1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/GVN.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Vectorize.h" 56 #include <memory> 57 58 using namespace llvm; 59 60 static cl::opt<bool> EnableR600StructurizeCFG( 61 "r600-ir-structurize", 62 cl::desc("Use StructurizeCFG IR pass"), 63 cl::init(true)); 64 65 static cl::opt<bool> EnableSROA( 66 "amdgpu-sroa", 67 cl::desc("Run SROA after promote alloca pass"), 68 cl::ReallyHidden, 69 cl::init(true)); 70 71 static cl::opt<bool> 72 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 73 cl::desc("Run early if-conversion"), 74 cl::init(false)); 75 76 static cl::opt<bool> 77 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 78 cl::desc("Run pre-RA exec mask optimizations"), 79 cl::init(true)); 80 81 static cl::opt<bool> EnableR600IfConvert( 82 "r600-if-convert", 83 cl::desc("Use if conversion pass"), 84 cl::ReallyHidden, 85 cl::init(true)); 86 87 // Option to disable vectorizer for tests. 88 static cl::opt<bool> EnableLoadStoreVectorizer( 89 "amdgpu-load-store-vectorizer", 90 cl::desc("Enable load store vectorizer"), 91 cl::init(true), 92 cl::Hidden); 93 94 // Option to control global loads scalarization 95 static cl::opt<bool> ScalarizeGlobal( 96 "amdgpu-scalarize-global-loads", 97 cl::desc("Enable global load scalarization"), 98 cl::init(true), 99 cl::Hidden); 100 101 // Option to run internalize pass. 102 static cl::opt<bool> InternalizeSymbols( 103 "amdgpu-internalize-symbols", 104 cl::desc("Enable elimination of non-kernel functions and unused globals"), 105 cl::init(false), 106 cl::Hidden); 107 108 // Option to inline all early. 109 static cl::opt<bool> EarlyInlineAll( 110 "amdgpu-early-inline-all", 111 cl::desc("Inline all functions early"), 112 cl::init(false), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableSDWAPeephole( 116 "amdgpu-sdwa-peephole", 117 cl::desc("Enable SDWA peepholer"), 118 cl::init(true)); 119 120 static cl::opt<bool> EnableDPPCombine( 121 "amdgpu-dpp-combine", 122 cl::desc("Enable DPP combiner"), 123 cl::init(true)); 124 125 // Enable address space based alias analysis 126 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 127 cl::desc("Enable AMDGPU Alias Analysis"), 128 cl::init(true)); 129 130 // Option to run late CFG structurizer 131 static cl::opt<bool, true> LateCFGStructurize( 132 "amdgpu-late-structurize", 133 cl::desc("Enable late CFG structurization"), 134 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 135 cl::Hidden); 136 137 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 138 "amdgpu-function-calls", 139 cl::desc("Enable AMDGPU function call support"), 140 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 141 cl::init(true), 142 cl::Hidden); 143 144 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 145 "amdgpu-fixed-function-abi", 146 cl::desc("Enable all implicit function arguments"), 147 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 148 cl::init(false), 149 cl::Hidden); 150 151 // Enable lib calls simplifications 152 static cl::opt<bool> EnableLibCallSimplify( 153 "amdgpu-simplify-libcall", 154 cl::desc("Enable amdgpu library simplifications"), 155 cl::init(true), 156 cl::Hidden); 157 158 static cl::opt<bool> EnableLowerKernelArguments( 159 "amdgpu-ir-lower-kernel-arguments", 160 cl::desc("Lower kernel argument loads in IR pass"), 161 cl::init(true), 162 cl::Hidden); 163 164 static cl::opt<bool> EnableRegReassign( 165 "amdgpu-reassign-regs", 166 cl::desc("Enable register reassign optimizations on gfx10+"), 167 cl::init(true), 168 cl::Hidden); 169 170 // Enable atomic optimization 171 static cl::opt<bool> EnableAtomicOptimizations( 172 "amdgpu-atomic-optimizations", 173 cl::desc("Enable atomic optimizations"), 174 cl::init(false), 175 cl::Hidden); 176 177 // Enable Mode register optimization 178 static cl::opt<bool> EnableSIModeRegisterPass( 179 "amdgpu-mode-register", 180 cl::desc("Enable mode register pass"), 181 cl::init(true), 182 cl::Hidden); 183 184 // Option is used in lit tests to prevent deadcoding of patterns inspected. 185 static cl::opt<bool> 186 EnableDCEInRA("amdgpu-dce-in-ra", 187 cl::init(true), cl::Hidden, 188 cl::desc("Enable machine DCE inside regalloc")); 189 190 static cl::opt<bool> EnableScalarIRPasses( 191 "amdgpu-scalar-ir-passes", 192 cl::desc("Enable scalar IR passes"), 193 cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> EnableStructurizerWorkarounds( 197 "amdgpu-enable-structurizer-workarounds", 198 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPUPromoteAllocaPass(*PR); 237 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 238 initializeAMDGPUCodeGenPreparePass(*PR); 239 initializeAMDGPULateCodeGenPreparePass(*PR); 240 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 241 initializeAMDGPUPropagateAttributesLatePass(*PR); 242 initializeAMDGPURewriteOutArgumentsPass(*PR); 243 initializeAMDGPUUnifyMetadataPass(*PR); 244 initializeSIAnnotateControlFlowPass(*PR); 