1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #ifdef LLVM_BUILD_GLOBAL_ISEL 23 #include "AMDGPURegisterBankInfo.h" 24 #endif 25 #include "AMDGPUTargetObjectFile.h" 26 #include "AMDGPUTargetTransformInfo.h" 27 #include "GCNIterativeScheduler.h" 28 #include "GCNSchedStrategy.h" 29 #include "R600MachineScheduler.h" 30 #include "SIMachineScheduler.h" 31 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 35 #include "llvm/CodeGen/Passes.h" 36 #include "llvm/CodeGen/TargetPassConfig.h" 37 #include "llvm/Support/TargetRegistry.h" 38 #include "llvm/Transforms/IPO.h" 39 #include "llvm/Transforms/IPO/AlwaysInliner.h" 40 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 41 #include "llvm/Transforms/Scalar.h" 42 #include "llvm/Transforms/Scalar/GVN.h" 43 #include "llvm/Transforms/Vectorize.h" 44 #include "llvm/IR/Attributes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/LegacyPassManager.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Target/TargetLoweringObjectFile.h" 51 #include <memory> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> EnableR600IfConvert( 72 "r600-if-convert", 73 cl::desc("Use if conversion pass"), 74 cl::ReallyHidden, 75 cl::init(true)); 76 77 // Option to disable vectorizer for tests. 78 static cl::opt<bool> EnableLoadStoreVectorizer( 79 "amdgpu-load-store-vectorizer", 80 cl::desc("Enable load store vectorizer"), 81 cl::init(true), 82 cl::Hidden); 83 84 // Option to to control global loads scalarization 85 static cl::opt<bool> ScalarizeGlobal( 86 "amdgpu-scalarize-global-loads", 87 cl::desc("Enable global load scalarization"), 88 cl::init(false), 89 cl::Hidden); 90 91 // Option to run internalize pass. 92 static cl::opt<bool> InternalizeSymbols( 93 "amdgpu-internalize-symbols", 94 cl::desc("Enable elimination of non-kernel functions and unused globals"), 95 cl::init(false), 96 cl::Hidden); 97 98 // Option to inline all early. 99 static cl::opt<bool> EarlyInlineAll( 100 "amdgpu-early-inline-all", 101 cl::desc("Inline all functions early"), 102 cl::init(false), 103 cl::Hidden); 104 105 static cl::opt<bool> EnableSDWAPeephole( 106 "amdgpu-sdwa-peephole", 107 cl::desc("Enable SDWA peepholer"), 108 cl::init(true)); 109 110 // Enable address space based alias analysis 111 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 112 cl::desc("Enable AMDGPU Alias Analysis"), 113 cl::init(true)); 114 115 extern "C" void LLVMInitializeAMDGPUTarget() { 116 // Register the target 117 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 118 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 119 120 PassRegistry *PR = PassRegistry::getPassRegistry(); 121 initializeSILowerI1CopiesPass(*PR); 122 initializeSIFixSGPRCopiesPass(*PR); 123 initializeSIFixVGPRCopiesPass(*PR); 124 initializeSIFoldOperandsPass(*PR); 125 initializeSIPeepholeSDWAPass(*PR); 126 initializeSIShrinkInstructionsPass(*PR); 127 initializeSIFixControlFlowLiveIntervalsPass(*PR); 128 initializeSILoadStoreOptimizerPass(*PR); 129 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 130 initializeAMDGPUAnnotateUniformValuesPass(*PR); 131 initializeAMDGPULowerIntrinsicsPass(*PR); 132 initializeAMDGPUPromoteAllocaPass(*PR); 133 initializeAMDGPUCodeGenPreparePass(*PR); 134 initializeAMDGPUUnifyMetadataPass(*PR); 135 initializeSIAnnotateControlFlowPass(*PR); 136 initializeSIInsertWaitsPass(*PR); 137 initializeSIWholeQuadModePass(*PR); 138 initializeSILowerControlFlowPass(*PR); 139 initializeSIInsertSkipsPass(*PR); 140 initializeSIDebuggerInsertNopsPass(*PR); 141 initializeSIOptimizeExecMaskingPass(*PR); 142 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 143 initializeAMDGPUAAWrapperPassPass(*PR); 144 } 145 146 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 147 return llvm::make_unique<AMDGPUTargetObjectFile>(); 148 } 149 150 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 151 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 152 } 153 154 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 155 return new SIScheduleDAGMI(C); 156 } 157 158 static ScheduleDAGInstrs * 159 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 160 ScheduleDAGMILive *DAG = 161 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 162 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 163 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 164 return DAG; 165 } 166 167 static ScheduleDAGInstrs * 168 