1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Utils.h" 49 #include "llvm/Transforms/Vectorize.h" 50 #include <memory> 51 52 using namespace llvm; 53 54 static cl::opt<bool> EnableR600StructurizeCFG( 55 "r600-ir-structurize", 56 cl::desc("Use StructurizeCFG IR pass"), 57 cl::init(true)); 58 59 static cl::opt<bool> EnableSROA( 60 "amdgpu-sroa", 61 cl::desc("Run SROA after promote alloca pass"), 62 cl::ReallyHidden, 63 cl::init(true)); 64 65 static cl::opt<bool> 66 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 67 cl::desc("Run early if-conversion"), 68 cl::init(false)); 69 70 static cl::opt<bool> EnableR600IfConvert( 71 "r600-if-convert", 72 cl::desc("Use if conversion pass"), 73 cl::ReallyHidden, 74 cl::init(true)); 75 76 // Option to disable vectorizer for tests. 77 static cl::opt<bool> EnableLoadStoreVectorizer( 78 "amdgpu-load-store-vectorizer", 79 cl::desc("Enable load store vectorizer"), 80 cl::init(true), 81 cl::Hidden); 82 83 // Option to control global loads scalarization 84 static cl::opt<bool> ScalarizeGlobal( 85 "amdgpu-scalarize-global-loads", 86 cl::desc("Enable global load scalarization"), 87 cl::init(true), 88 cl::Hidden); 89 90 // Option to run internalize pass. 91 static cl::opt<bool> InternalizeSymbols( 92 "amdgpu-internalize-symbols", 93 cl::desc("Enable elimination of non-kernel functions and unused globals"), 94 cl::init(false), 95 cl::Hidden); 96 97 // Option to inline all early. 98 static cl::opt<bool> EarlyInlineAll( 99 "amdgpu-early-inline-all", 100 cl::desc("Inline all functions early"), 101 cl::init(false), 102 cl::Hidden); 103 104 static cl::opt<bool> EnableSDWAPeephole( 105 "amdgpu-sdwa-peephole", 106 cl::desc("Enable SDWA peepholer"), 107 cl::init(true)); 108 109 // Enable address space based alias analysis 110 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 111 cl::desc("Enable AMDGPU Alias Analysis"), 112 cl::init(true)); 113 114 // Option to run late CFG structurizer 115 static cl::opt<bool, true> LateCFGStructurize( 116 "amdgpu-late-structurize", 117 cl::desc("Enable late CFG structurization"), 118 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 119 cl::Hidden); 120 121 static cl::opt<bool, true> EnableAMDGPUFunctionCalls( 122 "amdgpu-function-calls", 123 cl::desc("Enable AMDGPU function call support"), 124 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 125 cl::init(false), 126 cl::Hidden); 127 128 // Enable lib calls simplifications 129 static cl::opt<bool> EnableLibCallSimplify( 130 "amdgpu-simplify-libcall", 131 cl::desc("Enable amdgpu library simplifications"), 132 cl::init(true), 133 cl::Hidden); 134 135 static cl::opt<bool> EnableLowerKernelArguments( 136 "amdgpu-ir-lower-kernel-arguments", 137 cl::desc("Lower kernel argument loads in IR pass"), 138 cl::init(true), 139 cl::Hidden); 140 141 // Enable atomic optimization 142 static cl::opt<bool> EnableAtomicOptimizations( 143 "amdgpu-atomic-optimizations", 144 cl::desc("Enable atomic optimizations"), 145 cl::init(false), 146 cl::Hidden); 147 148 extern "C" void LLVMInitializeAMDGPUTarget() { 149 // Register the target 150 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 151 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 152 153 PassRegistry *PR = PassRegistry::getPassRegistry(); 154 initializeR600ClauseMergePassPass(*PR); 155 initializeR600ControlFlowFinalizerPass(*PR); 156 initializeR600PacketizerPass(*PR); 157 initializeR600ExpandSpecialInstrsPassPass(*PR); 158 initializeR600VectorRegMergerPass(*PR); 159 initializeGlobalISel(*PR); 160 initializeAMDGPUDAGToDAGISelPass(*PR); 161 initializeSILowerI1CopiesPass(*PR); 162 initializeSIFixSGPRCopiesPass(*PR); 163 initializeSIFixVGPRCopiesPass(*PR); 164 initializeSIFixupVectorISelPass(*PR); 165 initializeSIFoldOperandsPass(*PR); 166 initializeSIPeepholeSDWAPass(*PR); 167 initializeSIShrinkInstructionsPass(*PR); 168 initializeSIOptimizeExecMaskingPreRAPass(*PR); 169 initializeSILoadStoreOptimizerPass(*PR); 170 initializeAMDGPUFixFunctionBitcastsPass(*PR); 171 initializeAMDGPUAlwaysInlinePass(*PR); 172 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 173 initializeAMDGPUAnnotateUniformValuesPass(*PR); 174 initializeAMDGPUArgumentUsageInfoPass(*PR); 