245 initializeSIInsertHardClausesPass(*PR); 246 initializeSIInsertWaitcntsPass(*PR); 247 initializeSIModeRegisterPass(*PR); 248 initializeSIWholeQuadModePass(*PR); 249 initializeSILowerControlFlowPass(*PR); 250 initializeSIRemoveShortExecBranchesPass(*PR); 251 initializeSIPreEmitPeepholePass(*PR); 252 initializeSIInsertSkipsPass(*PR); 253 initializeSIMemoryLegalizerPass(*PR); 254 initializeSIOptimizeExecMaskingPass(*PR); 255 initializeSIPreAllocateWWMRegsPass(*PR); 256 initializeSIFormMemoryClausesPass(*PR); 257 initializeSIPostRABundlerPass(*PR); 258 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 259 initializeAMDGPUAAWrapperPassPass(*PR); 260 initializeAMDGPUExternalAAWrapperPass(*PR); 261 initializeAMDGPUUseNativeCallsPass(*PR); 262 initializeAMDGPUSimplifyLibCallsPass(*PR); 263 initializeAMDGPUInlinerPass(*PR); 264 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 265 initializeGCNRegBankReassignPass(*PR); 266 initializeGCNNSAReassignPass(*PR); 267 initializeSIAddIMGInitPass(*PR); 268 } 269 270 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 271 return std::make_unique<AMDGPUTargetObjectFile>(); 272 } 273 274 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 275 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 276 } 277 278 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 279 return new SIScheduleDAGMI(C); 280 } 281 282 static ScheduleDAGInstrs * 283 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 284 ScheduleDAGMILive *DAG = 285 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 286 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 288 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 289 return DAG; 290 } 291 292 static ScheduleDAGInstrs * 293 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 294 auto DAG = new GCNIterativeScheduler(C, 295 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 296 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 297 return DAG; 298 } 299 300 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 301 return new GCNIterativeScheduler(C, 302 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 303 } 304 305 static ScheduleDAGInstrs * 306 createIterativeILPMachineScheduler(MachineSchedContext *C) { 307 auto DAG = new GCNIterativeScheduler(C, 308 GCNIterativeScheduler::SCHEDULE_ILP); 309 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 310 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 311 return DAG; 312 } 313 314 static MachineSchedRegistry 315 R600SchedRegistry("r600", "Run R600's custom scheduler", 316 createR600MachineScheduler); 317 318 static MachineSchedRegistry 319 SISchedRegistry("si", "Run SI's custom scheduler", 320 createSIMachineScheduler); 321 322 static MachineSchedRegistry 323 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 324 "Run GCN scheduler to maximize occupancy", 325 createGCNMaxOccupancyMachineScheduler); 326 327 static MachineSchedRegistry 328 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 329 "Run GCN scheduler to maximize occupancy (experimental)", 330 createIterativeGCNMaxOccupancyMachineScheduler); 331 332 static MachineSchedRegistry 333 GCNMinRegSchedRegistry("gcn-minreg", 334 "Run GCN iterative scheduler for minimal register usage (experimental)", 335 createMinRegScheduler); 336 337 static MachineSchedRegistry 338 GCNILPSchedRegistry("gcn-ilp", 339 "Run GCN iterative scheduler for ILP scheduling (experimental)", 340 createIterativeILPMachineScheduler); 341 342 static StringRef computeDataLayout(const Triple &TT) { 343 if (TT.getArch() == Triple::r600) { 344 // 32-bit pointers. 345 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 346 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 347 } 348 349 // 32-bit private, local, and region pointers. 64-bit global, constant and 350 // flat, non-integral buffer fat pointers. 351 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 352 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 353 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 354 "-ni:7"; 355 } 356 357 LLVM_READNONE 358 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 359 if (!GPU.empty()) 360 return GPU; 361 362 // Need to default to a target with flat support for HSA. 363 if (TT.getArch() == Triple::amdgcn) 364 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 365 366 return "r600"; 367 } 368 369 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 370 // The AMDGPU toolchain only supports generating shared objects, so we 371 // must always use PIC. 372 return Reloc::PIC_; 373 } 374 375 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 376 StringRef CPU, StringRef FS, 377 TargetOptions Options, 378 Optional<Reloc::Model> RM, 379 Optional<CodeModel::Model> CM, 380 CodeGenOpt::Level OptLevel) 381 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 382 FS, Options, getEffectiveRelocModel(RM), 383 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 