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 169 auto DAG = new GCNIterativeScheduler(C, 170 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 171 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 172 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 173 return DAG; 174 } 175 176 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 177 return new GCNIterativeScheduler(C, 178 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 179 } 180 181 static MachineSchedRegistry 182 R600SchedRegistry("r600", "Run R600's custom scheduler", 183 createR600MachineScheduler); 184 185 static MachineSchedRegistry 186 SISchedRegistry("si", "Run SI's custom scheduler", 187 createSIMachineScheduler); 188 189 static MachineSchedRegistry 190 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 191 "Run GCN scheduler to maximize occupancy", 192 createGCNMaxOccupancyMachineScheduler); 193 194 static MachineSchedRegistry 195 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 196 "Run GCN scheduler to maximize occupancy (experimental)", 197 createIterativeGCNMaxOccupancyMachineScheduler); 198 199 static MachineSchedRegistry 200 GCNMinRegSchedRegistry("gcn-minreg", 201 "Run GCN iterative scheduler for minimal register usage (experimental)", 202 createMinRegScheduler); 203 204 static StringRef computeDataLayout(const Triple &TT) { 205 if (TT.getArch() == Triple::r600) { 206 // 32-bit pointers. 207 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 208 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 209 } 210 211 // 32-bit private, local, and region pointers. 64-bit global, constant and 212 // flat. 213 if (TT.getEnvironmentName() == "amdgiz" || 214 TT.getEnvironmentName() == "amdgizcl") 215 return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32" 216 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 217 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 218 return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" 219 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 220 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 221 } 222 223 LLVM_READNONE 224 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 225 if (!GPU.empty()) 226 return GPU; 227 228 // HSA only supports CI+, so change the default GPU to a CI for HSA. 229 if (TT.getArch() == Triple::amdgcn) 230 return (TT.getOS() == Triple::AMDHSA) ? "kaveri" : "tahiti"; 231 232 return "r600"; 233 } 234 235 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 236 // The AMDGPU toolchain only supports generating shared objects, so we 237 // must always use PIC. 238 return Reloc::PIC_; 239 } 240 241 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 242 StringRef CPU, StringRef FS, 243 TargetOptions Options, 244 Optional<Reloc::Model> RM, 245 CodeModel::Model CM, 246 CodeGenOpt::Level OptLevel) 247 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 248 FS, Options, getEffectiveRelocModel(RM), CM, OptLevel), 249 TLOF(createTLOF(getTargetTriple())) { 250 AS = AMDGPU::getAMDGPUAS(TT); 251 initAsmInfo(); 252 } 253 254 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 255 256 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 257 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 258 return GPUAttr.hasAttribute(Attribute::None) ? 259 getTargetCPU() : GPUAttr.getValueAsString(); 260 } 261 262 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 263 Attribute FSAttr = F.getFnAttribute("target-features"); 264 265 return FSAttr.hasAttribute(Attribute::None) ? 266 getTargetFeatureString() : 267 FSAttr.getValueAsString(); 268 } 269 270 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 271 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 272 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 273 AAR.addAAResult(WrapperPass->getResult()); 274 }); 275 } 276 277 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 278 Builder.DivergentTarget = true; 279 280 bool Internalize = InternalizeSymbols && 281 (getOptLevel() > CodeGenOpt::None) && 282 (getTargetTriple().getArch() == Triple::amdgcn); 283 bool EarlyInline = EarlyInlineAll && 284 (getOptLevel() > CodeGenOpt::None); 285 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && getOptLevel() > CodeGenOpt::None; 286 287 Builder.addExtension( 288 PassManagerBuilder::EP_ModuleOptimizerEarly, 289 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 290 legacy::PassManagerBase &PM) { 291 if (AMDGPUAA) { 292 PM.add(createAMDGPUAAWrapperPass()); 293 PM.add(createAMDGPUExternalAAWrapperPass()); 294 } 295 PM.add(createAMDGPUUnifyMetadataPass()); 296 if (Internalize) { 297 PM.add(createInternalizePass([=](const GlobalValue &GV) -> bool { 298 if (const Function *F = dyn_cast<Function>(&GV)) { 299 if (F->isDeclaration()) 300 return true; 301 switch (F->getCallingConv()) { 302 default: 303 return false; 304 case CallingConv::AMDGPU_VS: 305 case CallingConv::AMDGPU_GS: 306 case CallingConv::AMDGPU_PS: 307 case CallingConv::AMDGPU_CS: 308 case CallingConv::AMDGPU_KERNEL: 309 case CallingConv::SPIR_KERNEL: 310 return true; 311 } 312 } 313 return !GV.use_empty(); 314 })); 315 PM.add(createGlobalDCEPass()); 316 } 317 if (EarlyInline) 318 PM.add(createAMDGPUAlwaysInlinePass(false)); 319 }); 320 321 Builder.addExtension( 322 PassManagerBuilder::EP_EarlyAsPossible, 323 [AMDGPUAA](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 324 if (AMDGPUAA) { 325 PM.add(createAMDGPUAAWrapperPass()); 326 PM.add(createAMDGPUExternalAAWrapperPass()); 327 } 328 }); 329 } 330 331 //===----------------------------------------------------------------------===// 332 // R600 Target Machine (R600 -> Cayman) 333 //===----------------------------------------------------------------------===// 334 335 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 336 StringRef CPU, StringRef FS, 337 TargetOptions Options, 338 Optional<Reloc::Model> RM, 339 CodeModel::Model CM, CodeGenOpt::Level OL) 340 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 341 setRequiresStructuredCFG(true); 342 } 343 344 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 345 const Function &F) const { 346 StringRef GPU = getGPUName(F); 347 StringRef FS = getFeatureString(F); 348 349 SmallString<128> SubtargetKey(GPU); 350 SubtargetKey.append(FS); 351 352 auto &I = SubtargetMap[SubtargetKey]; 353 if (!I) { 354 // This needs to be done before we create a new subtarget since any 355 // creation will depend on the TM and the code generation flags on the 356 // function that reside in TargetOptions. 357 resetTargetOptions(F); 358 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 359 } 360 361 return I.get(); 362 } 363 364 //===----------------------------------------------------------------------===// 365 // GCN Target Machine (SI+) 366 //===----------------------------------------------------------------------===// 367 368 #ifdef LLVM_BUILD_GLOBAL_ISEL 369 namespace { 370 371 struct SIGISelActualAccessor : public GISelAccessor { 372 std::unique_ptr<AMDGPUCallLowering> CallLoweringInfo; 373 std::unique_ptr<InstructionSelector> InstSelector; 374 std::unique_ptr<LegalizerInfo> Legalizer; 375 std::unique_ptr<RegisterBankInfo> RegBankInfo; 376 const AMDGPUCallLowering *getCallLowering() const override { 377 return CallLoweringInfo.get(); 378 } 379 const InstructionSelector *getInstructionSelector() const override { 380 return InstSelector.get(); 381 } 382 const LegalizerInfo *getLegalizerInfo() const override { 383 return Legalizer.get(); 384 } 385 const RegisterBankInfo *getRegBankInfo() const override { 386 return RegBankInfo.get(); 387 } 388 }; 389 390 } // end anonymous namespace 391 #endif 392 393 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 394 StringRef CPU, StringRef FS, 395 TargetOptions Options, 396 Optional<Reloc::Model> RM, 397 CodeModel::Model CM, CodeGenOpt::Level OL) 398 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 399 400 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 401 StringRef GPU = getGPUName(F); 402 StringRef FS = getFeatureString(F); 403 404 SmallString<128> SubtargetKey(GPU); 405 SubtargetKey.append(FS); 406 407 auto &I = SubtargetMap[SubtargetKey]; 408 if (!I) { 409 // This needs to be done before we create a new subtarget since any 410 // creation will depend on the TM and the code generation flags on the 411 // function that reside in TargetOptions. 