175 initializeAMDGPUAtomicOptimizerPass(*PR); 176 initializeAMDGPULowerKernelArgumentsPass(*PR); 177 initializeAMDGPULowerKernelAttributesPass(*PR); 178 initializeAMDGPULowerIntrinsicsPass(*PR); 179 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 180 initializeAMDGPUPromoteAllocaPass(*PR); 181 initializeAMDGPUCodeGenPreparePass(*PR); 182 initializeAMDGPURewriteOutArgumentsPass(*PR); 183 initializeAMDGPUUnifyMetadataPass(*PR); 184 initializeSIAnnotateControlFlowPass(*PR); 185 initializeSIInsertWaitcntsPass(*PR); 186 initializeSIWholeQuadModePass(*PR); 187 initializeSILowerControlFlowPass(*PR); 188 initializeSIInsertSkipsPass(*PR); 189 initializeSIMemoryLegalizerPass(*PR); 190 initializeSIDebuggerInsertNopsPass(*PR); 191 initializeSIOptimizeExecMaskingPass(*PR); 192 initializeSIFixWWMLivenessPass(*PR); 193 initializeSIFormMemoryClausesPass(*PR); 194 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 195 initializeAMDGPUAAWrapperPassPass(*PR); 196 initializeAMDGPUExternalAAWrapperPass(*PR); 197 initializeAMDGPUUseNativeCallsPass(*PR); 198 initializeAMDGPUSimplifyLibCallsPass(*PR); 199 initializeAMDGPUInlinerPass(*PR); 200 } 201 202 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 203 return llvm::make_unique<AMDGPUTargetObjectFile>(); 204 } 205 206 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 207 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 208 } 209 210 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 211 return new SIScheduleDAGMI(C); 212 } 213 214 static ScheduleDAGInstrs * 215 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 216 ScheduleDAGMILive *DAG = 217 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 218 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 219 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 220 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 221 return DAG; 222 } 223 224 static ScheduleDAGInstrs * 225 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 226 auto DAG = new GCNIterativeScheduler(C, 227 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 228 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 229 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 230 return DAG; 231 } 232 233 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 234 return new GCNIterativeScheduler(C, 235 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 236 } 237 238 static ScheduleDAGInstrs * 239 createIterativeILPMachineScheduler(MachineSchedContext *C) { 240 auto DAG = new GCNIterativeScheduler(C, 241 GCNIterativeScheduler::SCHEDULE_ILP); 242 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 243 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 244 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 245 return DAG; 246 } 247 248 static MachineSchedRegistry 249 R600SchedRegistry("r600", "Run R600's custom scheduler", 250 createR600MachineScheduler); 251 252 static MachineSchedRegistry 253 SISchedRegistry("si", "Run SI's custom scheduler", 254 createSIMachineScheduler); 255 256 static MachineSchedRegistry 257 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 258 "Run GCN scheduler to maximize occupancy", 259 createGCNMaxOccupancyMachineScheduler); 260 261 static MachineSchedRegistry 262 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 263 "Run GCN scheduler to maximize occupancy (experimental)", 264 createIterativeGCNMaxOccupancyMachineScheduler); 265 266 static MachineSchedRegistry 267 GCNMinRegSchedRegistry("gcn-minreg", 268 "Run GCN iterative scheduler for minimal register usage (experimental)", 269 createMinRegScheduler); 270 271 static MachineSchedRegistry 272 GCNILPSchedRegistry("gcn-ilp", 273 "Run GCN iterative scheduler for ILP scheduling (experimental)", 274 createIterativeILPMachineScheduler); 275 276 static StringRef computeDataLayout(const Triple &TT) { 277 if (TT.getArch() == Triple::r600) { 278 // 32-bit pointers. 279 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 280 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 281 } 282 283 // 32-bit private, local, and region pointers. 