1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <memory> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableR600StructurizeCFG( 54 "r600-ir-structurize", 55 cl::desc("Use StructurizeCFG IR pass"), 56 cl::init(true)); 57 58 static cl::opt<bool> EnableSROA( 59 "amdgpu-sroa", 60 cl::desc("Run SROA after promote alloca pass"), 61 cl::ReallyHidden, 62 cl::init(true)); 63 64 static cl::opt<bool> 65 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 66 cl::desc("Run early if-conversion"), 67 cl::init(false)); 68 69 static cl::opt<bool> EnableR600IfConvert( 70 "r600-if-convert", 71 cl::desc("Use if conversion pass"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Option to disable vectorizer for tests. 76 static cl::opt<bool> EnableLoadStoreVectorizer( 77 "amdgpu-load-store-vectorizer", 78 cl::desc("Enable load store vectorizer"), 79 cl::init(true), 80 cl::Hidden); 81 82 // Option to control global loads scalarization 83 static cl::opt<bool> ScalarizeGlobal( 84 "amdgpu-scalarize-global-loads", 85 cl::desc("Enable global load scalarization"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to run internalize pass. 90 static cl::opt<bool> InternalizeSymbols( 91 "amdgpu-internalize-symbols", 92 cl::desc("Enable elimination of non-kernel functions and unused globals"), 93 cl::init(false), 94 cl::Hidden); 95 96 // Option to inline all early. 97 static cl::opt<bool> EarlyInlineAll( 98 "amdgpu-early-inline-all", 99 cl::desc("Inline all functions early"), 100 cl::init(false), 101 cl::Hidden); 102 103 static cl::opt<bool> EnableSDWAPeephole( 104 "amdgpu-sdwa-peephole", 105 cl::desc("Enable SDWA peepholer"), 106 cl::init(true)); 107 108 // Enable address space based alias analysis 109 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 110 cl::desc("Enable AMDGPU Alias Analysis"), 111 cl::init(true)); 112 113 // Option to enable new waitcnt insertion pass. 114 static cl::opt<bool> EnableSIInsertWaitcntsPass( 115 "enable-si-insert-waitcnts", 116 cl::desc("Use new waitcnt insertion pass"), 117 cl::init(true)); 118 119 // Option to run late CFG structurizer 120 static cl::opt<bool, true> LateCFGStructurize( 121 "amdgpu-late-structurize", 122 cl::desc("Enable late CFG structurization"), 123 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 124 cl::Hidden); 125 126 static cl::opt<bool> EnableAMDGPUFunctionCalls( 127 "amdgpu-function-calls", 128 cl::Hidden, 129 cl::desc("Enable AMDGPU function call support"), 130 cl::init(false)); 131 132 // Enable lib calls simplifications 133 static cl::opt<bool> EnableLibCallSimplify( 134 "amdgpu-simplify-libcall", 135 cl::desc("Enable mdgpu library simplifications"), 136 cl::init(true), 137 cl::Hidden); 138 139 extern "C" void LLVMInitializeAMDGPUTarget() { 140 // Register the target 141 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 142 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 143 144 PassRegistry *PR = PassRegistry::getPassRegistry(); 145 initializeR600ClauseMergePassPass(*PR); 146 initializeR600ControlFlowFinalizerPass(*PR); 147 initializeR600PacketizerPass(*PR); 148 initializeR600ExpandSpecialInstrsPassPass(*PR); 149 initializeR600VectorRegMergerPass(*PR); 150 initializeGlobalISel(*PR); 151 initializeAMDGPUDAGToDAGISelPass(*PR); 152 initializeSILowerI1CopiesPass(*PR); 153 initializeSIFixSGPRCopiesPass(*PR); 154 initializeSIFixVGPRCopiesPass(*PR); 155 initializeSIFoldOperandsPass(*PR); 156 initializeSIPeepholeSDWAPass(*PR); 157 initializeSIShrinkInstructionsPass(*PR); 158 initializeSIOptimizeExecMaskingPreRAPass(*PR); 159 initializeSILoadStoreOptimizerPass(*PR); 160 initializeAMDGPUAlwaysInlinePass(*PR); 161 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 162 initializeAMDGPUAnnotateUniformValuesPass(*PR); 163 initializeAMDGPUArgumentUsageInfoPass(*PR); 164 initializeAMDGPULowerKernelAttributesPass(*PR); 165 initializeAMDGPULowerIntrinsicsPass(*PR); 166 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 167 initializeAMDGPUPromoteAllocaPass(*PR); 168 initializeAMDGPUCodeGenPreparePass(*PR); 169 initializeAMDGPURewriteOutArgumentsPass(*PR); 