1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 197 // Register the target 198 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 199 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 200 201 PassRegistry *PR = PassRegistry::getPassRegistry(); 202 initializeR600ClauseMergePassPass(*PR); 203 initializeR600ControlFlowFinalizerPass(*PR); 204 initializeR600PacketizerPass(*PR); 205 initializeR600ExpandSpecialInstrsPassPass(*PR); 206 initializeR600VectorRegMergerPass(*PR); 207 initializeGlobalISel(*PR); 208 initializeAMDGPUDAGToDAGISelPass(*PR); 209 initializeGCNDPPCombinePass(*PR); 210 initializeSILowerI1CopiesPass(*PR); 211 initializeSILowerSGPRSpillsPass(*PR); 212 initializeSIFixSGPRCopiesPass(*PR); 213 initializeSIFixVGPRCopiesPass(*PR); 214 initializeSIFoldOperandsPass(*PR); 215 initializeSIPeepholeSDWAPass(*PR); 216 initializeSIShrinkInstructionsPass(*PR); 217 initializeSIOptimizeExecMaskingPreRAPass(*PR); 218 initializeSILoadStoreOptimizerPass(*PR); 219 initializeAMDGPUFixFunctionBitcastsPass(*PR); 220 initializeAMDGPUAlwaysInlinePass(*PR); 221 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 222 initializeAMDGPUAnnotateUniformValuesPass(*PR); 223 initializeAMDGPUArgumentUsageInfoPass(*PR); 224 initializeAMDGPUAtomicOptimizerPass(*PR); 225 initializeAMDGPULowerKernelArgumentsPass(*PR); 226 initializeAMDGPULowerKernelAttributesPass(*PR); 227 initializeAMDGPULowerIntrinsicsPass(*PR); 228 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 229 initializeAMDGPUPostLegalizerCombinerPass(*PR); 230 initializeAMDGPUPreLegalizerCombinerPass(*PR); 231 initializeAMDGPUPromoteAllocaPass(*PR); 232 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 233 initializeAMDGPUCodeGenPreparePass(*PR); 234 initializeAMDGPULateCodeGenPreparePass(*PR); 235 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 236 initializeAMDGPUPropagateAttributesLatePass(*PR); 237 initializeAMDGPURewriteOutArgumentsPass(*PR); 238 initializeAMDGPUUnifyMetadataPass(*PR); 239 initializeSIAnnotateControlFlowPass(*PR); 240 initializeSIInsertHardClausesPass(*PR); 241 initializeSIInsertWaitcntsPass(*PR); 242 initializeSIModeRegisterPass(*PR); 243 initializeSIWholeQuadModePass(*PR); 244 initializeSILowerControlFlowPass(*PR); 245 initializeSIRemoveShortExecBranchesPass(*PR); 246 initializeSIPreEmitPeepholePass(*PR); 247 initializeSIInsertSkipsPass(*PR); 248 initializeSIMemoryLegalizerPass(*PR); 249 initializeSIOptimizeExecMaskingPass(*PR); 250 initializeSIPreAllocateWWMRegsPass(*PR); 251 initializeSIFormMemoryClausesPass(*PR); 252 initializeSIPostRABundlerPass(*PR); 253 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 254 initializeAMDGPUAAWrapperPassPass(*PR); 255 initializeAMDGPUExternalAAWrapperPass(*PR); 256 initializeAMDGPUUseNativeCallsPass(*PR); 257 initializeAMDGPUSimplifyLibCallsPass(*PR); 258 initializeAMDGPUInlinerPass(*PR); 259 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 260 initializeGCNRegBankReassignPass(*PR); 261 initializeGCNNSAReassignPass(*PR); 262 initializeSIAddIMGInitPass(*PR); 263 } 264 265 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 266 return std::make_unique<AMDGPUTargetObjectFile>(); 267 } 268 269 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 270 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 271 } 272 273 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 274 return new SIScheduleDAGMI(C); 275 } 276 277 static ScheduleDAGInstrs * 278 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 279 ScheduleDAGMILive *DAG = 280 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 281 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 282 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 283 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 284 return DAG; 285 } 286 287 static ScheduleDAGInstrs * 288 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 289 auto DAG = new GCNIterativeScheduler(C, 290 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 291 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 292 return DAG; 293 } 294 295 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 296 return new GCNIterativeScheduler(C, 297 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 298 } 299 300 static ScheduleDAGInstrs * 301 createIterativeILPMachineScheduler(MachineSchedContext *C) { 302 auto DAG = new GCNIterativeScheduler(C, 303 GCNIterativeScheduler::SCHEDULE_ILP); 304 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 305 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 306 return DAG; 307 } 308 309 static MachineSchedRegistry 310 R600SchedRegistry("r600", "Run R600's custom scheduler", 311 createR600MachineScheduler); 312 313 static MachineSchedRegistry 314 SISchedRegistry("si", "Run SI's custom scheduler", 315 createSIMachineScheduler); 316 317 static MachineSchedRegistry 318 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 319 "Run GCN scheduler to maximize occupancy", 320 createGCNMaxOccupancyMachineScheduler); 321 322 static MachineSchedRegistry 323 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 324 "Run GCN scheduler to maximize occupancy (experimental)", 325 createIterativeGCNMaxOccupancyMachineScheduler); 326 327 static MachineSchedRegistry 328 GCNMinRegSchedRegistry("gcn-minreg", 329 "Run GCN iterative scheduler for minimal register usage (experimental)", 330 createMinRegScheduler); 331 332 static MachineSchedRegistry 333 GCNILPSchedRegistry("gcn-ilp", 334 "Run GCN iterative scheduler for ILP scheduling (experimental)", 335 createIterativeILPMachineScheduler); 336 337 static StringRef computeDataLayout(const Triple &TT) { 338 if (TT.getArch() == Triple::r600) { 339 // 32-bit pointers. 