 1167 } 1168 1169 void GCNPassConfig::addPostRegAlloc() { 1170 addPass(&SIFixVGPRCopiesID); 1171 if (getOptLevel() > CodeGenOpt::None) 1172 addPass(&SIOptimizeExecMaskingID); 1173 TargetPassConfig::addPostRegAlloc(); 1174 1175 // Equivalent of PEI for SGPRs. 1176 addPass(&SILowerSGPRSpillsID); 1177 } 1178 1179 void GCNPassConfig::addPreSched2() { 1180 addPass(&SIPostRABundlerID); 1181 } 1182 1183 void GCNPassConfig::addPreEmitPass() { 1184 addPass(createSIMemoryLegalizerPass()); 1185 addPass(createSIInsertWaitcntsPass()); 1186 addPass(createSIShrinkInstructionsPass()); 1187 addPass(createSIModeRegisterPass()); 1188 1189 if (getOptLevel() > CodeGenOpt::None) 1190 addPass(&SIInsertHardClausesID); 1191 1192 addPass(&SIRemoveShortExecBranchesID); 1193 addPass(&SIInsertSkipsPassID); 1194 addPass(&SIPreEmitPeepholeID); 1195 // The hazard recognizer that runs as part of the post-ra scheduler does not 1196 // guarantee to be able handle all hazards correctly. This is because if there 1197 // are multiple scheduling regions in a basic block, the regions are scheduled 1198 // bottom up, so when we begin to schedule a region we don't know what 1199 // instructions were emitted directly before it. 1200 // 1201 // Here we add a stand-alone hazard recognizer pass which can handle all 1202 // cases. 1203 addPass(&PostRAHazardRecognizerID); 1204 addPass(&BranchRelaxationPassID); 1205 } 1206 1207 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1208 return new GCNPassConfig(*this, PM); 1209 } 1210 1211 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1212 return new yaml::SIMachineFunctionInfo(); 1213 } 1214 1215 yaml::MachineFunctionInfo * 1216 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1217 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1218 return new yaml::SIMachineFunctionInfo(*MFI, 1219 *MF.getSubtarget().getRegisterInfo()); 1220 } 1221 1222 bool GCNTargetMachine::parseMachineFunctionInfo( 1223 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1224 SMDiagnostic &Error, SMRange &SourceRange) const { 1225 const yaml::SIMachineFunctionInfo &YamlMFI = 1226 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1227 MachineFunction &MF = PFS.MF; 1228 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1229 1230 MFI->initializeBaseYamlFields(YamlMFI); 1231 1232 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1233 Register TempReg; 1234 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1235 SourceRange = RegName.SourceRange; 1236 return true; 1237 } 1238 RegVal = TempReg; 1239 1240 return false; 1241 }; 1242 1243 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1244 // Create a diagnostic for a the register string literal. 1245 const MemoryBuffer &Buffer = 1246 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1247 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1248 RegName.Value.size(), SourceMgr::DK_Error, 1249 "incorrect register class for field", RegName.Value, 1250 None, None); 1251 SourceRange = RegName.SourceRange; 1252 return true; 1253 }; 1254 1255 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1256 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1257 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1258 return true; 1259 1260 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1261 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1262 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1263 } 1264 1265 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1266 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1267 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1268 } 1269 1270 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1271 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1272 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1273 } 1274 1275 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1276 const TargetRegisterClass &RC, 1277 ArgDescriptor &Arg, unsigned UserSGPRs, 1278 unsigned SystemSGPRs) { 1279 // Skip parsing if it's not present. 1280 if (!A) 1281 return false; 1282 1283 if (A->IsRegister) { 1284 Register Reg; 1285 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1286 SourceRange = A->RegisterName.SourceRange; 1287 return true; 1288 } 1289 if (!RC.contains(Reg)) 1290 return diagnoseRegisterClass(A->RegisterName); 1291 Arg = ArgDescriptor::createRegister(Reg); 1292 } else 1293 Arg = ArgDescriptor::createStack(A->StackOffset); 1294 // Check and apply the optional mask. 1295 if (A->Mask) 1296 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1297 1298 MFI->NumUserSGPRs += UserSGPRs; 1299 MFI->NumSystemSGPRs += SystemSGPRs; 1300 return false; 1301 }; 1302 1303 if (YamlMFI.ArgInfo && 1304 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1305 AMDGPU::SGPR_128RegClass, 1306 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1307 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1308 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1309 2, 0) || 1310 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1311 MFI->ArgInfo.QueuePtr, 2, 0) || 1312 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1313 AMDGPU::SReg_64RegClass, 1314 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1315 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1316 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1317 2, 0) || 1318 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1319 AMDGPU::SReg_64RegClass, 1320 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1321 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1322 AMDGPU::SGPR_32RegClass, 1323 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1324 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1325 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1326 0, 1) || 1327 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1328 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1329 0, 1) || 1330 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1331 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1332 0, 1) || 1333 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1334 AMDGPU::SGPR_32RegClass, 1335 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1336 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1337 AMDGPU::SGPR_32RegClass, 1338 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1339 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1340 AMDGPU::SReg_64RegClass, 1341 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1342 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1343 AMDGPU::SReg_64RegClass, 1344 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1345 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1346 AMDGPU::VGPR_32RegClass, 1347 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1348 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1349 AMDGPU::VGPR_32RegClass, 1350 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1351 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1352 AMDGPU::VGPR_32RegClass, 1353 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1354 return true; 1355 1356 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1357 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1358 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1359 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1360 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1361 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1362 1363 return false; 1364 } 1365