384 TLOF(createTLOF(getTargetTriple())) { 385 initAsmInfo(); 386 if (TT.getArch() == Triple::amdgcn) { 387 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 388 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 389 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 390 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 391 } 392 } 393 394 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 395 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 396 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 397 398 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 399 400 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 401 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 402 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 403 } 404 405 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 406 Attribute FSAttr = F.getFnAttribute("target-features"); 407 408 return FSAttr.isValid() ? FSAttr.getValueAsString() 409 : getTargetFeatureString(); 410 } 411 412 /// Predicate for Internalize pass. 413 static bool mustPreserveGV(const GlobalValue &GV) { 414 if (const Function *F = dyn_cast<Function>(&GV)) 415 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 416 417 return !GV.use_empty(); 418 } 419 420 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 421 Builder.DivergentTarget = true; 422 423 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 424 bool Internalize = InternalizeSymbols; 425 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 426 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 427 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 428 429 if (EnableFunctionCalls) { 430 delete Builder.Inliner; 431 Builder.Inliner = createAMDGPUFunctionInliningPass(); 432 } 433 434 Builder.addExtension( 435 PassManagerBuilder::EP_ModuleOptimizerEarly, 436 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 437 legacy::PassManagerBase &PM) { 438 if (AMDGPUAA) { 439 PM.add(createAMDGPUAAWrapperPass()); 440 PM.add(createAMDGPUExternalAAWrapperPass()); 441 } 442 PM.add(createAMDGPUUnifyMetadataPass()); 443 PM.add(createAMDGPUPrintfRuntimeBinding()); 444 if (Internalize) 445 PM.add(createInternalizePass(mustPreserveGV)); 446 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 447 if (Internalize) 448 PM.add(createGlobalDCEPass()); 449 if (EarlyInline) 450 PM.add(createAMDGPUAlwaysInlinePass(false)); 451 }); 452 453 Builder.addExtension( 454 PassManagerBuilder::EP_EarlyAsPossible, 455 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 456 legacy::PassManagerBase &PM) { 457 if (AMDGPUAA) { 458 PM.add(createAMDGPUAAWrapperPass()); 459 PM.add(createAMDGPUExternalAAWrapperPass()); 460 } 461 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 462 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 463 if (LibCallSimplify) 464 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 465 }); 466 467 Builder.addExtension( 468 PassManagerBuilder::EP_CGSCCOptimizerLate, 469 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 470 // Add infer address spaces pass to the opt pipeline after inlining 471 // but before SROA to increase SROA opportunities. 472 PM.add(createInferAddressSpacesPass()); 473 474 // This should run after inlining to have any chance of doing anything, 475 // and before other cleanup optimizations. 476 PM.add(createAMDGPULowerKernelAttributesPass()); 477 478 // Promote alloca to vector before SROA and loop unroll. If we manage 479 // to eliminate allocas before unroll we may choose to unroll less. 480 if (EnableOpt) 481 PM.add(createAMDGPUPromoteAllocaToVector()); 482 }); 483 } 484 485 //===----------------------------------------------------------------------===// 486 // R600 Target Machine (R600 -> Cayman) 487 //===----------------------------------------------------------------------===// 488 489 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 490 StringRef CPU, StringRef FS, 491 TargetOptions Options, 492 Optional<Reloc::Model> RM, 493 Optional<CodeModel::Model> CM, 494 CodeGenOpt::Level OL, bool JIT) 495 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 496 setRequiresStructuredCFG(true); 497 498 // Override the default since calls aren't supported for r600. 499 if (EnableFunctionCalls && 500 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 501 EnableFunctionCalls = false; 502 } 503 504 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 505 const Function &F) const { 506 StringRef GPU = getGPUName(F); 507 StringRef FS = getFeatureString(F); 508 509 SmallString<128> SubtargetKey(GPU); 510 SubtargetKey.append(FS); 511 512 auto &I = SubtargetMap[SubtargetKey]; 513 if (!I) { 514 // This needs to be done before we create a new subtarget since any 515 // creation will depend on the TM and the code generation flags on the 516 // function that reside in TargetOptions. 