64-bit global, constant and 284 // flat. 285 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 286 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 287 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 288 } 289 290 LLVM_READNONE 291 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 292 if (!GPU.empty()) 293 return GPU; 294 295 if (TT.getArch() == Triple::amdgcn) 296 return "generic"; 297 298 return "r600"; 299 } 300 301 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 302 // The AMDGPU toolchain only supports generating shared objects, so we 303 // must always use PIC. 304 return Reloc::PIC_; 305 } 306 307 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) { 308 if (CM) 309 return *CM; 310 return CodeModel::Small; 311 } 312 313 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 314 StringRef CPU, StringRef FS, 315 TargetOptions Options, 316 Optional<Reloc::Model> RM, 317 Optional<CodeModel::Model> CM, 318 CodeGenOpt::Level OptLevel) 319 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 320 FS, Options, getEffectiveRelocModel(RM), 321 getEffectiveCodeModel(CM), OptLevel), 322 TLOF(createTLOF(getTargetTriple())) { 323 initAsmInfo(); 324 } 325 326 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 327 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 328 329 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 330 331 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 332 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 333 return GPUAttr.hasAttribute(Attribute::None) ? 334 getTargetCPU() : GPUAttr.getValueAsString(); 335 } 336 337 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 338 Attribute FSAttr = F.getFnAttribute("target-features"); 339 340 return FSAttr.hasAttribute(Attribute::None) ? 341 getTargetFeatureString() : 342 FSAttr.getValueAsString(); 343 } 344 345 /// Predicate for Internalize pass. 346 static bool mustPreserveGV(const GlobalValue &GV) { 347 if (const Function *F = dyn_cast<Function>(&GV)) 348 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 349 350 return !GV.use_empty(); 351 } 352 353 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 354 Builder.DivergentTarget = true; 355 356 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 357 bool Internalize = InternalizeSymbols; 358 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableAMDGPUFunctionCalls; 359 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 360 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 361 362 if (EnableAMDGPUFunctionCalls) { 363 delete Builder.Inliner; 364 Builder.Inliner = createAMDGPUFunctionInliningPass(); 365 } 366 367 Builder.addExtension( 368 PassManagerBuilder::EP_ModuleOptimizerEarly, 369 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 370 legacy::PassManagerBase &PM) { 371 if (AMDGPUAA) { 372 PM.add(createAMDGPUAAWrapperPass()); 373 PM.add(createAMDGPUExternalAAWrapperPass()); 374 } 375 PM.add(createAMDGPUUnifyMetadataPass()); 376 if (Internalize) { 377 PM.add(createInternalizePass(mustPreserveGV)); 378 PM.add(createGlobalDCEPass()); 379 } 380 if (EarlyInline) 381 PM.add(createAMDGPUAlwaysInlinePass(false)); 382 }); 383 384 const auto &Opt = Options; 385 Builder.addExtension( 386 PassManagerBuilder::EP_EarlyAsPossible, 387 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 388 legacy::PassManagerBase &PM) { 389 if (AMDGPUAA) { 390 PM.add(createAMDGPUAAWrapperPass()); 391 PM.add(createAMDGPUExternalAAWrapperPass()); 392 } 393 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 394 if (LibCallSimplify) 395 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 396 }); 397 398 Builder.addExtension( 399 PassManagerBuilder::EP_CGSCCOptimizerLate, 400 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 401 // Add infer address spaces pass to the opt pipeline after inlining 402 // but before SROA to increase SROA opportunities. 403 PM.add(createInferAddressSpacesPass()); 404 405 // This should run after inlining to have any chance of doing anything, 406 // and before other cleanup optimizations. 