1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineScheduler.h" 28 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 29 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 30 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 31 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 32 #include "llvm/CodeGen/Passes.h" 33 #include "llvm/CodeGen/TargetPassConfig.h" 34 #include "llvm/IR/Attributes.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/Pass.h" 38 #include "llvm/Support/CommandLine.h" 39 #include "llvm/Support/Compiler.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Target/TargetLoweringObjectFile.h" 42 #include "llvm/Transforms/IPO.h" 43 #include "llvm/Transforms/IPO/AlwaysInliner.h" 44 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 45 #include "llvm/Transforms/Scalar.h" 46 #include "llvm/Transforms/Scalar/GVN.h" 47 #include "llvm/Transforms/Utils.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <memory> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableR600StructurizeCFG( 54 "r600-ir-structurize", 55 cl::desc("Use StructurizeCFG IR pass"), 56 cl::init(true)); 57 58 static cl::opt<bool> EnableSROA( 59 "amdgpu-sroa", 60 cl::desc("Run SROA after promote alloca pass"), 61 cl::ReallyHidden, 62 cl::init(true)); 63 64 static cl::opt<bool> 65 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 66 cl::desc("Run early if-conversion"), 67 cl::init(false)); 68 69 static cl::opt<bool> EnableR600IfConvert( 70 "r600-if-convert", 71 cl::desc("Use if conversion pass"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Option to disable vectorizer for tests. 76 static cl::opt<bool> EnableLoadStoreVectorizer( 77 "amdgpu-load-store-vectorizer", 78 cl::desc("Enable load store vectorizer"), 79 cl::init(true), 80 cl::Hidden); 81 82 // Option to control global loads scalarization 83 static cl::opt<bool> ScalarizeGlobal( 84 "amdgpu-scalarize-global-loads", 85 cl::desc("Enable global load scalarization"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to run internalize pass. 90 static cl::opt<bool> InternalizeSymbols( 91 "amdgpu-internalize-symbols", 92 cl::desc("Enable elimination of non-kernel functions and unused globals"), 93 cl::init(false), 94 cl::Hidden); 95 96 // Option to inline all early. 97 static cl::opt<bool> EarlyInlineAll( 98 "amdgpu-early-inline-all", 99 cl::desc("Inline all functions early"), 100 cl::init(false), 101 cl::Hidden); 102 103 static cl::opt<bool> EnableSDWAPeephole( 104 "amdgpu-sdwa-peephole", 105 cl::desc("Enable SDWA peepholer"), 106 cl::init(true)); 107 108 static cl::opt<bool> EnableDPPCombine( 109 "amdgpu-dpp-combine", 110 cl::desc("Enable DPP combiner"), 111 cl::init(false)); 112 113 // Enable address space based alias analysis 114 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 115 cl::desc("Enable AMDGPU Alias Analysis"), 116 cl::init(true)); 117 118 // Option to run late CFG structurizer 119 static cl::opt<bool, true> LateCFGStructurize( 120 "amdgpu-late-structurize", 121 cl::desc("Enable late CFG structurization"), 122 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 123 cl::Hidden); 124 125 static cl::opt<bool, true> EnableAMDGPUFunctionCalls( 126 "amdgpu-function-calls", 127 cl::desc("Enable AMDGPU function call support"), 128 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 129 cl::init(false), 130 cl::Hidden); 131 132 // Enable lib calls simplifications 133 static cl::opt<bool> EnableLibCallSimplify( 134 "amdgpu-simplify-libcall", 135 cl::desc("Enable amdgpu library simplifications"), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool> EnableLowerKernelArguments( 140 "amdgpu-ir-lower-kernel-arguments", 141 cl::desc("Lower kernel argument loads in IR pass"), 142 cl::init(true), 143 cl::Hidden); 144 145 // Enable atomic optimization 146 static cl::opt<bool> EnableAtomicOptimizations( 147 "amdgpu-atomic-optimizations", 148 cl::desc("Enable atomic optimizations"), 149 cl::init(false), 150 cl::Hidden); 151 152 // Enable Mode register optimization 153 static cl::opt<bool> EnableSIModeRegisterPass( 154 "amdgpu-mode-register", 155 cl::desc("Enable mode register pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 extern "C" void LLVMInitializeAMDGPUTarget() { 160 // Register the target 161 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 162 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 