1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUExportClustering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "MCTargetDesc/AMDGPUMCTargetDesc.h" 28 #include "R600MachineScheduler.h" 29 #include "SIMachineFunctionInfo.h" 30 #include "SIMachineScheduler.h" 31 #include "TargetInfo/AMDGPUTargetInfo.h" 32 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 33 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 34 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 35 #include "llvm/CodeGen/GlobalISel/Localizer.h" 36 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 37 #include "llvm/CodeGen/MIRParser/MIParser.h" 38 #include "llvm/CodeGen/Passes.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/Attributes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/LegacyPassManager.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/TargetRegistry.h" 48 #include "llvm/Target/TargetLoweringObjectFile.h" 49 #include "llvm/Transforms/IPO.h" 50 #include "llvm/Transforms/IPO/AlwaysInliner.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/GVN.h" 54 #include "llvm/Transforms/Utils.h" 55 #include "llvm/Transforms/Vectorize.h" 56 #include <memory> 57 58 using namespace llvm; 59 60 static cl::opt<bool> EnableR600StructurizeCFG( 61 "r600-ir-structurize", 62 cl::desc("Use StructurizeCFG IR pass"), 63 cl::init(true)); 64 65 static cl::opt<bool> EnableSROA( 66 "amdgpu-sroa", 67 cl::desc("Run SROA after promote alloca pass"), 68 cl::ReallyHidden, 69 cl::init(true)); 70 71 static cl::opt<bool> 72 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 73 cl::desc("Run early if-conversion"), 74 cl::init(false)); 75 76 static cl::opt<bool> 77 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 78 cl::desc("Run pre-RA exec mask optimizations"), 79 cl::init(true)); 80 81 static cl::opt<bool> EnableR600IfConvert( 82 "r600-if-convert", 83 cl::desc("Use if conversion pass"), 84 cl::ReallyHidden, 85 cl::init(true)); 86 87 // Option to disable vectorizer for tests. 88 static cl::opt<bool> EnableLoadStoreVectorizer( 89 "amdgpu-load-store-vectorizer", 90 cl::desc("Enable load store vectorizer"), 91 cl::init(true), 92 cl::Hidden); 93 94 // Option to control global loads scalarization 95 static cl::opt<bool> ScalarizeGlobal( 96 "amdgpu-scalarize-global-loads", 97 cl::desc("Enable global load scalarization"), 98 cl::init(true), 99 cl::Hidden); 100 101 // Option to run internalize pass. 102 static cl::opt<bool> InternalizeSymbols( 103 "amdgpu-internalize-symbols", 104 cl::desc("Enable elimination of non-kernel functions and unused globals"), 105 cl::init(false), 106 cl::Hidden); 107 108 // Option to inline all early. 109 static cl::opt<bool> EarlyInlineAll( 110 "amdgpu-early-inline-all", 111 cl::desc("Inline all functions early"), 112 cl::init(false), 113 cl::Hidden); 114 115 static cl::opt<bool> EnableSDWAPeephole( 116 "amdgpu-sdwa-peephole", 117 cl::desc("Enable SDWA peepholer"), 118 cl::init(true)); 119 120 static cl::opt<bool> EnableDPPCombine( 121 "amdgpu-dpp-combine", 122 cl::desc("Enable DPP combiner"), 123 cl::init(true)); 124 125 // Enable address space based alias analysis 126 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 127 cl::desc("Enable AMDGPU Alias Analysis"), 128 cl::init(true)); 129 130 // Option to run late CFG structurizer 131 static cl::opt<bool, true> LateCFGStructurize( 132 "amdgpu-late-structurize", 133 cl::desc("Enable late CFG structurization"), 134 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 135 cl::Hidden); 136 137 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 138 "amdgpu-function-calls", 139 cl::desc("Enable AMDGPU function call support"), 140 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 141 cl::init(true), 142 cl::Hidden); 143 144 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 145 "amdgpu-fixed-function-abi", 146 cl::desc("Enable all implicit function arguments"), 147 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 148 cl::init(false), 149 cl::Hidden); 150 151 // Enable lib calls simplifications 152 static cl::opt<bool> EnableLibCallSimplify( 153 "amdgpu-simplify-libcall", 154 cl::desc("Enable amdgpu library simplifications"), 155 cl::init(true), 156 cl::Hidden); 157 158 static cl::opt<bool> EnableLowerKernelArguments( 159 "amdgpu-ir-lower-kernel-arguments", 160 cl::desc("Lower kernel argument loads in IR pass"), 161 cl::init(true), 162 cl::Hidden); 163 164 static cl::opt<bool> EnableRegReassign( 165 "amdgpu-reassign-regs", 166 cl::desc("Enable register reassign optimizations on gfx10+"), 167 cl::init(true), 168 cl::Hidden); 169 170 // Enable atomic optimization 171 static cl::opt<bool> EnableAtomicOptimizations( 172 "amdgpu-atomic-optimizations", 173 cl::desc("Enable atomic optimizations"), 174 cl::init(false), 175 cl::Hidden); 176 177 // Enable Mode register optimization 178 static cl::opt<bool> EnableSIModeRegisterPass( 179 "amdgpu-mode-register", 180 cl::desc("Enable mode register pass"), 181 cl::init(true), 182 cl::Hidden); 183 184 // Option is used in lit tests to prevent deadcoding of patterns inspected. 