340 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 341 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 342 } 343 344 // 32-bit private, local, and region pointers. 64-bit global, constant and 345 // flat, non-integral buffer fat pointers. 346 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 347 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 348 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 349 "-ni:7"; 350 } 351 352 LLVM_READNONE 353 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 354 if (!GPU.empty()) 355 return GPU; 356 357 // Need to default to a target with flat support for HSA. 358 if (TT.getArch() == Triple::amdgcn) 359 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 360 361 return "r600"; 362 } 363 364 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 365 // The AMDGPU toolchain only supports generating shared objects, so we 366 // must always use PIC. 367 return Reloc::PIC_; 368 } 369 370 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 371 StringRef CPU, StringRef FS, 372 TargetOptions Options, 373 Optional<Reloc::Model> RM, 374 Optional<CodeModel::Model> CM, 375 CodeGenOpt::Level OptLevel) 376 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 377 FS, Options, getEffectiveRelocModel(RM), 378 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 379 TLOF(createTLOF(getTargetTriple())) { 380 initAsmInfo(); 381 if (TT.getArch() == Triple::amdgcn) { 382 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 383 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 384 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 385 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 386 } 387 } 388 389 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 390 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 391 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 392 393 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 394 395 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 396 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 397 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 398 } 399 400 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 401 Attribute FSAttr = F.getFnAttribute("target-features"); 402 403 return FSAttr.isValid() ? FSAttr.getValueAsString() 404 : getTargetFeatureString(); 405 } 406 407 /// Predicate for Internalize pass. 408 static bool mustPreserveGV(const GlobalValue &GV) { 409 if (const Function *F = dyn_cast<Function>(&GV)) 410 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 411 412 return !GV.use_empty(); 413 } 414 415 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 416 Builder.DivergentTarget = true; 417 418 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 419 bool Internalize = InternalizeSymbols; 420 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 421 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 422 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 423 424 if (EnableFunctionCalls) { 425 delete Builder.Inliner; 426 Builder.Inliner = createAMDGPUFunctionInliningPass(); 427 } 428 429 Builder.addExtension( 430 PassManagerBuilder::EP_ModuleOptimizerEarly, 431 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 432 legacy::PassManagerBase &PM) { 433 if (AMDGPUAA) { 434 PM.add(createAMDGPUAAWrapperPass()); 435 PM.add(createAMDGPUExternalAAWrapperPass()); 436 } 437 PM.add(createAMDGPUUnifyMetadataPass()); 438 PM.add(createAMDGPUPrintfRuntimeBinding()); 439 if (Internalize) 440 PM.add(createInternalizePass(mustPreserveGV)); 441 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 442 if (Internalize) 443 PM.add(createGlobalDCEPass()); 444 if (EarlyInline) 445 PM.add(createAMDGPUAlwaysInlinePass(false)); 446 }); 447 448 Builder.addExtension( 449 PassManagerBuilder::EP_EarlyAsPossible, 450 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 451 legacy::PassManagerBase &PM) { 452 if (AMDGPUAA) { 453 PM.add(createAMDGPUAAWrapperPass()); 454 PM.add(createAMDGPUExternalAAWrapperPass()); 455 } 456 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 457 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 458 if (LibCallSimplify) 459 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 460 }); 461 462 Builder.addExtension( 463 PassManagerBuilder::EP_CGSCCOptimizerLate, 464 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 465 // Add infer address spaces pass to the opt pipeline after inlining 466 // but before SROA to increase SROA opportunities. 467 PM.add(createInferAddressSpacesPass()); 468 469 // This should run after inlining to have any chance of doing anything, 470 // and before other cleanup optimizations. 