170 initializeAMDGPUUnifyMetadataPass(*PR); 171 initializeSIAnnotateControlFlowPass(*PR); 172 initializeSIInsertWaitcntsPass(*PR); 173 initializeSIWholeQuadModePass(*PR); 174 initializeSILowerControlFlowPass(*PR); 175 initializeSIInsertSkipsPass(*PR); 176 initializeSIMemoryLegalizerPass(*PR); 177 initializeSIDebuggerInsertNopsPass(*PR); 178 initializeSIOptimizeExecMaskingPass(*PR); 179 initializeSIFixWWMLivenessPass(*PR); 180 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 181 initializeAMDGPUAAWrapperPassPass(*PR); 182 initializeAMDGPUUseNativeCallsPass(*PR); 183 initializeAMDGPUSimplifyLibCallsPass(*PR); 184 initializeAMDGPUInlinerPass(*PR); 185 } 186 187 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 188 return llvm::make_unique<AMDGPUTargetObjectFile>(); 189 } 190 191 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 192 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 193 } 194 195 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 196 return new SIScheduleDAGMI(C); 197 } 198 199 static ScheduleDAGInstrs * 200 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 201 ScheduleDAGMILive *DAG = 202 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 203 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 204 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 205 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 206 return DAG; 207 } 208 209 static ScheduleDAGInstrs * 210 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 211 auto DAG = new GCNIterativeScheduler(C, 212 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 213 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 214 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 215 return DAG; 216 } 217 218 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 219 return new GCNIterativeScheduler(C, 220 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 221 } 222 223 static ScheduleDAGInstrs * 224 createIterativeILPMachineScheduler(MachineSchedContext *C) { 225 auto DAG = new GCNIterativeScheduler(C, 226 GCNIterativeScheduler::SCHEDULE_ILP); 227 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 228 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 229 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 230 return DAG; 231 } 232 233 static MachineSchedRegistry 234 R600SchedRegistry("r600", "Run R600's custom scheduler", 235 createR600MachineScheduler); 236 237 static MachineSchedRegistry 238 SISchedRegistry("si", "Run SI's custom scheduler", 239 createSIMachineScheduler); 240 241 static MachineSchedRegistry 242 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 243 "Run GCN scheduler to maximize occupancy", 244 createGCNMaxOccupancyMachineScheduler); 245 246 static MachineSchedRegistry 247 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 248 "Run GCN scheduler to maximize occupancy (experimental)", 249 createIterativeGCNMaxOccupancyMachineScheduler); 250 251 static MachineSchedRegistry 252 GCNMinRegSchedRegistry("gcn-minreg", 253 "Run GCN iterative scheduler for minimal register usage (experimental)", 254 createMinRegScheduler); 255 256 static MachineSchedRegistry 257 GCNILPSchedRegistry("gcn-ilp", 258 "Run GCN iterative scheduler for ILP scheduling (experimental)", 259 createIterativeILPMachineScheduler); 260 261 static StringRef computeDataLayout(const Triple &TT) { 262 if (TT.getArch() == Triple::r600) { 263 // 32-bit pointers. 264 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 265 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 266 } 267 268 // 32-bit private, local, and region pointers. 