185 static cl::opt<bool> 186 EnableDCEInRA("amdgpu-dce-in-ra", 187 cl::init(true), cl::Hidden, 188 cl::desc("Enable machine DCE inside regalloc")); 189 190 static cl::opt<bool> EnableScalarIRPasses( 191 "amdgpu-scalar-ir-passes", 192 cl::desc("Enable scalar IR passes"), 193 cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool> EnableStructurizerWorkarounds( 197 "amdgpu-enable-structurizer-workarounds", 198 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPUPromoteAllocaPass(*PR); 237 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 238 initializeAMDGPUCodeGenPreparePass(*PR); 239 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 240 initializeAMDGPUPropagateAttributesLatePass(*PR); 241 initializeAMDGPURewriteOutArgumentsPass(*PR); 242 initializeAMDGPUUnifyMetadataPass(*PR); 243 initializeSIAnnotateControlFlowPass(*PR); 244 initializeSIInsertHardClausesPass(*PR); 245 initializeSIInsertWaitcntsPass(*PR); 246 initializeSIModeRegisterPass(*PR); 247 initializeSIWholeQuadModePass(*PR); 248 initializeSILowerControlFlowPass(*PR); 249 initializeSIRemoveShortExecBranchesPass(*PR); 250 initializeSIPreEmitPeepholePass(*PR); 251 initializeSIInsertSkipsPass(*PR); 252 initializeSIMemoryLegalizerPass(*PR); 253 initializeSIOptimizeExecMaskingPass(*PR); 254 initializeSIPreAllocateWWMRegsPass(*PR); 255 initializeSIFormMemoryClausesPass(*PR); 256 initializeSIPostRABundlerPass(*PR); 257 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 258 initializeAMDGPUAAWrapperPassPass(*PR); 259 initializeAMDGPUExternalAAWrapperPass(*PR); 260 initializeAMDGPUUseNativeCallsPass(*PR); 261 initializeAMDGPUSimplifyLibCallsPass(*PR); 262 initializeAMDGPUInlinerPass(*PR); 263 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 264 initializeGCNRegBankReassignPass(*PR); 265 initializeGCNNSAReassignPass(*PR); 266 initializeSIAddIMGInitPass(*PR); 267 } 268 269 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 270 return std::make_unique<AMDGPUTargetObjectFile>(); 271 } 272 273 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 274 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 275 } 276 277 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 278 return new SIScheduleDAGMI(C); 279 } 280 281 static ScheduleDAGInstrs * 282 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 283 ScheduleDAGMILive *DAG = 284 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 285 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 286 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 287 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 288 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 289 return DAG; 290 } 291 292 static ScheduleDAGInstrs * 293 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 294 auto DAG = new GCNIterativeScheduler(C, 295 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 296 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 297 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 298 return DAG; 299 } 300 301 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 302 return new GCNIterativeScheduler(C, 303 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 304 } 305 306 static ScheduleDAGInstrs * 307 createIterativeILPMachineScheduler(MachineSchedContext *C) { 308 auto DAG = new GCNIterativeScheduler(C, 309 GCNIterativeScheduler::SCHEDULE_ILP); 310 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 311 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 312 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 313 return DAG; 314 } 315 316 static MachineSchedRegistry 317 R600SchedRegistry("r600", "Run R600's custom scheduler", 318 createR600MachineScheduler); 319 320 static MachineSchedRegistry 321 SISchedRegistry("si", "Run SI's custom scheduler", 322 createSIMachineScheduler); 323 324 static MachineSchedRegistry 325 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 326 "Run GCN scheduler to maximize occupancy", 327 createGCNMaxOccupancyMachineScheduler); 328 329 static MachineSchedRegistry 330 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 331 "Run GCN scheduler to maximize occupancy (experimental)", 332 createIterativeGCNMaxOccupancyMachineScheduler); 333 334 static MachineSchedRegistry 335 GCNMinRegSchedRegistry("gcn-minreg", 336 "Run GCN iterative scheduler for minimal register usage (experimental)", 337 createMinRegScheduler); 338 339 static MachineSchedRegistry 340 GCNILPSchedRegistry("gcn-ilp", 341 "Run GCN iterative scheduler for ILP scheduling (experimental)", 342 createIterativeILPMachineScheduler); 343 344 static StringRef computeDataLayout(const Triple &TT) { 345 if (TT.getArch() == Triple::r600) { 346 // 32-bit pointers. 