412 resetTargetOptions(F); 413 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 414 415 #ifndef LLVM_BUILD_GLOBAL_ISEL 416 GISelAccessor *GISel = new GISelAccessor(); 417 #else 418 SIGISelActualAccessor *GISel = new SIGISelActualAccessor(); 419 GISel->CallLoweringInfo.reset( 420 new AMDGPUCallLowering(*I->getTargetLowering())); 421 GISel->Legalizer.reset(new AMDGPULegalizerInfo()); 422 423 GISel->RegBankInfo.reset(new AMDGPURegisterBankInfo(*I->getRegisterInfo())); 424 GISel->InstSelector.reset(new AMDGPUInstructionSelector(*I, 425 *static_cast<AMDGPURegisterBankInfo*>(GISel->RegBankInfo.get()))); 426 #endif 427 428 I->setGISelAccessor(*GISel); 429 } 430 431 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 432 433 return I.get(); 434 } 435 436 //===----------------------------------------------------------------------===// 437 // AMDGPU Pass Setup 438 //===----------------------------------------------------------------------===// 439 440 namespace { 441 442 class AMDGPUPassConfig : public TargetPassConfig { 443 public: 444 AMDGPUPassConfig(TargetMachine *TM, PassManagerBase &PM) 445 : TargetPassConfig(TM, PM) { 446 // Exceptions and StackMaps are not supported, so these passes will never do 447 // anything. 448 disablePass(&StackMapLivenessID); 449 disablePass(&FuncletLayoutID); 450 } 451 452 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 453 return getTM<AMDGPUTargetMachine>(); 454 } 455 456 ScheduleDAGInstrs * 457 createMachineScheduler(MachineSchedContext *C) const override { 458 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 459 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 460 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 461 return DAG; 462 } 463 464 void addEarlyCSEOrGVNPass(); 465 void addStraightLineScalarOptimizationPasses(); 466 void addIRPasses() override; 467 void addCodeGenPrepare() override; 468 bool addPreISel() override; 469 bool addInstSelector() override; 470 bool addGCPasses() override; 471 }; 472 473 class R600PassConfig final : public AMDGPUPassConfig { 474 public: 475 R600PassConfig(TargetMachine *TM, PassManagerBase &PM) 476 : AMDGPUPassConfig(TM, PM) {} 477 478 ScheduleDAGInstrs *createMachineScheduler( 479 MachineSchedContext *C) const override { 480 return createR600MachineScheduler(C); 481 } 482 483 bool addPreISel() override; 484 void addPreRegAlloc() override; 485 void addPreSched2() override; 486 void addPreEmitPass() override; 487 }; 488 489 class GCNPassConfig final : public AMDGPUPassConfig { 490 public: 491 GCNPassConfig(TargetMachine *TM, PassManagerBase &PM) 492 : AMDGPUPassConfig(TM, PM) {} 493 494 GCNTargetMachine &getGCNTargetMachine() const { 495 return getTM<GCNTargetMachine>(); 496 } 497 498 ScheduleDAGInstrs * 499 createMachineScheduler(MachineSchedContext *C) const override; 500 501 bool addPreISel() override; 502 void addMachineSSAOptimization() override; 503 bool addILPOpts() override; 504 bool addInstSelector() override; 505 #ifdef LLVM_BUILD_GLOBAL_ISEL 506 bool addIRTranslator() override; 507 bool addLegalizeMachineIR() override; 508 bool addRegBankSelect() override; 509 bool addGlobalInstructionSelect() override; 510 #endif 511 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 512 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 513 void addPreRegAlloc() override; 514 void addPostRegAlloc() override; 515 void addPreSched2() override; 516 void addPreEmitPass() override; 517 }; 518 519 } // end anonymous namespace 520 521 TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { 522 return TargetIRAnalysis([this](const Function &F) { 523 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 524 }); 525 } 526 527 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 528 if (getOptLevel() == CodeGenOpt::Aggressive) 529 addPass(createGVNPass()); 530 else 531 addPass(createEarlyCSEPass()); 532 } 533 534 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 535 addPass(createSeparateConstOffsetFromGEPPass()); 536 addPass(createSpeculativeExecutionPass()); 537 // ReassociateGEPs exposes more opportunites for SLSR. See 538 // the example in reassociate-geps-and-slsr.ll. 539 addPass(createStraightLineStrengthReducePass()); 540 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 541 // EarlyCSE can reuse. 542 addEarlyCSEOrGVNPass(); 543 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 544 addPass(createNaryReassociatePass()); 545 // NaryReassociate on GEPs creates redundant common expressions, so run 546 // EarlyCSE after it. 547 addPass(createEarlyCSEPass()); 548 } 549 550 void AMDGPUPassConfig::addIRPasses() { 551 // There is no reason to run these. 552 disablePass(&StackMapLivenessID); 553 disablePass(&FuncletLayoutID); 554 disablePass(&PatchableFunctionID); 555 556 addPass(createAMDGPULowerIntrinsicsPass()); 557 558 // Function calls are not supported, so make sure we inline everything. 