64-bit global, constant and 269 // flat. 270 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 271 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 272 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 273 } 274 275 LLVM_READNONE 276 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 277 if (!GPU.empty()) 278 return GPU; 279 280 if (TT.getArch() == Triple::amdgcn) 281 return "generic"; 282 283 return "r600"; 284 } 285 286 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 287 // The AMDGPU toolchain only supports generating shared objects, so we 288 // must always use PIC. 289 return Reloc::PIC_; 290 } 291 292 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) { 293 if (CM) 294 return *CM; 295 return CodeModel::Small; 296 } 297 298 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 299 StringRef CPU, StringRef FS, 300 TargetOptions Options, 301 Optional<Reloc::Model> RM, 302 Optional<CodeModel::Model> CM, 303 CodeGenOpt::Level OptLevel) 304 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 305 FS, Options, getEffectiveRelocModel(RM), 306 getEffectiveCodeModel(CM), OptLevel), 307 TLOF(createTLOF(getTargetTriple())) { 308 AS = AMDGPU::getAMDGPUAS(TT); 309 initAsmInfo(); 310 } 311 312 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 313 314 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 315 316 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 317 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 318 return GPUAttr.hasAttribute(Attribute::None) ? 319 getTargetCPU() : GPUAttr.getValueAsString(); 320 } 321 322 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 323 Attribute FSAttr = F.getFnAttribute("target-features"); 324 325 return FSAttr.hasAttribute(Attribute::None) ? 326 getTargetFeatureString() : 327 FSAttr.getValueAsString(); 328 } 329 330 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 331 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 332 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 333 AAR.addAAResult(WrapperPass->getResult()); 334 }); 335 } 336 337 /// Predicate for Internalize pass. 338 static bool mustPreserveGV(const GlobalValue &GV) { 339 if (const Function *F = dyn_cast<Function>(&GV)) 340 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 341 342 return !GV.use_empty(); 343 } 344 345 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 346 Builder.DivergentTarget = true; 347 348 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 349 bool Internalize = InternalizeSymbols; 350 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; 351 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 352 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 353 354 if (EnableAMDGPUFunctionCalls) { 355 delete Builder.Inliner; 356 Builder.Inliner = createAMDGPUFunctionInliningPass(); 357 } 358 359 if (Internalize) { 360 // If we're generating code, we always have the whole program available. The 361 // relocations expected for externally visible functions aren't supported, 362 // so make sure every non-entry function is hidden. 363 Builder.addExtension( 364 PassManagerBuilder::EP_EnabledOnOptLevel0, 365 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 366 PM.add(createInternalizePass(mustPreserveGV)); 367 }); 368 } 369 370 Builder.addExtension( 371 PassManagerBuilder::EP_ModuleOptimizerEarly, 372 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 373 legacy::PassManagerBase &PM) { 374 if (AMDGPUAA) { 375 PM.add(createAMDGPUAAWrapperPass()); 376 PM.add(createAMDGPUExternalAAWrapperPass()); 377 } 378 PM.add(createAMDGPUUnifyMetadataPass()); 379 if (Internalize) { 380 PM.add(createInternalizePass(mustPreserveGV)); 381 PM.add(createGlobalDCEPass()); 382 } 383 if (EarlyInline) 384 PM.add(createAMDGPUAlwaysInlinePass(false)); 385 }); 386 387 const auto &Opt = Options; 388 Builder.addExtension( 389 PassManagerBuilder::EP_EarlyAsPossible, 390 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 391 legacy::PassManagerBase &PM) { 392 if (AMDGPUAA) { 393 PM.add(createAMDGPUAAWrapperPass()); 394 PM.add(createAMDGPUExternalAAWrapperPass()); 395 } 396 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 397 if (LibCallSimplify) 398 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 399 }); 400 401 Builder.addExtension( 402 PassManagerBuilder::EP_CGSCCOptimizerLate, 403 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 404 // Add infer address spaces pass to the opt pipeline after inlining 405 // but before SROA to increase SROA opportunities. 