347 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 348 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 349 } 350 351 // 32-bit private, local, and region pointers. 64-bit global, constant and 352 // flat, non-integral buffer fat pointers. 353 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 354 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 355 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 356 "-ni:7"; 357 } 358 359 LLVM_READNONE 360 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 361 if (!GPU.empty()) 362 return GPU; 363 364 // Need to default to a target with flat support for HSA. 365 if (TT.getArch() == Triple::amdgcn) 366 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 367 368 return "r600"; 369 } 370 371 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 372 // The AMDGPU toolchain only supports generating shared objects, so we 373 // must always use PIC. 374 return Reloc::PIC_; 375 } 376 377 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 378 StringRef CPU, StringRef FS, 379 TargetOptions Options, 380 Optional<Reloc::Model> RM, 381 Optional<CodeModel::Model> CM, 382 CodeGenOpt::Level OptLevel) 383 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 384 FS, Options, getEffectiveRelocModel(RM), 385 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 386 TLOF(createTLOF(getTargetTriple())) { 387 initAsmInfo(); 388 if (TT.getArch() == Triple::amdgcn) { 389 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 390 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 391 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 392 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 393 } 394 } 395 396 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 397 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 398 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 399 400 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 401 402 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 403 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 404 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 405 } 406 407 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 408 Attribute FSAttr = F.getFnAttribute("target-features"); 409 410 return FSAttr.isValid() ? FSAttr.getValueAsString() 411 : getTargetFeatureString(); 412 } 413 414 /// Predicate for Internalize pass. 415 static bool mustPreserveGV(const GlobalValue &GV) { 416 if (const Function *F = dyn_cast<Function>(&GV)) 417 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 418 419 return !GV.use_empty(); 420 } 421 422 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 423 Builder.DivergentTarget = true; 424 425 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 426 bool Internalize = InternalizeSymbols; 427 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 428 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 429 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 430 431 if (EnableFunctionCalls) { 432 delete Builder.Inliner; 433 Builder.Inliner = createAMDGPUFunctionInliningPass(); 434 } 435 436 Builder.addExtension( 437 PassManagerBuilder::EP_ModuleOptimizerEarly, 438 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 439 legacy::PassManagerBase &PM) { 440 if (AMDGPUAA) { 441 PM.add(createAMDGPUAAWrapperPass()); 442 PM.add(createAMDGPUExternalAAWrapperPass()); 443 } 444 PM.add(createAMDGPUUnifyMetadataPass()); 445 PM.add(createAMDGPUPrintfRuntimeBinding()); 446 if (Internalize) 447 PM.add(createInternalizePass(mustPreserveGV)); 448 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 449 if (Internalize) 450 PM.add(createGlobalDCEPass()); 451 if (EarlyInline) 452 PM.add(createAMDGPUAlwaysInlinePass(false)); 453 }); 454 455 Builder.addExtension( 456 PassManagerBuilder::EP_EarlyAsPossible, 457 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 458 legacy::PassManagerBase &PM) { 459 if (AMDGPUAA) { 460 PM.add(createAMDGPUAAWrapperPass()); 461 PM.add(createAMDGPUExternalAAWrapperPass()); 462 } 463 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 464 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 465 if (LibCallSimplify) 466 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 467 }); 468 469 Builder.addExtension( 470 PassManagerBuilder::EP_CGSCCOptimizerLate, 471 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 472 // Add infer address spaces pass to the opt pipeline after inlining 473 // but before SROA to increase SROA opportunities. 