517 resetTargetOptions(F); 518 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 519 } 520 521 return I.get(); 522 } 523 524 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 525 unsigned DestAS) const { 526 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 527 AMDGPU::isFlatGlobalAddrSpace(DestAS); 528 } 529 530 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 531 const auto *LD = dyn_cast<LoadInst>(V); 532 if (!LD) 533 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 534 535 // It must be a generic pointer loaded. 536 assert(V->getType()->isPointerTy() && 537 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 538 539 const auto *Ptr = LD->getPointerOperand(); 540 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 541 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 542 // For a generic pointer loaded from the constant memory, it could be assumed 543 // as a global pointer since the constant memory is only populated on the 544 // host side. As implied by the offload programming model, only global 545 // pointers could be referenced on the host side. 546 return AMDGPUAS::GLOBAL_ADDRESS; 547 } 548 549 TargetTransformInfo 550 R600TargetMachine::getTargetTransformInfo(const Function &F) { 551 return TargetTransformInfo(R600TTIImpl(this, F)); 552 } 553 554 //===----------------------------------------------------------------------===// 555 // GCN Target Machine (SI+) 556 //===----------------------------------------------------------------------===// 557 558 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 559 StringRef CPU, StringRef FS, 560 TargetOptions Options, 561 Optional<Reloc::Model> RM, 562 Optional<CodeModel::Model> CM, 563 CodeGenOpt::Level OL, bool JIT) 564 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 565 566 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 567 StringRef GPU = getGPUName(F); 568 StringRef FS = getFeatureString(F); 569 570 SmallString<128> SubtargetKey(GPU); 571 SubtargetKey.append(FS); 572 573 auto &I = SubtargetMap[SubtargetKey]; 574 if (!I) { 575 // This needs to be done before we create a new subtarget since any 576 // creation will depend on the TM and the code generation flags on the 577 // function that reside in TargetOptions. 578 resetTargetOptions(F); 579 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 580 } 581 582 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 583 584 return I.get(); 585 } 586 587 TargetTransformInfo 588 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 589 return TargetTransformInfo(GCNTTIImpl(this, F)); 590 } 591 592 //===----------------------------------------------------------------------===// 593 // AMDGPU Pass Setup 594 //===----------------------------------------------------------------------===// 595 596 namespace { 597 598 class AMDGPUPassConfig : public TargetPassConfig { 599 public: 600 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 601 : TargetPassConfig(TM, PM) { 602 // Exceptions and StackMaps are not supported, so these passes will never do 603 // anything. 604 disablePass(&StackMapLivenessID); 605 disablePass(&FuncletLayoutID); 606 } 607 608 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 609 return getTM<AMDGPUTargetMachine>(); 610 } 611 612 ScheduleDAGInstrs * 613 createMachineScheduler(MachineSchedContext *C) const override { 614 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 615 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 616 return DAG; 617 } 618 619 void addEarlyCSEOrGVNPass(); 620 void addStraightLineScalarOptimizationPasses(); 621 void addIRPasses() override; 622 void addCodeGenPrepare() override; 623 bool addPreISel() override; 624 bool addInstSelector() override; 625 bool addGCPasses() override; 626 627 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 628 }; 629 630 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 631 return getStandardCSEConfigForOpt(TM->getOptLevel()); 632 } 633 634 class R600PassConfig final : public AMDGPUPassConfig { 635 public: 636 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 637 : AMDGPUPassConfig(TM, PM) {} 638 639 ScheduleDAGInstrs *createMachineScheduler( 640 MachineSchedContext *C) const override { 641 return createR600MachineScheduler(C); 642 } 643 644 bool addPreISel() override; 645 bool addInstSelector() override; 646 void addPreRegAlloc() override; 647 void addPreSched2() override; 648 void addPreEmitPass() override; 649 }; 650 651 class GCNPassConfig final : public AMDGPUPassConfig { 652 public: 653 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 654 : AMDGPUPassConfig(TM, PM) { 655 // It is necessary to know the register usage of the entire call graph. We 656 // allow calls without EnableAMDGPUFunctionCalls if they are marked 657 // noinline, so this is always required. 