471 PM.add(createAMDGPULowerKernelAttributesPass()); 472 473 // Promote alloca to vector before SROA and loop unroll. If we manage 474 // to eliminate allocas before unroll we may choose to unroll less. 475 if (EnableOpt) 476 PM.add(createAMDGPUPromoteAllocaToVector()); 477 }); 478 } 479 480 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 481 AAM.registerFunctionAnalysis<AMDGPUAA>(); 482 } 483 484 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB, 485 bool DebugPassManager) { 486 PB.registerPipelineParsingCallback( 487 [this](StringRef PassName, ModulePassManager &PM, 488 ArrayRef<PassBuilder::PipelineElement>) { 489 if (PassName == "amdgpu-propagate-attributes-late") { 490 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 491 return true; 492 } 493 if (PassName == "amdgpu-unify-metadata") { 494 PM.addPass(AMDGPUUnifyMetadataPass()); 495 return true; 496 } 497 if (PassName == "amdgpu-printf-runtime-binding") { 498 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 499 return true; 500 } 501 if (PassName == "amdgpu-always-inline") { 502 PM.addPass(AMDGPUAlwaysInlinePass()); 503 return true; 504 } 505 return false; 506 }); 507 PB.registerPipelineParsingCallback( 508 [this](StringRef PassName, FunctionPassManager &PM, 509 ArrayRef<PassBuilder::PipelineElement>) { 510 if (PassName == "amdgpu-simplifylib") { 511 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 512 return true; 513 } 514 if (PassName == "amdgpu-usenative") { 515 PM.addPass(AMDGPUUseNativeCallsPass()); 516 return true; 517 } 518 if (PassName == "amdgpu-promote-alloca") { 519 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 520 return true; 521 } 522 if (PassName == "amdgpu-promote-alloca-to-vector") { 523 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 524 return true; 525 } 526 if (PassName == "amdgpu-lower-kernel-attributes") { 527 PM.addPass(AMDGPULowerKernelAttributesPass()); 528 return true; 529 } 530 if (PassName == "amdgpu-propagate-attributes-early") { 531 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 532 return true; 533 } 534 535 return false; 536 }); 537 538 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 539 FAM.registerPass([&] { return AMDGPUAA(); }); 540 }); 541 542 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 543 if (AAName == "amdgpu-aa") { 544 AAM.registerFunctionAnalysis<AMDGPUAA>(); 545 return true; 546 } 547 return false; 548 }); 549 550 PB.registerPipelineStartEPCallback([this, DebugPassManager]( 551 ModulePassManager &PM, 552 PassBuilder::OptimizationLevel Level) { 553 FunctionPassManager FPM(DebugPassManager); 554 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 555 FPM.addPass(AMDGPUUseNativeCallsPass()); 556 if (EnableLibCallSimplify && Level != PassBuilder::OptimizationLevel::O0) 557 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 558 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 559 }); 560 561 PB.registerPipelineEarlySimplificationEPCallback( 562 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 563 if (Level == PassBuilder::OptimizationLevel::O0) 564 return; 565 566 PM.addPass(AMDGPUUnifyMetadataPass()); 567 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 568 569 if (InternalizeSymbols) { 570 PM.addPass(InternalizePass(mustPreserveGV)); 571 } 572 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 573 if (InternalizeSymbols) { 574 PM.addPass(GlobalDCEPass()); 575 } 576 if (EarlyInlineAll && !EnableFunctionCalls) 577 PM.addPass(AMDGPUAlwaysInlinePass()); 578 }); 579 580 PB.registerCGSCCOptimizerLateEPCallback( 581 [this, DebugPassManager](CGSCCPassManager &PM, 582 PassBuilder::OptimizationLevel Level) { 583 FunctionPassManager FPM(DebugPassManager); 584 585 // Add infer address spaces pass to the opt pipeline after inlining 586 // but before SROA to increase SROA opportunities. 587 FPM.addPass(InferAddressSpacesPass()); 588 589 // This should run after inlining to have any chance of doing 590 // anything, and before other cleanup optimizations. 591 FPM.addPass(AMDGPULowerKernelAttributesPass()); 592 593 if (Level != PassBuilder::OptimizationLevel::O0) { 594 // Promote alloca to vector before SROA and loop unroll. If we 595 // manage to eliminate allocas before unroll we may choose to unroll 596 // less. 597 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 598 } 599 600 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 601 }); 602 } 603 604 //===----------------------------------------------------------------------===// 605 // R600 Target Machine (R600 -> Cayman) 606 //===----------------------------------------------------------------------===// 607 608 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 609 StringRef CPU, StringRef FS, 610 TargetOptions Options, 611 Optional<Reloc::Model> RM, 612 Optional<CodeModel::Model> CM, 613 CodeGenOpt::Level OL, bool JIT) 614 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 615 setRequiresStructuredCFG(true); 616 617 // Override the default since calls aren't supported for r600. 