474 PM.add(createInferAddressSpacesPass()); 475 476 // This should run after inlining to have any chance of doing anything, 477 // and before other cleanup optimizations. 478 PM.add(createAMDGPULowerKernelAttributesPass()); 479 480 // Promote alloca to vector before SROA and loop unroll. If we manage 481 // to eliminate allocas before unroll we may choose to unroll less. 482 if (EnableOpt) 483 PM.add(createAMDGPUPromoteAllocaToVector()); 484 }); 485 } 486 487 //===----------------------------------------------------------------------===// 488 // R600 Target Machine (R600 -> Cayman) 489 //===----------------------------------------------------------------------===// 490 491 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 492 StringRef CPU, StringRef FS, 493 TargetOptions Options, 494 Optional<Reloc::Model> RM, 495 Optional<CodeModel::Model> CM, 496 CodeGenOpt::Level OL, bool JIT) 497 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 498 setRequiresStructuredCFG(true); 499 500 // Override the default since calls aren't supported for r600. 501 if (EnableFunctionCalls && 502 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 503 EnableFunctionCalls = false; 504 } 505 506 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 507 const Function &F) const { 508 StringRef GPU = getGPUName(F); 509 StringRef FS = getFeatureString(F); 510 511 SmallString<128> SubtargetKey(GPU); 512 SubtargetKey.append(FS); 513 514 auto &I = SubtargetMap[SubtargetKey]; 515 if (!I) { 516 // This needs to be done before we create a new subtarget since any 517 // creation will depend on the TM and the code generation flags on the 518 // function that reside in TargetOptions. 519 resetTargetOptions(F); 520 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 521 } 522 523 return I.get(); 524 } 525 526 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 527 unsigned DestAS) const { 528 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 529 AMDGPU::isFlatGlobalAddrSpace(DestAS); 530 } 531 532 TargetTransformInfo 533 R600TargetMachine::getTargetTransformInfo(const Function &F) { 534 return TargetTransformInfo(R600TTIImpl(this, F)); 535 } 536 537 //===----------------------------------------------------------------------===// 538 // GCN Target Machine (SI+) 539 //===----------------------------------------------------------------------===// 540 541 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 542 StringRef CPU, StringRef FS, 543 TargetOptions Options, 544 Optional<Reloc::Model> RM, 545 Optional<CodeModel::Model> CM, 546 CodeGenOpt::Level OL, bool JIT) 547 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 548 549 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 550 StringRef GPU = getGPUName(F); 551 StringRef FS = getFeatureString(F); 552 553 SmallString<128> SubtargetKey(GPU); 554 SubtargetKey.append(FS); 555 556 auto &I = SubtargetMap[SubtargetKey]; 557 if (!I) { 558 // This needs to be done before we create a new subtarget since any 559 // creation will depend on the TM and the code generation flags on the 560 // function that reside in TargetOptions. 561 resetTargetOptions(F); 562 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 563 } 564 565 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 566 567 return I.get(); 568 } 569 570 TargetTransformInfo 571 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 572 return TargetTransformInfo(GCNTTIImpl(this, F)); 573 } 574 575 //===----------------------------------------------------------------------===// 576 // AMDGPU Pass Setup 577 //===----------------------------------------------------------------------===// 578 579 namespace { 580 581 class AMDGPUPassConfig : public TargetPassConfig { 582 public: 583 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 584 : TargetPassConfig(TM, PM) { 585 // Exceptions and StackMaps are not supported, so these passes will never do 586 // anything. 