658 setRequiresCodeGenSCCOrder(true); 659 } 660 661 GCNTargetMachine &getGCNTargetMachine() const { 662 return getTM<GCNTargetMachine>(); 663 } 664 665 ScheduleDAGInstrs * 666 createMachineScheduler(MachineSchedContext *C) const override; 667 668 bool addPreISel() override; 669 void addMachineSSAOptimization() override; 670 bool addILPOpts() override; 671 bool addInstSelector() override; 672 bool addIRTranslator() override; 673 void addPreLegalizeMachineIR() override; 674 bool addLegalizeMachineIR() override; 675 void addPreRegBankSelect() override; 676 bool addRegBankSelect() override; 677 bool addGlobalInstructionSelect() override; 678 void addFastRegAlloc() override; 679 void addOptimizedRegAlloc() override; 680 void addPreRegAlloc() override; 681 bool addPreRewrite() override; 682 void addPostRegAlloc() override; 683 void addPreSched2() override; 684 void addPreEmitPass() override; 685 }; 686 687 } // end anonymous namespace 688 689 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 690 if (getOptLevel() == CodeGenOpt::Aggressive) 691 addPass(createGVNPass()); 692 else 693 addPass(createEarlyCSEPass()); 694 } 695 696 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 697 addPass(createLICMPass()); 698 addPass(createSeparateConstOffsetFromGEPPass()); 699 addPass(createSpeculativeExecutionPass()); 700 // ReassociateGEPs exposes more opportunites for SLSR. See 701 // the example in reassociate-geps-and-slsr.ll. 702 addPass(createStraightLineStrengthReducePass()); 703 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 704 // EarlyCSE can reuse. 705 addEarlyCSEOrGVNPass(); 706 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 707 addPass(createNaryReassociatePass()); 708 // NaryReassociate on GEPs creates redundant common expressions, so run 709 // EarlyCSE after it. 710 addPass(createEarlyCSEPass()); 711 } 712 713 void AMDGPUPassConfig::addIRPasses() { 714 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 715 716 // There is no reason to run these. 717 disablePass(&StackMapLivenessID); 718 disablePass(&FuncletLayoutID); 719 disablePass(&PatchableFunctionID); 720 721 addPass(createAMDGPUPrintfRuntimeBinding()); 722 723 // This must occur before inlining, as the inliner will not look through 724 // bitcast calls. 725 addPass(createAMDGPUFixFunctionBitcastsPass()); 726 727 // A call to propagate attributes pass in the backend in case opt was not run. 728 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 729 730 addPass(createAtomicExpandPass()); 731 732 733 addPass(createAMDGPULowerIntrinsicsPass()); 734 735 // Function calls are not supported, so make sure we inline everything. 736 addPass(createAMDGPUAlwaysInlinePass()); 737 addPass(createAlwaysInlinerLegacyPass()); 738 // We need to add the barrier noop pass, otherwise adding the function 739 // inlining pass will cause all of the PassConfigs passes to be run 740 // one function at a time, which means if we have a nodule with two 741 // functions, then we will generate code for the first function 742 // without ever running any passes on the second. 743 addPass(createBarrierNoopPass()); 744 745 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 746 if (TM.getTargetTriple().getArch() == Triple::r600) 747 addPass(createR600OpenCLImageTypeLoweringPass()); 748 749 // Replace OpenCL enqueued block function pointers with global variables. 750 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 751 752 if (TM.getOptLevel() > CodeGenOpt::None) { 753 addPass(createInferAddressSpacesPass()); 754 addPass(createAMDGPUPromoteAlloca()); 755 756 if (EnableSROA) 757 addPass(createSROAPass()); 758 759 if (EnableScalarIRPasses) 760 addStraightLineScalarOptimizationPasses(); 761 762 if (EnableAMDGPUAliasAnalysis) { 763 addPass(createAMDGPUAAWrapperPass()); 764 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 765 AAResults &AAR) { 766 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 767 AAR.addAAResult(WrapperPass->getResult()); 768 })); 769 } 770 } 771 772 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 773 // TODO: May want to move later or split into an early and late one. 774 addPass(createAMDGPUCodeGenPreparePass()); 775 } 776 777 TargetPassConfig::addIRPasses(); 778 779 // EarlyCSE is not always strong enough to clean up what LSR produces. For 780 // example, GVN can combine 781 // 782 // %0 = add %a, %b 783 // %1 = add %b, %a 784 // 785 // and 786 // 787 // %0 = shl nsw %a, 2 788 // %1 = shl %a, 2 789 // 790 // but EarlyCSE can do neither of them. 791 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 792 addEarlyCSEOrGVNPass(); 793 } 794 795 void AMDGPUPassConfig::addCodeGenPrepare() { 796 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 797 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 798 799 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 800 EnableLowerKernelArguments) 801 addPass(createAMDGPULowerKernelArgumentsPass()); 802 803 addPass(&AMDGPUPerfHintAnalysisID); 804 805 TargetPassConfig::addCodeGenPrepare(); 806 807 if (EnableLoadStoreVectorizer) 808 addPass(createLoadStoreVectorizerPass()); 809 810 // LowerSwitch pass may introduce unreachable blocks that can 811 // cause unexpected behavior for subsequent passes. Placing it 812 // here seems better that these blocks would get cleaned up by 813 // UnreachableBlockElim inserted next in the pass flow. 814 addPass(createLowerSwitchPass()); 815 } 816 817 bool AMDGPUPassConfig::addPreISel() { 818 addPass(createFlattenCFGPass()); 819 return false; 820 } 821 822 bool AMDGPUPassConfig::addInstSelector() { 823 // Defer the verifier until FinalizeISel. 