618 if (EnableFunctionCalls && 619 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 620 EnableFunctionCalls = false; 621 } 622 623 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 624 const Function &F) const { 625 StringRef GPU = getGPUName(F); 626 StringRef FS = getFeatureString(F); 627 628 SmallString<128> SubtargetKey(GPU); 629 SubtargetKey.append(FS); 630 631 auto &I = SubtargetMap[SubtargetKey]; 632 if (!I) { 633 // This needs to be done before we create a new subtarget since any 634 // creation will depend on the TM and the code generation flags on the 635 // function that reside in TargetOptions. 636 resetTargetOptions(F); 637 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 638 } 639 640 return I.get(); 641 } 642 643 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 644 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 645 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 646 AddrSpace == AMDGPUAS::REGION_ADDRESS) 647 ? -1 648 : 0; 649 } 650 651 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 652 unsigned DestAS) const { 653 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 654 AMDGPU::isFlatGlobalAddrSpace(DestAS); 655 } 656 657 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 658 const auto *LD = dyn_cast<LoadInst>(V); 659 if (!LD) 660 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 661 662 // It must be a generic pointer loaded. 663 assert(V->getType()->isPointerTy() && 664 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 665 666 const auto *Ptr = LD->getPointerOperand(); 667 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 668 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 669 // For a generic pointer loaded from the constant memory, it could be assumed 670 // as a global pointer since the constant memory is only populated on the 671 // host side. As implied by the offload programming model, only global 672 // pointers could be referenced on the host side. 673 return AMDGPUAS::GLOBAL_ADDRESS; 674 } 675 676 TargetTransformInfo 677 R600TargetMachine::getTargetTransformInfo(const Function &F) { 678 return TargetTransformInfo(R600TTIImpl(this, F)); 679 } 680 681 //===----------------------------------------------------------------------===// 682 // GCN Target Machine (SI+) 683 //===----------------------------------------------------------------------===// 684 685 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 686 StringRef CPU, StringRef FS, 687 TargetOptions Options, 688 Optional<Reloc::Model> RM, 689 Optional<CodeModel::Model> CM, 690 CodeGenOpt::Level OL, bool JIT) 691 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 692 693 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 694 StringRef GPU = getGPUName(F); 695 StringRef FS = getFeatureString(F); 696 697 SmallString<128> SubtargetKey(GPU); 698 SubtargetKey.append(FS); 699 700 auto &I = SubtargetMap[SubtargetKey]; 701 if (!I) { 702 // This needs to be done before we create a new subtarget since any 703 // creation will depend on the TM and the code generation flags on the 704 // function that reside in TargetOptions. 705 resetTargetOptions(F); 706 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 707 } 708 709 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 710 711 return I.get(); 712 } 713 714 TargetTransformInfo 715 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 716 return TargetTransformInfo(GCNTTIImpl(this, F)); 717 } 718 719 //===----------------------------------------------------------------------===// 720 // AMDGPU Pass Setup 721 //===----------------------------------------------------------------------===// 722 723 namespace { 724 725 class AMDGPUPassConfig : public TargetPassConfig { 726 public: 727 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 728 : TargetPassConfig(TM, PM) { 729 // Exceptions and StackMaps are not supported, so these passes will never do 730 // anything. 731 disablePass(&StackMapLivenessID); 732 disablePass(&FuncletLayoutID); 733 } 734 735 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 736 return getTM<AMDGPUTargetMachine>(); 737 } 738 739 ScheduleDAGInstrs * 740 createMachineScheduler(MachineSchedContext *C) const override { 741 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 742 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 743 return DAG; 744 } 745 746 void addEarlyCSEOrGVNPass(); 747 void addStraightLineScalarOptimizationPasses(); 748 void addIRPasses() override; 749 void addCodeGenPrepare() override; 750 bool addPreISel() override; 751 bool addInstSelector() override; 752 bool addGCPasses() override; 753 754 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 755 }; 756 757 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 758 return getStandardCSEConfigForOpt(TM->getOptLevel()); 759 } 760 761 class R600PassConfig final : public AMDGPUPassConfig { 762 public: 763 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 764 : AMDGPUPassConfig(TM, PM) {} 765 766 ScheduleDAGInstrs *createMachineScheduler( 767 MachineSchedContext *C) const override { 768 return createR600MachineScheduler(C); 769 } 770 771 bool addPreISel() override; 772 bool addInstSelector() override; 773 void addPreRegAlloc() override; 774 void addPreSched2() override; 775 void addPreEmitPass() override; 776 }; 777 778 class GCNPassConfig final : public AMDGPUPassConfig { 779 public: 780 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 781 : AMDGPUPassConfig(TM, PM) { 782 // It is necessary to know the register usage of the entire call graph. We 783 // allow calls without EnableAMDGPUFunctionCalls if they are marked 784 // noinline, so this is always required. 