406 PM.add(createInferAddressSpacesPass()); 407 408 // This should run after inlining to have any chance of doing anything, 409 // and before other cleanup optimizations. 410 PM.add(createAMDGPULowerKernelAttributesPass()); 411 }); 412 } 413 414 //===----------------------------------------------------------------------===// 415 // R600 Target Machine (R600 -> Cayman) 416 //===----------------------------------------------------------------------===// 417 418 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 419 StringRef CPU, StringRef FS, 420 TargetOptions Options, 421 Optional<Reloc::Model> RM, 422 Optional<CodeModel::Model> CM, 423 CodeGenOpt::Level OL, bool JIT) 424 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 425 setRequiresStructuredCFG(true); 426 } 427 428 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 429 const Function &F) const { 430 StringRef GPU = getGPUName(F); 431 StringRef FS = getFeatureString(F); 432 433 SmallString<128> SubtargetKey(GPU); 434 SubtargetKey.append(FS); 435 436 auto &I = SubtargetMap[SubtargetKey]; 437 if (!I) { 438 // This needs to be done before we create a new subtarget since any 439 // creation will depend on the TM and the code generation flags on the 440 // function that reside in TargetOptions. 441 resetTargetOptions(F); 442 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 443 } 444 445 return I.get(); 446 } 447 448 //===----------------------------------------------------------------------===// 449 // GCN Target Machine (SI+) 450 //===----------------------------------------------------------------------===// 451 452 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 453 StringRef CPU, StringRef FS, 454 TargetOptions Options, 455 Optional<Reloc::Model> RM, 456 Optional<CodeModel::Model> CM, 457 CodeGenOpt::Level OL, bool JIT) 458 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 459 460 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 461 StringRef GPU = getGPUName(F); 462 StringRef FS = getFeatureString(F); 463 464 SmallString<128> SubtargetKey(GPU); 465 SubtargetKey.append(FS); 466 467 auto &I = SubtargetMap[SubtargetKey]; 468 if (!I) { 469 // This needs to be done before we create a new subtarget since any 470 // creation will depend on the TM and the code generation flags on the 471 // function that reside in TargetOptions. 472 resetTargetOptions(F); 473 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 474 } 475 476 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 477 478 return I.get(); 479 } 480 481 //===----------------------------------------------------------------------===// 482 // AMDGPU Pass Setup 483 //===----------------------------------------------------------------------===// 484 485 namespace { 486 487 class AMDGPUPassConfig : public TargetPassConfig { 488 public: 489 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 490 : TargetPassConfig(TM, PM) { 491 // Exceptions and StackMaps are not supported, so these passes will never do 492 // anything. 493 disablePass(&StackMapLivenessID); 494 disablePass(&FuncletLayoutID); 495 } 496 497 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 498 return getTM<AMDGPUTargetMachine>(); 499 } 500 501 ScheduleDAGInstrs * 502 createMachineScheduler(MachineSchedContext *C) const override { 503 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 504 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 505 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 506 return DAG; 507 } 508 509 void addEarlyCSEOrGVNPass(); 510 void addStraightLineScalarOptimizationPasses(); 511 void addIRPasses() override; 512 void addCodeGenPrepare() override; 513 bool addPreISel() override; 514 bool addInstSelector() override; 515 bool addGCPasses() override; 516 }; 517 518 class R600PassConfig final : public AMDGPUPassConfig { 519 public: 520 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 521 : AMDGPUPassConfig(TM, PM) {} 522 523 ScheduleDAGInstrs *createMachineScheduler( 524 MachineSchedContext *C) const override { 525 return createR600MachineScheduler(C); 526 } 527 528 bool addPreISel() override; 529 bool addInstSelector() override; 530 void addPreRegAlloc() override; 531 void addPreSched2() override; 532 void addPreEmitPass() override; 533 }; 534 535 class GCNPassConfig final : public AMDGPUPassConfig { 536 public: 537 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 538 : AMDGPUPassConfig(TM, PM) { 539 // It is necessary to know the register usage of the entire call graph. We 540 // allow calls without EnableAMDGPUFunctionCalls if they are marked 541 // noinline, so this is always required. 