407 PM.add(createAMDGPULowerKernelAttributesPass()); 408 }); 409 } 410 411 //===----------------------------------------------------------------------===// 412 // R600 Target Machine (R600 -> Cayman) 413 //===----------------------------------------------------------------------===// 414 415 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 416 StringRef CPU, StringRef FS, 417 TargetOptions Options, 418 Optional<Reloc::Model> RM, 419 Optional<CodeModel::Model> CM, 420 CodeGenOpt::Level OL, bool JIT) 421 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 422 setRequiresStructuredCFG(true); 423 } 424 425 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 426 const Function &F) const { 427 StringRef GPU = getGPUName(F); 428 StringRef FS = getFeatureString(F); 429 430 SmallString<128> SubtargetKey(GPU); 431 SubtargetKey.append(FS); 432 433 auto &I = SubtargetMap[SubtargetKey]; 434 if (!I) { 435 // This needs to be done before we create a new subtarget since any 436 // creation will depend on the TM and the code generation flags on the 437 // function that reside in TargetOptions. 438 resetTargetOptions(F); 439 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 440 } 441 442 return I.get(); 443 } 444 445 TargetTransformInfo 446 R600TargetMachine::getTargetTransformInfo(const Function &F) { 447 return TargetTransformInfo(R600TTIImpl(this, F)); 448 } 449 450 //===----------------------------------------------------------------------===// 451 // GCN Target Machine (SI+) 452 //===----------------------------------------------------------------------===// 453 454 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 455 StringRef CPU, StringRef FS, 456 TargetOptions Options, 457 Optional<Reloc::Model> RM, 458 Optional<CodeModel::Model> CM, 459 CodeGenOpt::Level OL, bool JIT) 460 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 461 462 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 463 StringRef GPU = getGPUName(F); 464 StringRef FS = getFeatureString(F); 465 466 SmallString<128> SubtargetKey(GPU); 467 SubtargetKey.append(FS); 468 469 auto &I = SubtargetMap[SubtargetKey]; 470 if (!I) { 471 // This needs to be done before we create a new subtarget since any 472 // creation will depend on the TM and the code generation flags on the 473 // function that reside in TargetOptions. 474 resetTargetOptions(F); 475 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 476 } 477 478 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 479 480 return I.get(); 481 } 482 483 TargetTransformInfo 484 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 485 return TargetTransformInfo(GCNTTIImpl(this, F)); 486 } 487 488 //===----------------------------------------------------------------------===// 489 // AMDGPU Pass Setup 490 //===----------------------------------------------------------------------===// 491 492 namespace { 493 494 class AMDGPUPassConfig : public TargetPassConfig { 495 public: 496 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 497 : TargetPassConfig(TM, PM) { 498 // Exceptions and StackMaps are not supported, so these passes will never do 499 // anything. 500 disablePass(&StackMapLivenessID); 501 disablePass(&FuncletLayoutID); 502 } 503 504 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 505 return getTM<AMDGPUTargetMachine>(); 506 } 507 508 ScheduleDAGInstrs * 509 createMachineScheduler(MachineSchedContext *C) const override { 510 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 511 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 512 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 513 return DAG; 514 } 515 516 void addEarlyCSEOrGVNPass(); 517 void addStraightLineScalarOptimizationPasses(); 518 void addIRPasses() override; 519 void addCodeGenPrepare() override; 520 bool addPreISel() override; 521 bool addInstSelector() override; 522 bool addGCPasses() override; 523 }; 524 525 class R600PassConfig final : public AMDGPUPassConfig { 526 public: 527 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 528 : AMDGPUPassConfig(TM, PM) {} 529 530 ScheduleDAGInstrs *createMachineScheduler( 531 MachineSchedContext *C) const override { 532 return createR600MachineScheduler(C); 533 } 534 535 bool addPreISel() override; 536 bool addInstSelector() override; 537 void addPreRegAlloc() override; 538 void addPreSched2() override; 539 void addPreEmitPass() override; 540 }; 541 542 class GCNPassConfig final : public AMDGPUPassConfig { 543 public: 544 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 545 : AMDGPUPassConfig(TM, PM) { 546 // It is necessary to know the register usage of the entire call graph. We 547 // allow calls without EnableAMDGPUFunctionCalls if they are marked 548 // noinline, so this is always required. 