559 addPass(createAMDGPUAlwaysInlinePass()); 560 addPass(createAlwaysInlinerLegacyPass()); 561 // We need to add the barrier noop pass, otherwise adding the function 562 // inlining pass will cause all of the PassConfigs passes to be run 563 // one function at a time, which means if we have a nodule with two 564 // functions, then we will generate code for the first function 565 // without ever running any passes on the second. 566 addPass(createBarrierNoopPass()); 567 568 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 569 570 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 571 // TODO: May want to move later or split into an early and late one. 572 573 addPass(createAMDGPUCodeGenPreparePass( 574 static_cast<const GCNTargetMachine *>(&TM))); 575 } 576 577 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 578 addPass(createAMDGPUOpenCLImageTypeLoweringPass()); 579 580 if (TM.getOptLevel() > CodeGenOpt::None) { 581 addPass(createInferAddressSpacesPass()); 582 addPass(createAMDGPUPromoteAlloca(&TM)); 583 584 if (EnableSROA) 585 addPass(createSROAPass()); 586 587 addStraightLineScalarOptimizationPasses(); 588 589 if (EnableAMDGPUAliasAnalysis) { 590 addPass(createAMDGPUAAWrapperPass()); 591 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 592 AAResults &AAR) { 593 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 594 AAR.addAAResult(WrapperPass->getResult()); 595 })); 596 } 597 } 598 599 TargetPassConfig::addIRPasses(); 600 601 // EarlyCSE is not always strong enough to clean up what LSR produces. For 602 // example, GVN can combine 603 // 604 // %0 = add %a, %b 605 // %1 = add %b, %a 606 // 607 // and 608 // 609 // %0 = shl nsw %a, 2 610 // %1 = shl %a, 2 611 // 612 // but EarlyCSE can do neither of them. 613 if (getOptLevel() != CodeGenOpt::None) 614 addEarlyCSEOrGVNPass(); 615 } 616 617 void AMDGPUPassConfig::addCodeGenPrepare() { 618 TargetPassConfig::addCodeGenPrepare(); 619 620 if (EnableLoadStoreVectorizer) 621 addPass(createLoadStoreVectorizerPass()); 622 } 623 624 bool AMDGPUPassConfig::addPreISel() { 625 addPass(createFlattenCFGPass()); 626 return false; 627 } 628 629 bool AMDGPUPassConfig::addInstSelector() { 630 addPass(createAMDGPUISelDag(getAMDGPUTargetMachine(), getOptLevel())); 631 return false; 632 } 633 634 bool AMDGPUPassConfig::addGCPasses() { 635 // Do nothing. GC is not supported. 636 return false; 637 } 638 639 //===----------------------------------------------------------------------===// 640 // R600 Pass Setup 641 //===----------------------------------------------------------------------===// 642 643 bool R600PassConfig::addPreISel() { 644 AMDGPUPassConfig::addPreISel(); 645 646 if (EnableR600StructurizeCFG) 647 addPass(createStructurizeCFGPass()); 648 return false; 649 } 650 651 void R600PassConfig::addPreRegAlloc() { 652 addPass(createR600VectorRegMerger(*TM)); 653 } 654 655 void R600PassConfig::addPreSched2() { 656 addPass(createR600EmitClauseMarkers(), false); 657 if (EnableR600IfConvert) 658 addPass(&IfConverterID, false); 659 addPass(createR600ClauseMergePass(*TM), false); 660 } 661 662 void R600PassConfig::addPreEmitPass() { 663 addPass(createAMDGPUCFGStructurizerPass(), false); 664 addPass(createR600ExpandSpecialInstrsPass(*TM), false); 665 addPass(&FinalizeMachineBundlesID, false); 666 addPass(createR600Packetizer(*TM), false); 667 addPass(createR600ControlFlowFinalizer(*TM), false); 668 } 669 670 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 671 return new R600PassConfig(this, PM); 672 } 673 674 //===----------------------------------------------------------------------===// 675 // GCN Pass Setup 676 //===----------------------------------------------------------------------===// 677 678 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 679 MachineSchedContext *C) const { 680 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 681 if (ST.enableSIScheduler()) 682 return createSIMachineScheduler(C); 683 return createGCNMaxOccupancyMachineScheduler(C); 684 } 685 686 bool GCNPassConfig::addPreISel() { 687 AMDGPUPassConfig::addPreISel(); 688 689 // FIXME: We need to run a pass to propagate the attributes when calls are 690 // supported. 