542 setRequiresCodeGenSCCOrder(true); 543 } 544 545 GCNTargetMachine &getGCNTargetMachine() const { 546 return getTM<GCNTargetMachine>(); 547 } 548 549 ScheduleDAGInstrs * 550 createMachineScheduler(MachineSchedContext *C) const override; 551 552 bool addPreISel() override; 553 void addMachineSSAOptimization() override; 554 bool addILPOpts() override; 555 bool addInstSelector() override; 556 bool addIRTranslator() override; 557 bool addLegalizeMachineIR() override; 558 bool addRegBankSelect() override; 559 bool addGlobalInstructionSelect() override; 560 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 561 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 562 void addPreRegAlloc() override; 563 void addPostRegAlloc() override; 564 void addPreSched2() override; 565 void addPreEmitPass() override; 566 }; 567 568 } // end anonymous namespace 569 570 TargetTransformInfo 571 AMDGPUTargetMachine::getTargetTransformInfo(const Function &F) { 572 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 573 } 574 575 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 576 if (getOptLevel() == CodeGenOpt::Aggressive) 577 addPass(createGVNPass()); 578 else 579 addPass(createEarlyCSEPass()); 580 } 581 582 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 583 addPass(createSeparateConstOffsetFromGEPPass()); 584 addPass(createSpeculativeExecutionPass()); 585 // ReassociateGEPs exposes more opportunites for SLSR. See 586 // the example in reassociate-geps-and-slsr.ll. 587 addPass(createStraightLineStrengthReducePass()); 588 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 589 // EarlyCSE can reuse. 590 addEarlyCSEOrGVNPass(); 591 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 592 addPass(createNaryReassociatePass()); 593 // NaryReassociate on GEPs creates redundant common expressions, so run 594 // EarlyCSE after it. 595 addPass(createEarlyCSEPass()); 596 } 597 598 void AMDGPUPassConfig::addIRPasses() { 599 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 600 601 // There is no reason to run these. 602 disablePass(&StackMapLivenessID); 603 disablePass(&FuncletLayoutID); 604 disablePass(&PatchableFunctionID); 605 606 addPass(createAMDGPULowerIntrinsicsPass()); 607 608 if (TM.getTargetTriple().getArch() == Triple::r600 || 609 !EnableAMDGPUFunctionCalls) { 610 // Function calls are not supported, so make sure we inline everything. 611 addPass(createAMDGPUAlwaysInlinePass()); 612 addPass(createAlwaysInlinerLegacyPass()); 613 // We need to add the barrier noop pass, otherwise adding the function 614 // inlining pass will cause all of the PassConfigs passes to be run 615 // one function at a time, which means if we have a nodule with two 616 // functions, then we will generate code for the first function 617 // without ever running any passes on the second. 618 addPass(createBarrierNoopPass()); 619 } 620 621 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 622 // TODO: May want to move later or split into an early and late one. 623 624 addPass(createAMDGPUCodeGenPreparePass()); 625 } 626 627 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 628 if (TM.getTargetTriple().getArch() == Triple::r600) 629 addPass(createR600OpenCLImageTypeLoweringPass()); 630 631 // Replace OpenCL enqueued block function pointers with global variables. 