549 setRequiresCodeGenSCCOrder(true); 550 } 551 552 GCNTargetMachine &getGCNTargetMachine() const { 553 return getTM<GCNTargetMachine>(); 554 } 555 556 ScheduleDAGInstrs * 557 createMachineScheduler(MachineSchedContext *C) const override; 558 559 bool addPreISel() override; 560 void addMachineSSAOptimization() override; 561 bool addILPOpts() override; 562 bool addInstSelector() override; 563 bool addIRTranslator() override; 564 bool addLegalizeMachineIR() override; 565 bool addRegBankSelect() override; 566 bool addGlobalInstructionSelect() override; 567 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 568 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 569 void addPreRegAlloc() override; 570 void addPostRegAlloc() override; 571 void addPreSched2() override; 572 void addPreEmitPass() override; 573 }; 574 575 } // end anonymous namespace 576 577 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 578 if (getOptLevel() == CodeGenOpt::Aggressive) 579 addPass(createGVNPass()); 580 else 581 addPass(createEarlyCSEPass()); 582 } 583 584 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 585 addPass(createLICMPass()); 586 addPass(createSeparateConstOffsetFromGEPPass()); 587 addPass(createSpeculativeExecutionPass()); 588 // ReassociateGEPs exposes more opportunites for SLSR. See 589 // the example in reassociate-geps-and-slsr.ll. 590 addPass(createStraightLineStrengthReducePass()); 591 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 592 // EarlyCSE can reuse. 593 addEarlyCSEOrGVNPass(); 594 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 595 addPass(createNaryReassociatePass()); 596 // NaryReassociate on GEPs creates redundant common expressions, so run 597 // EarlyCSE after it. 598 addPass(createEarlyCSEPass()); 599 } 600 601 void AMDGPUPassConfig::addIRPasses() { 602 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 603 604 // There is no reason to run these. 605 disablePass(&StackMapLivenessID); 606 disablePass(&FuncletLayoutID); 607 disablePass(&PatchableFunctionID); 608 609 addPass(createAtomicExpandPass()); 610 611 // This must occur before inlining, as the inliner will not look through 612 // bitcast calls. 613 addPass(createAMDGPUFixFunctionBitcastsPass()); 614 615 addPass(createAMDGPULowerIntrinsicsPass()); 616 617 // Function calls are not supported, so make sure we inline everything. 618 addPass(createAMDGPUAlwaysInlinePass()); 619 addPass(createAlwaysInlinerLegacyPass()); 620 // We need to add the barrier noop pass, otherwise adding the function 621 // inlining pass will cause all of the PassConfigs passes to be run 622 // one function at a time, which means if we have a nodule with two 623 // functions, then we will generate code for the first function 624 // without ever running any passes on the second. 625 addPass(createBarrierNoopPass()); 626 627 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 628 // TODO: May want to move later or split into an early and late one. 629 630 addPass(createAMDGPUCodeGenPreparePass()); 631 } 632 633 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 634 if (TM.getTargetTriple().getArch() == Triple::r600) 635 addPass(createR600OpenCLImageTypeLoweringPass()); 636 637 // Replace OpenCL enqueued block function pointers with global variables. 