163 164 PassRegistry *PR = PassRegistry::getPassRegistry(); 165 initializeR600ClauseMergePassPass(*PR); 166 initializeR600ControlFlowFinalizerPass(*PR); 167 initializeR600PacketizerPass(*PR); 168 initializeR600ExpandSpecialInstrsPassPass(*PR); 169 initializeR600VectorRegMergerPass(*PR); 170 initializeGlobalISel(*PR); 171 initializeAMDGPUDAGToDAGISelPass(*PR); 172 initializeGCNDPPCombinePass(*PR); 173 initializeSILowerI1CopiesPass(*PR); 174 initializeSIFixSGPRCopiesPass(*PR); 175 initializeSIFixVGPRCopiesPass(*PR); 176 initializeSIFixupVectorISelPass(*PR); 177 initializeSIFoldOperandsPass(*PR); 178 initializeSIPeepholeSDWAPass(*PR); 179 initializeSIShrinkInstructionsPass(*PR); 180 initializeSIOptimizeExecMaskingPreRAPass(*PR); 181 initializeSILoadStoreOptimizerPass(*PR); 182 initializeAMDGPUFixFunctionBitcastsPass(*PR); 183 initializeAMDGPUAlwaysInlinePass(*PR); 184 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 185 initializeAMDGPUAnnotateUniformValuesPass(*PR); 186 initializeAMDGPUArgumentUsageInfoPass(*PR); 187 initializeAMDGPUAtomicOptimizerPass(*PR); 188 initializeAMDGPULowerKernelArgumentsPass(*PR); 189 initializeAMDGPULowerKernelAttributesPass(*PR); 190 initializeAMDGPULowerIntrinsicsPass(*PR); 191 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 192 initializeAMDGPUPromoteAllocaPass(*PR); 193 initializeAMDGPUCodeGenPreparePass(*PR); 194 initializeAMDGPURewriteOutArgumentsPass(*PR); 195 initializeAMDGPUUnifyMetadataPass(*PR); 196 initializeSIAnnotateControlFlowPass(*PR); 197 initializeSIInsertWaitcntsPass(*PR); 198 initializeSIModeRegisterPass(*PR); 199 initializeSIWholeQuadModePass(*PR); 200 initializeSILowerControlFlowPass(*PR); 201 initializeSIInsertSkipsPass(*PR); 202 initializeSIMemoryLegalizerPass(*PR); 203 initializeSIDebuggerInsertNopsPass(*PR); 204 initializeSIOptimizeExecMaskingPass(*PR); 205 initializeSIFixWWMLivenessPass(*PR); 206 initializeSIFormMemoryClausesPass(*PR); 207 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 208 initializeAMDGPUAAWrapperPassPass(*PR); 209 initializeAMDGPUExternalAAWrapperPass(*PR); 210 initializeAMDGPUUseNativeCallsPass(*PR); 211 initializeAMDGPUSimplifyLibCallsPass(*PR); 212 initializeAMDGPUInlinerPass(*PR); 213 } 214 215 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 216 return llvm::make_unique<AMDGPUTargetObjectFile>(); 217 } 218 219 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 220 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 221 } 222 223 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 224 return new SIScheduleDAGMI(C); 225 } 226 227 static ScheduleDAGInstrs * 228 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 229 ScheduleDAGMILive *DAG = 230 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 231 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 232 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 233 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 234 return DAG; 235 } 236 237 static ScheduleDAGInstrs * 238 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 239 auto DAG = new GCNIterativeScheduler(C, 240 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 241 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 242 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 243 return DAG; 244 } 245 246 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 247 return new GCNIterativeScheduler(C, 248 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 249 } 250 251 static ScheduleDAGInstrs * 252 createIterativeILPMachineScheduler(MachineSchedContext *C) { 253 auto DAG = new GCNIterativeScheduler(C, 254 GCNIterativeScheduler::SCHEDULE_ILP); 255 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 256 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 257 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 258 return DAG; 259 } 260 261 static MachineSchedRegistry 262 R600SchedRegistry("r600", "Run R600's custom scheduler", 263 createR600MachineScheduler); 264 265 static MachineSchedRegistry 266 SISchedRegistry("si", "Run SI's custom scheduler", 267 createSIMachineScheduler); 268 269 static MachineSchedRegistry 270 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 271 "Run GCN scheduler to maximize occupancy", 272 createGCNMaxOccupancyMachineScheduler); 273 274 static MachineSchedRegistry 275 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 276 "Run GCN scheduler to maximize occupancy (experimental)", 277 createIterativeGCNMaxOccupancyMachineScheduler); 278 279 static MachineSchedRegistry 280 GCNMinRegSchedRegistry("gcn-minreg", 281 "Run GCN iterative scheduler for minimal register usage (experimental)", 282 createMinRegScheduler); 283 284 static MachineSchedRegistry 285 GCNILPSchedRegistry("gcn-ilp", 286 "Run GCN iterative scheduler for ILP scheduling (experimental)", 287 createIterativeILPMachineScheduler); 288 289 static StringRef computeDataLayout(const Triple &TT) { 290 if (TT.getArch() == Triple::r600) { 291 // 32-bit pointers. 