785 setRequiresCodeGenSCCOrder(true); 786 } 787 788 GCNTargetMachine &getGCNTargetMachine() const { 789 return getTM<GCNTargetMachine>(); 790 } 791 792 ScheduleDAGInstrs * 793 createMachineScheduler(MachineSchedContext *C) const override; 794 795 bool addPreISel() override; 796 void addMachineSSAOptimization() override; 797 bool addILPOpts() override; 798 bool addInstSelector() override; 799 bool addIRTranslator() override; 800 void addPreLegalizeMachineIR() override; 801 bool addLegalizeMachineIR() override; 802 void addPreRegBankSelect() override; 803 bool addRegBankSelect() override; 804 bool addGlobalInstructionSelect() override; 805 void addFastRegAlloc() override; 806 void addOptimizedRegAlloc() override; 807 void addPreRegAlloc() override; 808 bool addPreRewrite() override; 809 void addPostRegAlloc() override; 810 void addPreSched2() override; 811 void addPreEmitPass() override; 812 }; 813 814 } // end anonymous namespace 815 816 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 817 if (getOptLevel() == CodeGenOpt::Aggressive) 818 addPass(createGVNPass()); 819 else 820 addPass(createEarlyCSEPass()); 821 } 822 823 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 824 addPass(createLICMPass()); 825 addPass(createSeparateConstOffsetFromGEPPass()); 826 addPass(createSpeculativeExecutionPass()); 827 // ReassociateGEPs exposes more opportunites for SLSR. See 828 // the example in reassociate-geps-and-slsr.ll. 829 addPass(createStraightLineStrengthReducePass()); 830 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 831 // EarlyCSE can reuse. 832 addEarlyCSEOrGVNPass(); 833 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 834 addPass(createNaryReassociatePass()); 835 // NaryReassociate on GEPs creates redundant common expressions, so run 836 // EarlyCSE after it. 837 addPass(createEarlyCSEPass()); 838 } 839 840 void AMDGPUPassConfig::addIRPasses() { 841 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 842 843 // There is no reason to run these. 844 disablePass(&StackMapLivenessID); 845 disablePass(&FuncletLayoutID); 846 disablePass(&PatchableFunctionID); 847 848 addPass(createAMDGPUPrintfRuntimeBinding()); 849 850 // This must occur before inlining, as the inliner will not look through 851 // bitcast calls. 852 addPass(createAMDGPUFixFunctionBitcastsPass()); 853 854 // A call to propagate attributes pass in the backend in case opt was not run. 855 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 856 857 addPass(createAtomicExpandPass()); 858 859 860 addPass(createAMDGPULowerIntrinsicsPass()); 861 862 // Function calls are not supported, so make sure we inline everything. 863 addPass(createAMDGPUAlwaysInlinePass()); 864 addPass(createAlwaysInlinerLegacyPass()); 865 // We need to add the barrier noop pass, otherwise adding the function 866 // inlining pass will cause all of the PassConfigs passes to be run 867 // one function at a time, which means if we have a nodule with two 868 // functions, then we will generate code for the first function 869 // without ever running any passes on the second. 870 addPass(createBarrierNoopPass()); 871 872 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 873 if (TM.getTargetTriple().getArch() == Triple::r600) 874 addPass(createR600OpenCLImageTypeLoweringPass()); 875 876 // Replace OpenCL enqueued block function pointers with global variables. 877 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 878 879 if (TM.getOptLevel() > CodeGenOpt::None) { 880 addPass(createInferAddressSpacesPass()); 881 addPass(createAMDGPUPromoteAlloca()); 882 883 if (EnableSROA) 884 addPass(createSROAPass()); 885 886 if (EnableScalarIRPasses) 887 addStraightLineScalarOptimizationPasses(); 888 889 if (EnableAMDGPUAliasAnalysis) { 890 addPass(createAMDGPUAAWrapperPass()); 891 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 892 AAResults &AAR) { 893 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 894 AAR.addAAResult(WrapperPass->getResult()); 895 })); 896 } 897 } 898 899 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 900 // TODO: May want to move later or split into an early and late one. 901 addPass(createAMDGPUCodeGenPreparePass()); 902 } 903 904 TargetPassConfig::addIRPasses(); 905 906 // EarlyCSE is not always strong enough to clean up what LSR produces. For 907 // example, GVN can combine 908 // 909 // %0 = add %a, %b 910 // %1 = add %b, %a 911 // 912 // and 913 // 914 // %0 = shl nsw %a, 2 915 // %1 = shl %a, 2 916 // 917 // but EarlyCSE can do neither of them. 918 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 919 addEarlyCSEOrGVNPass(); 920 } 921 922 void AMDGPUPassConfig::addCodeGenPrepare() { 923 