824 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 825 return false; 826 } 827 828 bool AMDGPUPassConfig::addGCPasses() { 829 // Do nothing. GC is not supported. 830 return false; 831 } 832 833 //===----------------------------------------------------------------------===// 834 // R600 Pass Setup 835 //===----------------------------------------------------------------------===// 836 837 bool R600PassConfig::addPreISel() { 838 AMDGPUPassConfig::addPreISel(); 839 840 if (EnableR600StructurizeCFG) 841 addPass(createStructurizeCFGPass()); 842 return false; 843 } 844 845 bool R600PassConfig::addInstSelector() { 846 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 847 return false; 848 } 849 850 void R600PassConfig::addPreRegAlloc() { 851 addPass(createR600VectorRegMerger()); 852 } 853 854 void R600PassConfig::addPreSched2() { 855 addPass(createR600EmitClauseMarkers(), false); 856 if (EnableR600IfConvert) 857 addPass(&IfConverterID, false); 858 addPass(createR600ClauseMergePass(), false); 859 } 860 861 void R600PassConfig::addPreEmitPass() { 862 addPass(createAMDGPUCFGStructurizerPass(), false); 863 addPass(createR600ExpandSpecialInstrsPass(), false); 864 addPass(&FinalizeMachineBundlesID, false); 865 addPass(createR600Packetizer(), false); 866 addPass(createR600ControlFlowFinalizer(), false); 867 } 868 869 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 870 return new R600PassConfig(*this, PM); 871 } 872 873 //===----------------------------------------------------------------------===// 874 // GCN Pass Setup 875 //===----------------------------------------------------------------------===// 876 877 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 878 MachineSchedContext *C) const { 879 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 880 if (ST.enableSIScheduler()) 881 return createSIMachineScheduler(C); 882 return createGCNMaxOccupancyMachineScheduler(C); 883 } 884 885 bool GCNPassConfig::addPreISel() { 886 AMDGPUPassConfig::addPreISel(); 887 888 addPass(createAMDGPULateCodeGenPreparePass()); 889 if (EnableAtomicOptimizations) { 890 addPass(createAMDGPUAtomicOptimizerPass()); 891 } 892 893 // FIXME: We need to run a pass to propagate the attributes when calls are 894 // supported. 895 896 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 897 // regions formed by them. 898 addPass(&AMDGPUUnifyDivergentExitNodesID); 899 if (!LateCFGStructurize) { 900 if (EnableStructurizerWorkarounds) { 901 addPass(createFixIrreduciblePass()); 902 addPass(createUnifyLoopExitsPass()); 903 } 904 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 905 } 906 addPass(createSinkingPass()); 907 addPass(createAMDGPUAnnotateUniformValues()); 908 if (!LateCFGStructurize) { 909 addPass(createSIAnnotateControlFlowPass()); 910 } 911 addPass(createLCSSAPass()); 912 913 return false; 914 } 915 916 void GCNPassConfig::addMachineSSAOptimization() { 917 TargetPassConfig::addMachineSSAOptimization(); 918 919 // We want to fold operands after PeepholeOptimizer has run (or as part of 920 // it), because it will eliminate extra copies making it easier to fold the 921 // real source operand. We want to eliminate dead instructions after, so that 922 // we see fewer uses of the copies. We then need to clean up the dead 923 // instructions leftover after the operands are folded as well. 924 // 925 // XXX - Can we get away without running DeadMachineInstructionElim again? 926 addPass(&SIFoldOperandsID); 927 if (EnableDPPCombine) 928 addPass(&GCNDPPCombineID); 929 addPass(&DeadMachineInstructionElimID); 930 addPass(&SILoadStoreOptimizerID); 931 if (EnableSDWAPeephole) { 932 addPass(&SIPeepholeSDWAID); 933 addPass(&EarlyMachineLICMID); 934 addPass(&MachineCSEID); 935 addPass(&SIFoldOperandsID); 936 addPass(&DeadMachineInstructionElimID); 937 } 938 addPass(createSIShrinkInstructionsPass()); 939 } 940 941 bool GCNPassConfig::addILPOpts() { 942 if (EnableEarlyIfConversion) 943 addPass(&EarlyIfConverterID); 944 945 TargetPassConfig::addILPOpts(); 946 return false; 947 } 948 949 bool GCNPassConfig::addInstSelector() { 950 AMDGPUPassConfig::addInstSelector(); 951 addPass(&SIFixSGPRCopiesID); 952 addPass(createSILowerI1CopiesPass()); 953 addPass(createSIAddIMGInitPass()); 954 return false; 955 } 956 957 bool GCNPassConfig::addIRTranslator() { 958 addPass(new IRTranslator(getOptLevel())); 959 return false; 960 } 961 962 void GCNPassConfig::addPreLegalizeMachineIR() { 963 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 