638 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 639 640 if (TM.getOptLevel() > CodeGenOpt::None) { 641 addPass(createInferAddressSpacesPass()); 642 addPass(createAMDGPUPromoteAlloca()); 643 644 if (EnableSROA) 645 addPass(createSROAPass()); 646 647 addStraightLineScalarOptimizationPasses(); 648 649 if (EnableAMDGPUAliasAnalysis) { 650 addPass(createAMDGPUAAWrapperPass()); 651 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 652 AAResults &AAR) { 653 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 654 AAR.addAAResult(WrapperPass->getResult()); 655 })); 656 } 657 } 658 659 TargetPassConfig::addIRPasses(); 660 661 // EarlyCSE is not always strong enough to clean up what LSR produces. For 662 // example, GVN can combine 663 // 664 // %0 = add %a, %b 665 // %1 = add %b, %a 666 // 667 // and 668 // 669 // %0 = shl nsw %a, 2 670 // %1 = shl %a, 2 671 // 672 // but EarlyCSE can do neither of them. 673 if (getOptLevel() != CodeGenOpt::None) 674 addEarlyCSEOrGVNPass(); 675 } 676 677 void AMDGPUPassConfig::addCodeGenPrepare() { 678 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 679 EnableLowerKernelArguments) 680 addPass(createAMDGPULowerKernelArgumentsPass()); 681 682 TargetPassConfig::addCodeGenPrepare(); 683 684 if (EnableLoadStoreVectorizer) 685 addPass(createLoadStoreVectorizerPass()); 686 } 687 688 bool AMDGPUPassConfig::addPreISel() { 689 addPass(createLowerSwitchPass()); 690 addPass(createFlattenCFGPass()); 691 return false; 692 } 693 694 bool AMDGPUPassConfig::addInstSelector() { 695 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 696 return false; 697 } 698 699 bool AMDGPUPassConfig::addGCPasses() { 700 // Do nothing. GC is not supported. 701 return false; 702 } 703 704 //===----------------------------------------------------------------------===// 705 // R600 Pass Setup 706 //===----------------------------------------------------------------------===// 707 708 bool R600PassConfig::addPreISel() { 709 AMDGPUPassConfig::addPreISel(); 710 711 if (EnableR600StructurizeCFG) 712 addPass(createStructurizeCFGPass()); 713 return false; 714 } 715 716 bool R600PassConfig::addInstSelector() { 717 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 718 return false; 719 } 720 721 void R600PassConfig::addPreRegAlloc() { 722 addPass(createR600VectorRegMerger()); 723 } 724 725 void R600PassConfig::addPreSched2() { 726 addPass(createR600EmitClauseMarkers(), false); 727 if (EnableR600IfConvert) 728 addPass(&IfConverterID, false); 729 addPass(createR600ClauseMergePass(), false); 730 } 731 732 void R600PassConfig::addPreEmitPass() { 733 addPass(createAMDGPUCFGStructurizerPass(), false); 734 addPass(createR600ExpandSpecialInstrsPass(), false); 735 addPass(&FinalizeMachineBundlesID, false); 736 addPass(createR600Packetizer(), false); 737 addPass(createR600ControlFlowFinalizer(), false); 738 } 739 740 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 741 return new R600PassConfig(*this, PM); 742 } 743 744 //===----------------------------------------------------------------------===// 745 // GCN Pass Setup 746 //===----------------------------------------------------------------------===// 747 748 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 749 MachineSchedContext *C) const { 750 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 751 if (ST.enableSIScheduler()) 752 return createSIMachineScheduler(C); 753 return createGCNMaxOccupancyMachineScheduler(C); 754 } 755 756 bool GCNPassConfig::addPreISel() { 757 AMDGPUPassConfig::addPreISel(); 758 759 if (EnableAtomicOptimizations) { 760 addPass(createAMDGPUAtomicOptimizerPass()); 761 } 762 763 // FIXME: We need to run a pass to propagate the attributes when calls are 764 // supported. 765 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 766 767 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 768 // regions formed by them. 769 addPass(&AMDGPUUnifyDivergentExitNodesID); 770 if (!LateCFGStructurize) { 771 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 772 } 773 addPass(createSinkingPass()); 774 addPass(createAMDGPUAnnotateUniformValues()); 775 if (!LateCFGStructurize) { 776 addPass(createSIAnnotateControlFlowPass()); 777 } 778 779 return false; 780 } 781 782 void GCNPassConfig::addMachineSSAOptimization() { 783 TargetPassConfig::addMachineSSAOptimization(); 784 785 // We want to fold operands after PeepholeOptimizer has run (or as part of 786 // it), because it will eliminate extra copies making it easier to fold the 787 // real source operand. We want to eliminate dead instructions after, so that 788 // we see fewer uses of the copies. We then need to clean up the dead 789 // instructions leftover after the operands are folded as well. 790 // 791 // XXX - Can we get away without running DeadMachineInstructionElim again? 