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 924 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 925 926 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 927 EnableLowerKernelArguments) 928 addPass(createAMDGPULowerKernelArgumentsPass()); 929 930 addPass(&AMDGPUPerfHintAnalysisID); 931 932 TargetPassConfig::addCodeGenPrepare(); 933 934 if (EnableLoadStoreVectorizer) 935 addPass(createLoadStoreVectorizerPass()); 936 937 // LowerSwitch pass may introduce unreachable blocks that can 938 // cause unexpected behavior for subsequent passes. Placing it 939 // here seems better that these blocks would get cleaned up by 940 // UnreachableBlockElim inserted next in the pass flow. 941 addPass(createLowerSwitchPass()); 942 } 943 944 bool AMDGPUPassConfig::addPreISel() { 945 addPass(createFlattenCFGPass()); 946 return false; 947 } 948 949 bool AMDGPUPassConfig::addInstSelector() { 950 // Defer the verifier until FinalizeISel. 951 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 952 return false; 953 } 954 955 bool AMDGPUPassConfig::addGCPasses() { 956 // Do nothing. GC is not supported. 957 return false; 958 } 959 960 //===----------------------------------------------------------------------===// 961 // R600 Pass Setup 962 //===----------------------------------------------------------------------===// 963 964 bool R600PassConfig::addPreISel() { 965 AMDGPUPassConfig::addPreISel(); 966 967 if (EnableR600StructurizeCFG) 968 addPass(createStructurizeCFGPass()); 969 return false; 970 } 971 972 bool R600PassConfig::addInstSelector() { 973 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 974 return false; 975 } 976 977 void R600PassConfig::addPreRegAlloc() { 978 addPass(createR600VectorRegMerger()); 979 } 980 981 void R600PassConfig::addPreSched2() { 982 addPass(createR600EmitClauseMarkers(), false); 983 if (EnableR600IfConvert) 984 addPass(&IfConverterID, false); 985 addPass(createR600ClauseMergePass(), false); 986 } 987 988 void R600PassConfig::addPreEmitPass() { 989 addPass(createAMDGPUCFGStructurizerPass(), false); 990 addPass(createR600ExpandSpecialInstrsPass(), false); 991 addPass(&FinalizeMachineBundlesID, false); 992 addPass(createR600Packetizer(), false); 993 addPass(createR600ControlFlowFinalizer(), false); 994 } 995 996 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 997 return new R600PassConfig(*this, PM); 998 } 999 1000 //===----------------------------------------------------------------------===// 1001 // GCN Pass Setup 1002 //===----------------------------------------------------------------------===// 1003 1004 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1005 MachineSchedContext *C) const { 1006 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1007 if (ST.enableSIScheduler()) 1008 return createSIMachineScheduler(C); 1009 return createGCNMaxOccupancyMachineScheduler(C); 1010 } 1011 1012 bool GCNPassConfig::addPreISel() { 1013 AMDGPUPassConfig::addPreISel(); 1014 1015 addPass(createAMDGPULateCodeGenPreparePass()); 1016 if (EnableAtomicOptimizations) { 1017 addPass(createAMDGPUAtomicOptimizerPass()); 1018 } 1019 1020 // FIXME: We need to run a pass to propagate the attributes when calls are 1021 // supported. 1022 1023 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1024 // regions formed by them. 1025 addPass(&AMDGPUUnifyDivergentExitNodesID); 1026 if (!LateCFGStructurize) { 1027 if (EnableStructurizerWorkarounds) { 1028 addPass(createFixIrreduciblePass()); 1029 addPass(createUnifyLoopExitsPass()); 1030 } 1031 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1032 } 1033 addPass(createSinkingPass()); 1034 addPass(createAMDGPUAnnotateUniformValues()); 1035 if (!LateCFGStructurize) { 1036 addPass(createSIAnnotateControlFlowPass()); 1037 } 1038 addPass(createLCSSAPass()); 1039 1040 return false; 1041 } 1042 1043 void GCNPassConfig::addMachineSSAOptimization() { 1044 TargetPassConfig::addMachineSSAOptimization(); 1045 1046 // We want to fold operands after PeepholeOptimizer has run (or as part of 1047 // it), because it will eliminate extra copies making it easier to fold the 1048 // real source operand. We want to eliminate dead instructions after, so that 1049 // we see fewer uses of the copies. We then need to clean up the dead 1050 // instructions leftover after the operands are folded as well. 1051 // 1052 // XXX - Can we get away without running DeadMachineInstructionElim again? 