964 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 965 addPass(new Localizer()); 966 } 967 968 bool GCNPassConfig::addLegalizeMachineIR() { 969 addPass(new Legalizer()); 970 return false; 971 } 972 973 void GCNPassConfig::addPreRegBankSelect() { 974 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 975 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 976 } 977 978 bool GCNPassConfig::addRegBankSelect() { 979 addPass(new RegBankSelect()); 980 return false; 981 } 982 983 bool GCNPassConfig::addGlobalInstructionSelect() { 984 addPass(new InstructionSelect()); 985 return false; 986 } 987 988 void GCNPassConfig::addPreRegAlloc() { 989 if (LateCFGStructurize) { 990 addPass(createAMDGPUMachineCFGStructurizerPass()); 991 } 992 } 993 994 void GCNPassConfig::addFastRegAlloc() { 995 // FIXME: We have to disable the verifier here because of PHIElimination + 996 // TwoAddressInstructions disabling it. 997 998 // This must be run immediately after phi elimination and before 999 // TwoAddressInstructions, otherwise the processing of the tied operand of 1000 // SI_ELSE will introduce a copy of the tied operand source after the else. 1001 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1002 1003 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1004 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1005 1006 TargetPassConfig::addFastRegAlloc(); 1007 } 1008 1009 void GCNPassConfig::addOptimizedRegAlloc() { 1010 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1011 // instructions that cause scheduling barriers. 1012 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1013 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1014 1015 if (OptExecMaskPreRA) 1016 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1017 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1018 1019 // This must be run immediately after phi elimination and before 1020 // TwoAddressInstructions, otherwise the processing of the tied operand of 1021 // SI_ELSE will introduce a copy of the tied operand source after the else. 1022 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1023 1024 if (EnableDCEInRA) 1025 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1026 1027 TargetPassConfig::addOptimizedRegAlloc(); 1028 } 1029 1030 bool GCNPassConfig::addPreRewrite() { 1031 if (EnableRegReassign) { 1032 addPass(&GCNNSAReassignID); 1033 addPass(&GCNRegBankReassignID); 1034 } 1035 return true; 1036 } 1037 1038 void GCNPassConfig::addPostRegAlloc() { 1039 addPass(&SIFixVGPRCopiesID); 1040 if (getOptLevel() > CodeGenOpt::None) 1041 addPass(&SIOptimizeExecMaskingID); 1042 TargetPassConfig::addPostRegAlloc(); 1043 1044 // Equivalent of PEI for SGPRs. 1045 addPass(&SILowerSGPRSpillsID); 1046 } 1047 1048 void GCNPassConfig::addPreSched2() { 1049 addPass(&SIPostRABundlerID); 1050 } 1051 1052 void GCNPassConfig::addPreEmitPass() { 1053 addPass(createSIMemoryLegalizerPass()); 1054 addPass(createSIInsertWaitcntsPass()); 1055 addPass(createSIShrinkInstructionsPass()); 1056 addPass(createSIModeRegisterPass()); 1057 1058 if (getOptLevel() > CodeGenOpt::None) 1059 addPass(&SIInsertHardClausesID); 1060 1061 addPass(&SIRemoveShortExecBranchesID); 1062 addPass(&SIInsertSkipsPassID); 1063 addPass(&SIPreEmitPeepholeID); 1064 // The hazard recognizer that runs as part of the post-ra scheduler does not 1065 // guarantee to be able handle all hazards correctly. This is because if there 1066 // are multiple scheduling regions in a basic block, the regions are scheduled 1067 // bottom up, so when we begin to schedule a region we don't know what 1068 // instructions were emitted directly before it. 1069 // 1070 // Here we add a stand-alone hazard recognizer pass which can handle all 1071 // cases. 1072 addPass(&PostRAHazardRecognizerID); 1073 addPass(&BranchRelaxationPassID); 1074 } 1075 1076 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1077 return new GCNPassConfig(*this, PM); 1078 } 1079 1080 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1081 return new yaml::SIMachineFunctionInfo(); 1082 } 1083 1084 yaml::MachineFunctionInfo * 1085 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1086 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1087 return new yaml::SIMachineFunctionInfo(*MFI, 1088 *MF.getSubtarget().getRegisterInfo()); 1089 } 1090 1091 bool GCNTargetMachine::parseMachineFunctionInfo( 1092 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1093 SMDiagnostic &Error, SMRange &SourceRange) const { 1094 const yaml::SIMachineFunctionInfo &YamlMFI = 1095 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1096 MachineFunction &MF = PFS.MF; 1097 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1098 1099 MFI->initializeBaseYamlFields(YamlMFI); 1100 1101 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1102 Register TempReg; 1103 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1104 SourceRange = RegName.SourceRange; 1105 return true; 1106 } 1107 RegVal = TempReg; 1108 1109 return false; 1110 }; 1111 1112 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1113 // Create a diagnostic for a the register string literal. 