587 disablePass(&StackMapLivenessID); 588 disablePass(&FuncletLayoutID); 589 } 590 591 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 592 return getTM<AMDGPUTargetMachine>(); 593 } 594 595 ScheduleDAGInstrs * 596 createMachineScheduler(MachineSchedContext *C) const override { 597 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 598 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 599 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 600 return DAG; 601 } 602 603 void addEarlyCSEOrGVNPass(); 604 void addStraightLineScalarOptimizationPasses(); 605 void addIRPasses() override; 606 void addCodeGenPrepare() override; 607 bool addPreISel() override; 608 bool addInstSelector() override; 609 bool addGCPasses() override; 610 611 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 612 }; 613 614 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 615 return getStandardCSEConfigForOpt(TM->getOptLevel()); 616 } 617 618 class R600PassConfig final : public AMDGPUPassConfig { 619 public: 620 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 621 : AMDGPUPassConfig(TM, PM) {} 622 623 ScheduleDAGInstrs *createMachineScheduler( 624 MachineSchedContext *C) const override { 625 return createR600MachineScheduler(C); 626 } 627 628 bool addPreISel() override; 629 bool addInstSelector() override; 630 void addPreRegAlloc() override; 631 void addPreSched2() override; 632 void addPreEmitPass() override; 633 }; 634 635 class GCNPassConfig final : public AMDGPUPassConfig { 636 public: 637 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 638 : AMDGPUPassConfig(TM, PM) { 639 // It is necessary to know the register usage of the entire call graph. We 640 // allow calls without EnableAMDGPUFunctionCalls if they are marked 641 // noinline, so this is always required. 642 setRequiresCodeGenSCCOrder(true); 643 } 644 645 GCNTargetMachine &getGCNTargetMachine() const { 646 return getTM<GCNTargetMachine>(); 647 } 648 649 ScheduleDAGInstrs * 650 createMachineScheduler(MachineSchedContext *C) const override; 651 652 bool addPreISel() override; 653 void addMachineSSAOptimization() override; 654 bool addILPOpts() override; 655 bool addInstSelector() override; 656 bool addIRTranslator() override; 657 void addPreLegalizeMachineIR() override; 658 bool addLegalizeMachineIR() override; 659 void addPreRegBankSelect() override; 660 bool addRegBankSelect() override; 661 bool addGlobalInstructionSelect() override; 662 void addFastRegAlloc() override; 663 void addOptimizedRegAlloc() override; 664 void addPreRegAlloc() override; 665 bool addPreRewrite() override; 666 void addPostRegAlloc() override; 667 void addPreSched2() override; 668 void addPreEmitPass() override; 669 }; 670 671 } // end anonymous namespace 672 673 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 674 if (getOptLevel() == CodeGenOpt::Aggressive) 675 addPass(createGVNPass()); 676 else 677 addPass(createEarlyCSEPass()); 678 } 679 680 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 681 addPass(createLICMPass()); 682 addPass(createSeparateConstOffsetFromGEPPass()); 683 addPass(createSpeculativeExecutionPass()); 684 // ReassociateGEPs exposes more opportunites for SLSR. See 685 // the example in reassociate-geps-and-slsr.ll. 686 addPass(createStraightLineStrengthReducePass()); 687 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 688 // EarlyCSE can reuse. 689 addEarlyCSEOrGVNPass(); 690 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 691 addPass(createNaryReassociatePass()); 692 // NaryReassociate on GEPs creates redundant common expressions, so run 693 // EarlyCSE after it. 694 addPass(createEarlyCSEPass()); 695 } 696 697 void AMDGPUPassConfig::addIRPasses() { 698 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 699 700 // There is no reason to run these. 701 disablePass(&StackMapLivenessID); 702 disablePass(&FuncletLayoutID); 703 disablePass(&PatchableFunctionID); 704 705 addPass(createAMDGPUPrintfRuntimeBinding()); 706 707 // This must occur before inlining, as the inliner will not look through 708 // bitcast calls. 709 addPass(createAMDGPUFixFunctionBitcastsPass()); 710 711 // A call to propagate attributes pass in the backend in case opt was not run. 712 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 713 714 addPass(createAtomicExpandPass()); 715 716 717 addPass(createAMDGPULowerIntrinsicsPass()); 718 719 // Function calls are not supported, so make sure we inline everything. 720 addPass(createAMDGPUAlwaysInlinePass()); 721 addPass(createAlwaysInlinerLegacyPass()); 722 // We need to add the barrier noop pass, otherwise adding the function 723 // inlining pass will cause all of the PassConfigs passes to be run 724 // one function at a time, which means if we have a nodule with two 725 // functions, then we will generate code for the first function 726 // without ever running any passes on the second. 727 addPass(createBarrierNoopPass()); 728 729 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 730 if (TM.getTargetTriple().getArch() == Triple::r600) 731 addPass(createR600OpenCLImageTypeLoweringPass()); 732 733 // Replace OpenCL enqueued block function pointers with global variables. 