632 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 633 634 if (TM.getOptLevel() > CodeGenOpt::None) { 635 addPass(createInferAddressSpacesPass()); 636 addPass(createAMDGPUPromoteAlloca()); 637 638 if (EnableSROA) 639 addPass(createSROAPass()); 640 641 addStraightLineScalarOptimizationPasses(); 642 643 if (EnableAMDGPUAliasAnalysis) { 644 addPass(createAMDGPUAAWrapperPass()); 645 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 646 AAResults &AAR) { 647 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 648 AAR.addAAResult(WrapperPass->getResult()); 649 })); 650 } 651 } 652 653 TargetPassConfig::addIRPasses(); 654 655 // EarlyCSE is not always strong enough to clean up what LSR produces. For 656 // example, GVN can combine 657 // 658 // %0 = add %a, %b 659 // %1 = add %b, %a 660 // 661 // and 662 // 663 // %0 = shl nsw %a, 2 664 // %1 = shl %a, 2 665 // 666 // but EarlyCSE can do neither of them. 667 if (getOptLevel() != CodeGenOpt::None) 668 addEarlyCSEOrGVNPass(); 669 } 670 671 void AMDGPUPassConfig::addCodeGenPrepare() { 672 TargetPassConfig::addCodeGenPrepare(); 673 674 if (EnableLoadStoreVectorizer) 675 addPass(createLoadStoreVectorizerPass()); 676 } 677 678 bool AMDGPUPassConfig::addPreISel() { 679 addPass(createFlattenCFGPass()); 680 return false; 681 } 682 683 bool AMDGPUPassConfig::addInstSelector() { 684 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 685 return false; 686 } 687 688 bool AMDGPUPassConfig::addGCPasses() { 689 // Do nothing. GC is not supported. 690 return false; 691 } 692 693 //===----------------------------------------------------------------------===// 694 // R600 Pass Setup 695 //===----------------------------------------------------------------------===// 696 697 bool R600PassConfig::addPreISel() { 698 AMDGPUPassConfig::addPreISel(); 699 700 if (EnableR600StructurizeCFG) 701 addPass(createStructurizeCFGPass()); 702 return false; 703 } 704 705 bool R600PassConfig::addInstSelector() { 706 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 707 return false; 708 } 709 710 void R600PassConfig::addPreRegAlloc() { 711 addPass(createR600VectorRegMerger()); 712 } 713 714 void R600PassConfig::addPreSched2() { 715 addPass(createR600EmitClauseMarkers(), false); 716 if (EnableR600IfConvert) 717 addPass(&IfConverterID, false); 718 addPass(createR600ClauseMergePass(), false); 719 } 720 721 void R600PassConfig::addPreEmitPass() { 722 addPass(createAMDGPUCFGStructurizerPass(), false); 723 addPass(createR600ExpandSpecialInstrsPass(), false); 724 addPass(&FinalizeMachineBundlesID, false); 725 addPass(createR600Packetizer(), false); 726 addPass(createR600ControlFlowFinalizer(), false); 727 } 728 729 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 730 return new R600PassConfig(*this, PM); 731 } 732 733 //===----------------------------------------------------------------------===// 734 // GCN Pass Setup 735 //===----------------------------------------------------------------------===// 736 737 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 738 MachineSchedContext *C) const { 739 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 740 if (ST.enableSIScheduler()) 741 return createSIMachineScheduler(C); 742 return createGCNMaxOccupancyMachineScheduler(C); 743 } 744 745 bool GCNPassConfig::addPreISel() { 746 AMDGPUPassConfig::addPreISel(); 747 748 // FIXME: We need to run a pass to propagate the attributes when calls are 749 // supported. 750 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 751 752 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 753 // regions formed by them. 754 addPass(&AMDGPUUnifyDivergentExitNodesID); 755 if (!LateCFGStructurize) { 756 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 757 } 758 addPass(createSinkingPass()); 759 addPass(createAMDGPUAnnotateUniformValues()); 760 if (!LateCFGStructurize) { 761 addPass(createSIAnnotateControlFlowPass()); 762 } 763 764 return false; 765 } 766 767 void GCNPassConfig::addMachineSSAOptimization() { 768 TargetPassConfig::addMachineSSAOptimization(); 769 770 // We want to fold operands after PeepholeOptimizer has run (or as part of 771 // it), because it will eliminate extra copies making it easier to fold the 772 // real source operand. We want to eliminate dead instructions after, so that 773 // we see fewer uses of the copies. We then need to clean up the dead 774 // instructions leftover after the operands are folded as well. 775 // 776 // XXX - Can we get away without running DeadMachineInstructionElim again? 