292 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 293 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 294 } 295 296 // 32-bit private, local, and region pointers. 64-bit global, constant and 297 // flat. 298 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 299 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 300 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 301 } 302 303 LLVM_READNONE 304 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 305 if (!GPU.empty()) 306 return GPU; 307 308 if (TT.getArch() == Triple::amdgcn) 309 return "generic"; 310 311 return "r600"; 312 } 313 314 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 315 // The AMDGPU toolchain only supports generating shared objects, so we 316 // must always use PIC. 317 return Reloc::PIC_; 318 } 319 320 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 321 StringRef CPU, StringRef FS, 322 TargetOptions Options, 323 Optional<Reloc::Model> RM, 324 Optional<CodeModel::Model> CM, 325 CodeGenOpt::Level OptLevel) 326 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 327 FS, Options, getEffectiveRelocModel(RM), 328 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 329 TLOF(createTLOF(getTargetTriple())) { 330 initAsmInfo(); 331 } 332 333 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 334 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 335 336 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 337 338 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 339 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 340 return GPUAttr.hasAttribute(Attribute::None) ? 341 getTargetCPU() : GPUAttr.getValueAsString(); 342 } 343 344 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 345 Attribute FSAttr = F.getFnAttribute("target-features"); 346 347 return FSAttr.hasAttribute(Attribute::None) ? 348 getTargetFeatureString() : 349 FSAttr.getValueAsString(); 350 } 351 352 /// Predicate for Internalize pass. 353 static bool mustPreserveGV(const GlobalValue &GV) { 354 if (const Function *F = dyn_cast<Function>(&GV)) 355 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 356 357 return !GV.use_empty(); 358 } 359 360 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 361 Builder.DivergentTarget = true; 362 363 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 364 bool Internalize = InternalizeSymbols; 365 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; 366 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 367 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 368 369 if (EnableAMDGPUFunctionCalls) { 370 delete Builder.Inliner; 371 Builder.Inliner = createAMDGPUFunctionInliningPass(); 372 } 373 374 Builder.addExtension( 375 PassManagerBuilder::EP_ModuleOptimizerEarly, 376 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 377 legacy::PassManagerBase &PM) { 378 if (AMDGPUAA) { 379 PM.add(createAMDGPUAAWrapperPass()); 380 PM.add(createAMDGPUExternalAAWrapperPass()); 381 } 382 PM.add(createAMDGPUUnifyMetadataPass()); 383 if (Internalize) { 384 PM.add(createInternalizePass(mustPreserveGV)); 385 PM.add(createGlobalDCEPass()); 386 } 387 if (EarlyInline) 388 PM.add(createAMDGPUAlwaysInlinePass(false)); 389 }); 390 391 const auto &Opt = Options; 392 Builder.addExtension( 393 PassManagerBuilder::EP_EarlyAsPossible, 394 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 395 legacy::PassManagerBase &PM) { 396 if (AMDGPUAA) { 397 PM.add(createAMDGPUAAWrapperPass()); 398 PM.add(createAMDGPUExternalAAWrapperPass()); 399 } 400 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 401 if (LibCallSimplify) 402 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 403 }); 404 405 Builder.addExtension( 406 PassManagerBuilder::EP_CGSCCOptimizerLate, 407 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 408 // Add infer address spaces pass to the opt pipeline after inlining 409 // but before SROA to increase SROA opportunities. 