1053 addPass(&SIFoldOperandsID); 1054 if (EnableDPPCombine) 1055 addPass(&GCNDPPCombineID); 1056 addPass(&DeadMachineInstructionElimID); 1057 addPass(&SILoadStoreOptimizerID); 1058 if (EnableSDWAPeephole) { 1059 addPass(&SIPeepholeSDWAID); 1060 addPass(&EarlyMachineLICMID); 1061 addPass(&MachineCSEID); 1062 addPass(&SIFoldOperandsID); 1063 addPass(&DeadMachineInstructionElimID); 1064 } 1065 addPass(createSIShrinkInstructionsPass()); 1066 } 1067 1068 bool GCNPassConfig::addILPOpts() { 1069 if (EnableEarlyIfConversion) 1070 addPass(&EarlyIfConverterID); 1071 1072 TargetPassConfig::addILPOpts(); 1073 return false; 1074 } 1075 1076 bool GCNPassConfig::addInstSelector() { 1077 AMDGPUPassConfig::addInstSelector(); 1078 addPass(&SIFixSGPRCopiesID); 1079 addPass(createSILowerI1CopiesPass()); 1080 addPass(createSIAddIMGInitPass()); 1081 return false; 1082 } 1083 1084 bool GCNPassConfig::addIRTranslator() { 1085 addPass(new IRTranslator(getOptLevel())); 1086 return false; 1087 } 1088 1089 void GCNPassConfig::addPreLegalizeMachineIR() { 1090 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1091 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1092 addPass(new Localizer()); 1093 } 1094 1095 bool GCNPassConfig::addLegalizeMachineIR() { 1096 addPass(new Legalizer()); 1097 return false; 1098 } 1099 1100 void GCNPassConfig::addPreRegBankSelect() { 1101 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1102 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1103 } 1104 1105 bool GCNPassConfig::addRegBankSelect() { 1106 addPass(new RegBankSelect()); 1107 return false; 1108 } 1109 1110 bool GCNPassConfig::addGlobalInstructionSelect() { 1111 addPass(new InstructionSelect()); 1112 return false; 1113 } 1114 1115 void GCNPassConfig::addPreRegAlloc() { 1116 if (LateCFGStructurize) { 1117 addPass(createAMDGPUMachineCFGStructurizerPass()); 1118 } 1119 } 1120 1121 void GCNPassConfig::addFastRegAlloc() { 1122 // FIXME: We have to disable the verifier here because of PHIElimination + 1123 // TwoAddressInstructions disabling it. 1124 1125 // This must be run immediately after phi elimination and before 1126 // TwoAddressInstructions, otherwise the processing of the tied operand of 1127 // SI_ELSE will introduce a copy of the tied operand source after the else. 1128 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1129 1130 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1131 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1132 1133 TargetPassConfig::addFastRegAlloc(); 1134 } 1135 1136 void GCNPassConfig::addOptimizedRegAlloc() { 1137 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1138 // instructions that cause scheduling barriers. 1139 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1140 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1141 1142 if (OptExecMaskPreRA) 1143 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1144 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1145 1146 // This must be run immediately after phi elimination and before 1147 // TwoAddressInstructions, otherwise the processing of the tied operand of 1148 // SI_ELSE will introduce a copy of the tied operand source after the else. 1149 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1150 1151 if (EnableDCEInRA) 1152 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1153 1154 TargetPassConfig::addOptimizedRegAlloc(); 1155 } 1156 1157 bool GCNPassConfig::addPreRewrite() { 1158 if (EnableRegReassign) { 1159 addPass(&GCNNSAReassignID); 1160 addPass(&GCNRegBankReassignID); 1161 } 1162 return true; 1163 } 1164 1165 void GCNPassConfig::addPostRegAlloc() { 1166 addPass(&SIFixVGPRCopiesID); 1167 if (getOptLevel() > CodeGenOpt::None) 1168 addPass(&SIOptimizeExecMaskingID); 1169 TargetPassConfig::addPostRegAlloc(); 1170 1171 // Equivalent of PEI for SGPRs. 1172 addPass(&SILowerSGPRSpillsID); 1173 } 1174 1175 void GCNPassConfig::addPreSched2() { 1176 addPass(&SIPostRABundlerID); 1177 } 1178 1179 void GCNPassConfig::addPreEmitPass() { 1180 addPass(createSIMemoryLegalizerPass()); 1181 addPass(createSIInsertWaitcntsPass()); 1182 addPass(createSIShrinkInstructionsPass()); 1183 addPass(createSIModeRegisterPass()); 1184 1185 if (getOptLevel() > CodeGenOpt::None) 1186 addPass(&SIInsertHardClausesID); 1187 1188 addPass(&SIRemoveShortExecBranchesID); 1189 addPass(&SIInsertSkipsPassID); 1190 addPass(&SIPreEmitPeepholeID); 1191 // The hazard recognizer that runs as part of the post-ra scheduler does not 1192 // guarantee to be able handle all hazards correctly. This is because if there 1193 // are multiple scheduling regions in a basic block, the regions are scheduled 1194 // bottom up, so when we begin to schedule a region we don't know what 1195 // instructions were emitted directly before it. 1196 // 1197 // Here we add a stand-alone hazard recognizer pass which can handle all 1198 // cases. 1199 addPass(&PostRAHazardRecognizerID); 1200 addPass(&BranchRelaxationPassID); 1201 } 1202 1203 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1204 return new GCNPassConfig(*this, PM); 1205 } 1206 1207 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1208 return new yaml::SIMachineFunctionInfo(); 1209 } 1210 1211 yaml::MachineFunctionInfo * 1212 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1213 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1214 return new yaml::SIMachineFunctionInfo(*MFI, 1215 *MF.getSubtarget().getRegisterInfo()); 1216 } 1217 1218 bool GCNTargetMachine::parseMachineFunctionInfo( 1219 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1220 SMDiagnostic &Error, SMRange &SourceRange) const { 1221 const yaml::SIMachineFunctionInfo &YamlMFI = 1222 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1223 MachineFunction &MF = PFS.MF; 1224 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1225 1226 MFI->initializeBaseYamlFields(YamlMFI); 1227 1228 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1229 Register TempReg; 1230 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1231 SourceRange = RegName.SourceRange; 1232 return true; 1233 } 1234 RegVal = TempReg; 1235 1236 return false; 1237 }; 1238 1239 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1240 // Create a diagnostic for a the register string literal. 