777 addPass(&SIFoldOperandsID); 778 addPass(&DeadMachineInstructionElimID); 779 addPass(&SILoadStoreOptimizerID); 780 if (EnableSDWAPeephole) { 781 addPass(&SIPeepholeSDWAID); 782 addPass(&EarlyMachineLICMID); 783 addPass(&MachineCSEID); 784 addPass(&SIFoldOperandsID); 785 addPass(&DeadMachineInstructionElimID); 786 } 787 addPass(createSIShrinkInstructionsPass()); 788 } 789 790 bool GCNPassConfig::addILPOpts() { 791 if (EnableEarlyIfConversion) 792 addPass(&EarlyIfConverterID); 793 794 TargetPassConfig::addILPOpts(); 795 return false; 796 } 797 798 bool GCNPassConfig::addInstSelector() { 799 AMDGPUPassConfig::addInstSelector(); 800 addPass(createSILowerI1CopiesPass()); 801 addPass(&SIFixSGPRCopiesID); 802 return false; 803 } 804 805 bool GCNPassConfig::addIRTranslator() { 806 addPass(new IRTranslator()); 807 return false; 808 } 809 810 bool GCNPassConfig::addLegalizeMachineIR() { 811 addPass(new Legalizer()); 812 return false; 813 } 814 815 bool GCNPassConfig::addRegBankSelect() { 816 addPass(new RegBankSelect()); 817 return false; 818 } 819 820 bool GCNPassConfig::addGlobalInstructionSelect() { 821 addPass(new InstructionSelect()); 822 return false; 823 } 824 825 void GCNPassConfig::addPreRegAlloc() { 826 if (LateCFGStructurize) { 827 addPass(createAMDGPUMachineCFGStructurizerPass()); 828 } 829 addPass(createSIWholeQuadModePass()); 830 } 831 832 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 833 // FIXME: We have to disable the verifier here because of PHIElimination + 834 // TwoAddressInstructions disabling it. 835 836 // This must be run immediately after phi elimination and before 837 // TwoAddressInstructions, otherwise the processing of the tied operand of 838 // SI_ELSE will introduce a copy of the tied operand source after the else. 839 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 840 841 // This must be run after SILowerControlFlow, since it needs to use the 842 // machine-level CFG, but before register allocation. 843 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 844 845 TargetPassConfig::addFastRegAlloc(RegAllocPass); 846 } 847 848 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 849 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 850 851 // This must be run immediately after phi elimination and before 852 // TwoAddressInstructions, otherwise the processing of the tied operand of 853 // SI_ELSE will introduce a copy of the tied operand source after the else. 854 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 855 856 // This must be run after SILowerControlFlow, since it needs to use the 857 // machine-level CFG, but before register allocation. 858 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 859 860 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 861 } 862 863 void GCNPassConfig::addPostRegAlloc() { 864 addPass(&SIFixVGPRCopiesID); 865 addPass(&SIOptimizeExecMaskingID); 866 TargetPassConfig::addPostRegAlloc(); 867 } 868 869 void GCNPassConfig::addPreSched2() { 870 } 871 872 void GCNPassConfig::addPreEmitPass() { 873 // The hazard recognizer that runs as part of the post-ra scheduler does not 874 // guarantee to be able handle all hazards correctly. This is because if there 875 // are multiple scheduling regions in a basic block, the regions are scheduled 876 // bottom up, so when we begin to schedule a region we don't know what 877 // instructions were emitted directly before it. 878 // 879 // Here we add a stand-alone hazard recognizer pass which can handle all 880 // cases. 881 addPass(&PostRAHazardRecognizerID); 882 883 addPass(createSIMemoryLegalizerPass()); 884 addPass(createSIInsertWaitcntsPass()); 885 addPass(createSIShrinkInstructionsPass()); 886 addPass(&SIInsertSkipsPassID); 887 addPass(createSIDebuggerInsertNopsPass()); 888 addPass(&BranchRelaxationPassID); 889 } 890 891 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 892 return new GCNPassConfig(*this, PM); 893 } 894