792 addPass(&SIFoldOperandsID); 793 addPass(&DeadMachineInstructionElimID); 794 addPass(&SILoadStoreOptimizerID); 795 if (EnableSDWAPeephole) { 796 addPass(&SIPeepholeSDWAID); 797 addPass(&EarlyMachineLICMID); 798 addPass(&MachineCSEID); 799 addPass(&SIFoldOperandsID); 800 addPass(&DeadMachineInstructionElimID); 801 } 802 addPass(createSIShrinkInstructionsPass()); 803 } 804 805 bool GCNPassConfig::addILPOpts() { 806 if (EnableEarlyIfConversion) 807 addPass(&EarlyIfConverterID); 808 809 TargetPassConfig::addILPOpts(); 810 return false; 811 } 812 813 bool GCNPassConfig::addInstSelector() { 814 AMDGPUPassConfig::addInstSelector(); 815 addPass(&SIFixSGPRCopiesID); 816 addPass(createSILowerI1CopiesPass()); 817 addPass(createSIFixupVectorISelPass()); 818 return false; 819 } 820 821 bool GCNPassConfig::addIRTranslator() { 822 addPass(new IRTranslator()); 823 return false; 824 } 825 826 bool GCNPassConfig::addLegalizeMachineIR() { 827 addPass(new Legalizer()); 828 return false; 829 } 830 831 bool GCNPassConfig::addRegBankSelect() { 832 addPass(new RegBankSelect()); 833 return false; 834 } 835 836 bool GCNPassConfig::addGlobalInstructionSelect() { 837 addPass(new InstructionSelect()); 838 return false; 839 } 840 841 void GCNPassConfig::addPreRegAlloc() { 842 if (LateCFGStructurize) { 843 addPass(createAMDGPUMachineCFGStructurizerPass()); 844 } 845 addPass(createSIWholeQuadModePass()); 846 } 847 848 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 849 // FIXME: We have to disable the verifier here because of PHIElimination + 850 // TwoAddressInstructions disabling it. 851 852 // This must be run immediately after phi elimination and before 853 // TwoAddressInstructions, otherwise the processing of the tied operand of 854 // SI_ELSE will introduce a copy of the tied operand source after the else. 855 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 856 857 // This must be run after SILowerControlFlow, since it needs to use the 858 // machine-level CFG, but before register allocation. 859 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 860 861 TargetPassConfig::addFastRegAlloc(RegAllocPass); 862 } 863 864 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 865 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 866 867 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 868 869 // This must be run immediately after phi elimination and before 870 // TwoAddressInstructions, otherwise the processing of the tied operand of 871 // SI_ELSE will introduce a copy of the tied operand source after the else. 872 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 873 874 // This must be run after SILowerControlFlow, since it needs to use the 875 // machine-level CFG, but before register allocation. 876 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 877 878 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 879 } 880 881 void GCNPassConfig::addPostRegAlloc() { 882 addPass(&SIFixVGPRCopiesID); 883 addPass(&SIOptimizeExecMaskingID); 884 TargetPassConfig::addPostRegAlloc(); 885 } 886 887 void GCNPassConfig::addPreSched2() { 888 } 889 890 void GCNPassConfig::addPreEmitPass() { 891 addPass(createSIMemoryLegalizerPass()); 892 addPass(createSIInsertWaitcntsPass()); 893 addPass(createSIShrinkInstructionsPass()); 894 895 // The hazard recognizer that runs as part of the post-ra scheduler does not 896 // guarantee to be able handle all hazards correctly. This is because if there 897 // are multiple scheduling regions in a basic block, the regions are scheduled 898 // bottom up, so when we begin to schedule a region we don't know what 899 // instructions were emitted directly before it. 900 // 901 // Here we add a stand-alone hazard recognizer pass which can handle all 902 // cases. 903 // 904 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 905 // be better for it to emit S_NOP <N> when possible. 906 addPass(&PostRAHazardRecognizerID); 907 908 addPass(&SIInsertSkipsPassID); 909 addPass(createSIDebuggerInsertNopsPass()); 910 addPass(&BranchRelaxationPassID); 911 } 912 913 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 914 return new GCNPassConfig(*this, PM); 915 } 916