1114 const MemoryBuffer &Buffer = 1115 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1116 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1117 RegName.Value.size(), SourceMgr::DK_Error, 1118 "incorrect register class for field", RegName.Value, 1119 None, None); 1120 SourceRange = RegName.SourceRange; 1121 return true; 1122 }; 1123 1124 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1125 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1126 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1127 return true; 1128 1129 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1130 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1131 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1132 } 1133 1134 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1135 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1136 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1137 } 1138 1139 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1140 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1141 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1142 } 1143 1144 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1145 const TargetRegisterClass &RC, 1146 ArgDescriptor &Arg, unsigned UserSGPRs, 1147 unsigned SystemSGPRs) { 1148 // Skip parsing if it's not present. 1149 if (!A) 1150 return false; 1151 1152 if (A->IsRegister) { 1153 Register Reg; 1154 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1155 SourceRange = A->RegisterName.SourceRange; 1156 return true; 1157 } 1158 if (!RC.contains(Reg)) 1159 return diagnoseRegisterClass(A->RegisterName); 1160 Arg = ArgDescriptor::createRegister(Reg); 1161 } else 1162 Arg = ArgDescriptor::createStack(A->StackOffset); 1163 // Check and apply the optional mask. 1164 if (A->Mask) 1165 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1166 1167 MFI->NumUserSGPRs += UserSGPRs; 1168 MFI->NumSystemSGPRs += SystemSGPRs; 1169 return false; 1170 }; 1171 1172 if (YamlMFI.ArgInfo && 1173 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1174 AMDGPU::SGPR_128RegClass, 1175 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1176 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1177 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1178 2, 0) || 1179 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1180 MFI->ArgInfo.QueuePtr, 2, 0) || 1181 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1182 AMDGPU::SReg_64RegClass, 1183 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1184 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1185 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1186 2, 0) || 1187 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1188 AMDGPU::SReg_64RegClass, 1189 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1190 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1191 AMDGPU::SGPR_32RegClass, 1192 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1193 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1194 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1195 0, 1) || 1196 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1197 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1198 0, 1) || 1199 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1200 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1201 0, 1) || 1202 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1203 AMDGPU::SGPR_32RegClass, 1204 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1205 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1206 AMDGPU::SGPR_32RegClass, 1207 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1208 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1209 AMDGPU::SReg_64RegClass, 1210 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1211 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1212 AMDGPU::SReg_64RegClass, 1213 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1214 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1215 AMDGPU::VGPR_32RegClass, 1216 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1217 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1218 AMDGPU::VGPR_32RegClass, 1219 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1220 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1221 AMDGPU::VGPR_32RegClass, 1222 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1223 return true; 1224 1225 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1226 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1227 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1228 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1229 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1230 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1231 1232 return false; 1233 } 1234