410 PM.add(createInferAddressSpacesPass()); 411 412 // This should run after inlining to have any chance of doing anything, 413 // and before other cleanup optimizations. 414 PM.add(createAMDGPULowerKernelAttributesPass()); 415 }); 416 } 417 418 //===----------------------------------------------------------------------===// 419 // R600 Target Machine (R600 -> Cayman) 420 //===----------------------------------------------------------------------===// 421 422 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 423 StringRef CPU, StringRef FS, 424 TargetOptions Options, 425 Optional<Reloc::Model> RM, 426 Optional<CodeModel::Model> CM, 427 CodeGenOpt::Level OL, bool JIT) 428 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 429 setRequiresStructuredCFG(true); 430 } 431 432 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 433 const Function &F) const { 434 StringRef GPU = getGPUName(F); 435 StringRef FS = getFeatureString(F); 436 437 SmallString<128> SubtargetKey(GPU); 438 SubtargetKey.append(FS); 439 440 auto &I = SubtargetMap[SubtargetKey]; 441 if (!I) { 442 // This needs to be done before we create a new subtarget since any 443 // creation will depend on the TM and the code generation flags on the 444 // function that reside in TargetOptions. 445 resetTargetOptions(F); 446 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 447 } 448 449 return I.get(); 450 } 451 452 TargetTransformInfo 453 R600TargetMachine::getTargetTransformInfo(const Function &F) { 454 return TargetTransformInfo(R600TTIImpl(this, F)); 455 } 456 457 //===----------------------------------------------------------------------===// 458 // GCN Target Machine (SI+) 459 //===----------------------------------------------------------------------===// 460 461 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 462 StringRef CPU, StringRef FS, 463 TargetOptions Options, 464 Optional<Reloc::Model> RM, 465 Optional<CodeModel::Model> CM, 466 CodeGenOpt::Level OL, bool JIT) 467 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 468 469 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 470 StringRef GPU = getGPUName(F); 471 StringRef FS = getFeatureString(F); 472 473 SmallString<128> SubtargetKey(GPU); 474 SubtargetKey.append(FS); 475 476 auto &I = SubtargetMap[SubtargetKey]; 477 if (!I) { 478 // This needs to be done before we create a new subtarget since any 479 // creation will depend on the TM and the code generation flags on the 480 // function that reside in TargetOptions. 481 resetTargetOptions(F); 482 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 483 } 484 485 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 486 487 return I.get(); 488 } 489 490 TargetTransformInfo 491 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 492 return TargetTransformInfo(GCNTTIImpl(this, F)); 493 } 494 495 //===----------------------------------------------------------------------===// 496 // AMDGPU Pass Setup 497 //===----------------------------------------------------------------------===// 498 499 namespace { 500 501 class AMDGPUPassConfig : public TargetPassConfig { 502 public: 503 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 504 : TargetPassConfig(TM, PM) { 505 // Exceptions and StackMaps are not supported, so these passes will never do 506 // anything. 507 disablePass(&StackMapLivenessID); 508 disablePass(&FuncletLayoutID); 509 } 510 511 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 512 return getTM<AMDGPUTargetMachine>(); 513 } 514 515 ScheduleDAGInstrs * 516 createMachineScheduler(MachineSchedContext *C) const override { 517 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 518 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 519 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 520 return DAG; 521 } 522 523 void addEarlyCSEOrGVNPass(); 524 void addStraightLineScalarOptimizationPasses(); 525 void addIRPasses() override; 526 void addCodeGenPrepare() override; 527 bool addPreISel() override; 528 bool addInstSelector() override; 529 bool addGCPasses() override; 530 }; 531 532 class R600PassConfig final : public AMDGPUPassConfig { 533 public: 534 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 535 : AMDGPUPassConfig(TM, PM) {} 