1241 const MemoryBuffer &Buffer = 1242 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1243 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1244 RegName.Value.size(), SourceMgr::DK_Error, 1245 "incorrect register class for field", RegName.Value, 1246 None, None); 1247 SourceRange = RegName.SourceRange; 1248 return true; 1249 }; 1250 1251 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1252 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1253 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1254 return true; 1255 1256 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1257 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1258 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1259 } 1260 1261 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1262 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1263 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1264 } 1265 1266 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1267 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1268 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1269 } 1270 1271 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1272 const TargetRegisterClass &RC, 1273 ArgDescriptor &Arg, unsigned UserSGPRs, 1274 unsigned SystemSGPRs) { 1275 // Skip parsing if it's not present. 1276 if (!A) 1277 return false; 1278 1279 if (A->IsRegister) { 1280 Register Reg; 1281 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1282 SourceRange = A->RegisterName.SourceRange; 1283 return true; 1284 } 1285 if (!RC.contains(Reg)) 1286 return diagnoseRegisterClass(A->RegisterName); 1287 Arg = ArgDescriptor::createRegister(Reg); 1288 } else 1289 Arg = ArgDescriptor::createStack(A->StackOffset); 1290 // Check and apply the optional mask. 1291 if (A->Mask) 1292 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1293 1294 MFI->NumUserSGPRs += UserSGPRs; 1295 MFI->NumSystemSGPRs += SystemSGPRs; 1296 return false; 1297 }; 1298 1299 if (YamlMFI.ArgInfo && 1300 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1301 AMDGPU::SGPR_128RegClass, 1302 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1303 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1304 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1305 2, 0) || 1306 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1307 MFI->ArgInfo.QueuePtr, 2, 0) || 1308 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1309 AMDGPU::SReg_64RegClass, 1310 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1311 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1312 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1313 2, 0) || 1314 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1315 AMDGPU::SReg_64RegClass, 1316 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1317 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1318 AMDGPU::SGPR_32RegClass, 1319 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1320 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1321 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1322 0, 1) || 1323 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1324 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1325 0, 1) || 1326 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1327 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1328 0, 1) || 1329 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1330 AMDGPU::SGPR_32RegClass, 1331 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1332 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1333 AMDGPU::SGPR_32RegClass, 1334 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1335 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1336 AMDGPU::SReg_64RegClass, 1337 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1338 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1339 AMDGPU::SReg_64RegClass, 1340 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1341 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1342 AMDGPU::VGPR_32RegClass, 1343 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1344 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1345 AMDGPU::VGPR_32RegClass, 1346 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1347 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1348 AMDGPU::VGPR_32RegClass, 1349 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1350 return true; 1351 1352 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1353 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1354 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1355 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1356 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1357 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1358 1359 return false; 1360 } 1361