691 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 692 addPass(createAMDGPUAnnotateKernelFeaturesPass(&TM)); 693 694 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 695 // regions formed by them. 696 addPass(&AMDGPUUnifyDivergentExitNodesID); 697 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 698 addPass(createSinkingPass()); 699 addPass(createSITypeRewriter()); 700 addPass(createAMDGPUAnnotateUniformValues()); 701 addPass(createSIAnnotateControlFlowPass()); 702 703 return false; 704 } 705 706 void GCNPassConfig::addMachineSSAOptimization() { 707 TargetPassConfig::addMachineSSAOptimization(); 708 709 // We want to fold operands after PeepholeOptimizer has run (or as part of 710 // it), because it will eliminate extra copies making it easier to fold the 711 // real source operand. We want to eliminate dead instructions after, so that 712 // we see fewer uses of the copies. We then need to clean up the dead 713 // instructions leftover after the operands are folded as well. 714 // 715 // XXX - Can we get away without running DeadMachineInstructionElim again? 716 addPass(&SIFoldOperandsID); 717 addPass(&DeadMachineInstructionElimID); 718 addPass(&SILoadStoreOptimizerID); 719 addPass(createSIShrinkInstructionsPass()); 720 if (EnableSDWAPeephole) { 721 addPass(&SIPeepholeSDWAID); 722 addPass(&DeadMachineInstructionElimID); 723 } 724 } 725 726 bool GCNPassConfig::addILPOpts() { 727 if (EnableEarlyIfConversion) 728 addPass(&EarlyIfConverterID); 729 730 TargetPassConfig::addILPOpts(); 731 return false; 732 } 733 734 bool GCNPassConfig::addInstSelector() { 735 AMDGPUPassConfig::addInstSelector(); 736 addPass(createSILowerI1CopiesPass()); 737 addPass(&SIFixSGPRCopiesID); 738 return false; 739 } 740 741 #ifdef LLVM_BUILD_GLOBAL_ISEL 742 bool GCNPassConfig::addIRTranslator() { 743 addPass(new IRTranslator()); 744 return false; 745 } 746 747 bool GCNPassConfig::addLegalizeMachineIR() { 748 addPass(new Legalizer()); 749 return false; 750 } 751 752 bool GCNPassConfig::addRegBankSelect() { 753 addPass(new RegBankSelect()); 754 return false; 755 } 756 757 bool GCNPassConfig::addGlobalInstructionSelect() { 758 addPass(new InstructionSelect()); 759 return false; 760 } 761 762 #endif 763 764 void GCNPassConfig::addPreRegAlloc() { 765 addPass(createSIWholeQuadModePass()); 766 } 767 768 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 769 // FIXME: We have to disable the verifier here because of PHIElimination + 770 // TwoAddressInstructions disabling it. 771 772 // This must be run immediately after phi elimination and before 773 // TwoAddressInstructions, otherwise the processing of the tied operand of 774 // SI_ELSE will introduce a copy of the tied operand source after the else. 775 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 776 777 TargetPassConfig::addFastRegAlloc(RegAllocPass); 778 } 779 780 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 781 // This needs to be run directly before register allocation because earlier 782 // passes might recompute live intervals. 783 insertPass(&MachineSchedulerID, &SIFixControlFlowLiveIntervalsID); 784 785 // This must be run immediately after phi elimination and before 786 // TwoAddressInstructions, otherwise the processing of the tied operand of 787 // SI_ELSE will introduce a copy of the tied operand source after the else. 788 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 789 790 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 791 } 792 793 void GCNPassConfig::addPostRegAlloc() { 794 addPass(&SIFixVGPRCopiesID); 795 addPass(&SIOptimizeExecMaskingID); 796 TargetPassConfig::addPostRegAlloc(); 797 } 798 799 void GCNPassConfig::addPreSched2() { 800 } 801 802 void GCNPassConfig::addPreEmitPass() { 803 // The hazard recognizer that runs as part of the post-ra scheduler does not 804 // guarantee to be able handle all hazards correctly. This is because if there 805 // are multiple scheduling regions in a basic block, the regions are scheduled 806 // bottom up, so when we begin to schedule a region we don't know what 807 // instructions were emitted directly before it. 808 // 809 // Here we add a stand-alone hazard recognizer pass which can handle all 810 // cases. 811 addPass(&PostRAHazardRecognizerID); 812 813 addPass(createSIInsertWaitsPass()); 814 addPass(createSIShrinkInstructionsPass()); 815 addPass(&SIInsertSkipsPassID); 816 addPass(createSIDebuggerInsertNopsPass()); 817 addPass(&BranchRelaxationPassID); 818 } 819 820 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 821 return new GCNPassConfig(this, PM); 822 } 823 824