536 537 ScheduleDAGInstrs *createMachineScheduler( 538 MachineSchedContext *C) const override { 539 return createR600MachineScheduler(C); 540 } 541 542 bool addPreISel() override; 543 bool addInstSelector() override; 544 void addPreRegAlloc() override; 545 void addPreSched2() override; 546 void addPreEmitPass() override; 547 }; 548 549 class GCNPassConfig final : public AMDGPUPassConfig { 550 public: 551 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 552 : AMDGPUPassConfig(TM, PM) { 553 // It is necessary to know the register usage of the entire call graph. We 554 // allow calls without EnableAMDGPUFunctionCalls if they are marked 555 // noinline, so this is always required. 556 setRequiresCodeGenSCCOrder(true); 557 } 558 559 GCNTargetMachine &getGCNTargetMachine() const { 560 return getTM<GCNTargetMachine>(); 561 } 562 563 ScheduleDAGInstrs * 564 createMachineScheduler(MachineSchedContext *C) const override; 565 566 bool addPreISel() override; 567 void addMachineSSAOptimization() override; 568 bool addILPOpts() override; 569 bool addInstSelector() override; 570 bool addIRTranslator() override; 571 bool addLegalizeMachineIR() override; 572 bool addRegBankSelect() override; 573 bool addGlobalInstructionSelect() override; 574 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 575 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 576 void addPreRegAlloc() override; 577 void addPostRegAlloc() override; 578 void addPreSched2() override; 579 void addPreEmitPass() override; 580 }; 581 582 } // end anonymous namespace 583 584 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 585 if (getOptLevel() == CodeGenOpt::Aggressive) 586 addPass(createGVNPass()); 587 else 588 addPass(createEarlyCSEPass()); 589 } 590 591 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 592 addPass(createLICMPass()); 593 addPass(createSeparateConstOffsetFromGEPPass()); 594 addPass(createSpeculativeExecutionPass()); 595 // ReassociateGEPs exposes more opportunites for SLSR. See 596 // the example in reassociate-geps-and-slsr.ll. 597 addPass(createStraightLineStrengthReducePass()); 598 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 599 // EarlyCSE can reuse. 600 addEarlyCSEOrGVNPass(); 601 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 602 addPass(createNaryReassociatePass()); 603 // NaryReassociate on GEPs creates redundant common expressions, so run 604 // EarlyCSE after it. 605 addPass(createEarlyCSEPass()); 606 } 607 608 void AMDGPUPassConfig::addIRPasses() { 609 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 610 611 // There is no reason to run these. 612 disablePass(&StackMapLivenessID); 613 disablePass(&FuncletLayoutID); 614 disablePass(&PatchableFunctionID); 615 616 addPass(createAtomicExpandPass()); 617 618 // This must occur before inlining, as the inliner will not look through 619 // bitcast calls. 620 addPass(createAMDGPUFixFunctionBitcastsPass()); 621 622 addPass(createAMDGPULowerIntrinsicsPass()); 623 624 // Function calls are not supported, so make sure we inline everything. 625 addPass(createAMDGPUAlwaysInlinePass()); 626 addPass(createAlwaysInlinerLegacyPass()); 627 // We need to add the barrier noop pass, otherwise adding the function 628 // inlining pass will cause all of the PassConfigs passes to be run 629 // one function at a time, which means if we have a nodule with two 630 // functions, then we will generate code for the first function 631 // without ever running any passes on the second. 632 addPass(createBarrierNoopPass()); 633 634 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 635 // TODO: May want to move later or split into an early and late one. 636 637 addPass(createAMDGPUCodeGenPreparePass()); 638 } 639 640 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 641 if (TM.getTargetTriple().getArch() == Triple::r600) 642 addPass(createR600OpenCLImageTypeLoweringPass()); 643 644 // Replace OpenCL enqueued block function pointers with global variables. 645 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 646 647 if (TM.getOptLevel() > CodeGenOpt::None) { 648 addPass(createInferAddressSpacesPass()); 649 addPass(createAMDGPUPromoteAlloca()); 650 651 if (EnableSROA) 652 addPass(createSROAPass()); 653 654 addStraightLineScalarOptimizationPasses(); 655 656 if (EnableAMDGPUAliasAnalysis) { 657 addPass(createAMDGPUAAWrapperPass()); 658 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 659 AAResults &AAR) { 660 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 661 AAR.addAAResult(WrapperPass->getResult()); 662 })); 663 } 664 } 665 666 TargetPassConfig::addIRPasses(); 667 668 // EarlyCSE is not always strong enough to clean up what LSR produces. For 669 // example, GVN can combine 670 // 671 // %0 = add %a, %b 672 // %1 = add %b, %a 673 // 674 // and 675 // 676 // %0 = shl nsw %a, 2 677 // %1 = shl %a, 2 678 // 679 // but EarlyCSE can do neither of them. 680 if (getOptLevel() != CodeGenOpt::None) 681 addEarlyCSEOrGVNPass(); 682 } 683 684 void AMDGPUPassConfig::addCodeGenPrepare() { 685 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 686 EnableLowerKernelArguments) 687 addPass(createAMDGPULowerKernelArgumentsPass()); 688 689 TargetPassConfig::addCodeGenPrepare(); 690 691 if (EnableLoadStoreVectorizer) 692 addPass(createLoadStoreVectorizerPass()); 693 } 694 695 bool AMDGPUPassConfig::addPreISel() { 696 addPass(createLowerSwitchPass()); 697 addPass(createFlattenCFGPass()); 698 return false; 699 } 700 701 bool AMDGPUPassConfig::addInstSelector() { 702 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 703 return false; 704 } 705 706 bool AMDGPUPassConfig::addGCPasses() { 707 // Do nothing. GC is not supported. 708 return false; 709 } 710 711 //===----------------------------------------------------------------------===// 712 // R600 Pass Setup 713 //===----------------------------------------------------------------------===// 714 715 bool R600PassConfig::addPreISel() { 716 AMDGPUPassConfig::addPreISel(); 717 718 if (EnableR600StructurizeCFG) 719 addPass(createStructurizeCFGPass()); 720 return false; 721 } 722 723 bool R600PassConfig::addInstSelector() { 724 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 725 return false; 726 } 727 728 void R600PassConfig::addPreRegAlloc() { 729 addPass(createR600VectorRegMerger()); 730 } 731 732 void R600PassConfig::addPreSched2() { 733 addPass(createR600EmitClauseMarkers(), false); 734 if (EnableR600IfConvert) 735 addPass(&IfConverterID, false); 736 addPass(createR600ClauseMergePass(), false); 737 } 738 739 void R600PassConfig::addPreEmitPass() { 740 addPass(createAMDGPUCFGStructurizerPass(), false); 741 addPass(createR600ExpandSpecialInstrsPass(), false); 742 addPass(&FinalizeMachineBundlesID, false); 743 addPass(createR600Packetizer(), false); 744 addPass(createR600ControlFlowFinalizer(), false); 745 } 746 747 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 748 return new R600PassConfig(*this, PM); 749 } 750 751 //===----------------------------------------------------------------------===// 752 // GCN Pass Setup 753 //===----------------------------------------------------------------------===// 754 755 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 756 MachineSchedContext *C) const { 757 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 758 if (ST.enableSIScheduler()) 759 return createSIMachineScheduler(C); 760 return createGCNMaxOccupancyMachineScheduler(C); 761 } 762 763 bool GCNPassConfig::addPreISel() { 764 AMDGPUPassConfig::addPreISel(); 765 766 if (EnableAtomicOptimizations) { 767 addPass(createAMDGPUAtomicOptimizerPass()); 768 } 769 770 // FIXME: We need to run a pass to propagate the attributes when calls are 771 // supported. 772 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 773 774 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 775 // regions formed by them. 776 addPass(&AMDGPUUnifyDivergentExitNodesID); 777 if (!LateCFGStructurize) { 778 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 779 } 780 addPass(createSinkingPass()); 781 addPass(createAMDGPUAnnotateUniformValues()); 782 if (!LateCFGStructurize) { 783 addPass(createSIAnnotateControlFlowPass()); 784 } 785 786 return false; 787 } 788 789 void GCNPassConfig::addMachineSSAOptimization() { 790 TargetPassConfig::addMachineSSAOptimization(); 791 792 // We want to fold operands after PeepholeOptimizer has run (or as part of 793 // it), because it will eliminate extra copies making it easier to fold the 794 // real source operand. We want to eliminate dead instructions after, so that 795 // we see fewer uses of the copies. We then need to clean up the dead 796 // instructions leftover after the operands are folded as well. 797 // 798 // XXX - Can we get away without running DeadMachineInstructionElim again? 799 addPass(&SIFoldOperandsID); 800 if (EnableDPPCombine) 801 addPass(&GCNDPPCombineID); 802 addPass(&DeadMachineInstructionElimID); 803 addPass(&SILoadStoreOptimizerID); 804 if (EnableSDWAPeephole) { 805 addPass(&SIPeepholeSDWAID); 806 addPass(&EarlyMachineLICMID); 807 addPass(&MachineCSEID); 808 addPass(&SIFoldOperandsID); 809 addPass(&DeadMachineInstructionElimID); 810 } 811 addPass(createSIShrinkInstructionsPass()); 812 } 813 814 bool GCNPassConfig::addILPOpts() { 815 if (EnableEarlyIfConversion) 816 addPass(&EarlyIfConverterID); 817 818 TargetPassConfig::addILPOpts(); 819 return false; 820 } 821 822 bool GCNPassConfig::addInstSelector() { 823 AMDGPUPassConfig::addInstSelector(); 824 addPass(&SIFixSGPRCopiesID); 825 addPass(createSILowerI1CopiesPass()); 826 addPass(createSIFixupVectorISelPass()); 827 addPass(createSIAddIMGInitPass()); 828 return false; 829 } 830 831 bool GCNPassConfig::addIRTranslator() { 832 addPass(new IRTranslator()); 833 return false; 834 } 835 836 bool GCNPassConfig::addLegalizeMachineIR() { 837 addPass(new Legalizer()); 838 return false; 839 } 840 841 bool GCNPassConfig::addRegBankSelect() { 842 addPass(new RegBankSelect()); 843 return false; 844 } 845 846 bool GCNPassConfig::addGlobalInstructionSelect() { 847 addPass(new InstructionSelect()); 848 return false; 849 } 850 851 void GCNPassConfig::addPreRegAlloc() { 852 if (LateCFGStructurize) { 853 addPass(createAMDGPUMachineCFGStructurizerPass()); 854 } 855 addPass(createSIWholeQuadModePass()); 856 } 857 858 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 859 // FIXME: We have to disable the verifier here because of PHIElimination + 860 // TwoAddressInstructions disabling it. 861 862 // This must be run immediately after phi elimination and before 863 // TwoAddressInstructions, otherwise the processing of the tied operand of 864 // SI_ELSE will introduce a copy of the tied operand source after the else. 865 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 866 867 // This must be run after SILowerControlFlow, since it needs to use the 868 // machine-level CFG, but before register allocation. 869 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 870 871 TargetPassConfig::addFastRegAlloc(RegAllocPass); 872 } 873 874 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 875 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 876 877 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 878 879 // This must be run immediately after phi elimination and before 880 // TwoAddressInstructions, otherwise the processing of the tied operand of 881 // SI_ELSE will introduce a copy of the tied operand source after the else. 882 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 883 884 // This must be run after SILowerControlFlow, since it needs to use the 885 // machine-level CFG, but before register allocation. 886 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 887 888 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 889 } 890 891 void GCNPassConfig::addPostRegAlloc() { 892 addPass(&SIFixVGPRCopiesID); 893 if (getOptLevel() > CodeGenOpt::None) 894 addPass(&SIOptimizeExecMaskingID); 895 TargetPassConfig::addPostRegAlloc(); 896 } 897 898 void GCNPassConfig::addPreSched2() { 899 } 900 901 void GCNPassConfig::addPreEmitPass() { 902 addPass(createSIMemoryLegalizerPass()); 903 addPass(createSIInsertWaitcntsPass()); 904 addPass(createSIShrinkInstructionsPass()); 905 addPass(createSIModeRegisterPass()); 906 907 // The hazard recognizer that runs as part of the post-ra scheduler does not 908 // guarantee to be able handle all hazards correctly. This is because if there 909 // are multiple scheduling regions in a basic block, the regions are scheduled 910 // bottom up, so when we begin to schedule a region we don't know what 911 // instructions were emitted directly before it. 912 // 913 // Here we add a stand-alone hazard recognizer pass which can handle all 914 // cases. 915 // 916 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 917 // be better for it to emit S_NOP <N> when possible. 918 addPass(&PostRAHazardRecognizerID); 919 920 addPass(&SIInsertSkipsPassID); 921 addPass(createSIDebuggerInsertNopsPass()); 922 addPass(&BranchRelaxationPassID); 923 } 924 925 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 926 return new GCNPassConfig(*this, PM); 927 } 928