734 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 735 736 if (TM.getOptLevel() > CodeGenOpt::None) { 737 addPass(createInferAddressSpacesPass()); 738 addPass(createAMDGPUPromoteAlloca()); 739 740 if (EnableSROA) 741 addPass(createSROAPass()); 742 743 if (EnableScalarIRPasses) 744 addStraightLineScalarOptimizationPasses(); 745 746 if (EnableAMDGPUAliasAnalysis) { 747 addPass(createAMDGPUAAWrapperPass()); 748 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 749 AAResults &AAR) { 750 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 751 AAR.addAAResult(WrapperPass->getResult()); 752 })); 753 } 754 } 755 756 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 757 // TODO: May want to move later or split into an early and late one. 758 addPass(createAMDGPUCodeGenPreparePass()); 759 } 760 761 TargetPassConfig::addIRPasses(); 762 763 // EarlyCSE is not always strong enough to clean up what LSR produces. For 764 // example, GVN can combine 765 // 766 // %0 = add %a, %b 767 // %1 = add %b, %a 768 // 769 // and 770 // 771 // %0 = shl nsw %a, 2 772 // %1 = shl %a, 2 773 // 774 // but EarlyCSE can do neither of them. 775 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 776 addEarlyCSEOrGVNPass(); 777 } 778 779 void AMDGPUPassConfig::addCodeGenPrepare() { 780 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 781 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 782 783 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 784 EnableLowerKernelArguments) 785 addPass(createAMDGPULowerKernelArgumentsPass()); 786 787 addPass(&AMDGPUPerfHintAnalysisID); 788 789 TargetPassConfig::addCodeGenPrepare(); 790 791 if (EnableLoadStoreVectorizer) 792 addPass(createLoadStoreVectorizerPass()); 793 794 // LowerSwitch pass may introduce unreachable blocks that can 795 // cause unexpected behavior for subsequent passes. Placing it 796 // here seems better that these blocks would get cleaned up by 797 // UnreachableBlockElim inserted next in the pass flow. 798 addPass(createLowerSwitchPass()); 799 } 800 801 bool AMDGPUPassConfig::addPreISel() { 802 addPass(createFlattenCFGPass()); 803 return false; 804 } 805 806 bool AMDGPUPassConfig::addInstSelector() { 807 // Defer the verifier until FinalizeISel. 808 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 809 return false; 810 } 811 812 bool AMDGPUPassConfig::addGCPasses() { 813 // Do nothing. GC is not supported. 814 return false; 815 } 816 817 //===----------------------------------------------------------------------===// 818 // R600 Pass Setup 819 //===----------------------------------------------------------------------===// 820 821 bool R600PassConfig::addPreISel() { 822 AMDGPUPassConfig::addPreISel(); 823 824 if (EnableR600StructurizeCFG) 825 addPass(createStructurizeCFGPass()); 826 return false; 827 } 828 829 bool R600PassConfig::addInstSelector() { 830 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 831 return false; 832 } 833 834 void R600PassConfig::addPreRegAlloc() { 835 addPass(createR600VectorRegMerger()); 836 } 837 838 void R600PassConfig::addPreSched2() { 839 addPass(createR600EmitClauseMarkers(), false); 840 if (EnableR600IfConvert) 841 addPass(&IfConverterID, false); 842 addPass(createR600ClauseMergePass(), false); 843 } 844 845 void R600PassConfig::addPreEmitPass() { 846 addPass(createAMDGPUCFGStructurizerPass(), false); 847 addPass(createR600ExpandSpecialInstrsPass(), false); 848 addPass(&FinalizeMachineBundlesID, false); 849 addPass(createR600Packetizer(), false); 850 addPass(createR600ControlFlowFinalizer(), false); 851 } 852 853 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 854 return new R600PassConfig(*this, PM); 855 } 856 857 //===----------------------------------------------------------------------===// 858 // GCN Pass Setup 859 //===----------------------------------------------------------------------===// 860 861 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 862 MachineSchedContext *C) const { 863 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 864 if (ST.enableSIScheduler()) 865 return createSIMachineScheduler(C); 866 return createGCNMaxOccupancyMachineScheduler(C); 867 } 868 869 bool GCNPassConfig::addPreISel() { 870 AMDGPUPassConfig::addPreISel(); 871 872 if (EnableAtomicOptimizations) { 873 addPass(createAMDGPUAtomicOptimizerPass()); 874 } 875 876 // FIXME: We need to run a pass to propagate the attributes when calls are 877 // supported. 878 879 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 880 // regions formed by them. 881 addPass(&AMDGPUUnifyDivergentExitNodesID); 882 if (!LateCFGStructurize) { 883 if (EnableStructurizerWorkarounds) { 884 addPass(createFixIrreduciblePass()); 885 addPass(createUnifyLoopExitsPass()); 886 } 887 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 888 } 889 addPass(createSinkingPass()); 890 addPass(createAMDGPUAnnotateUniformValues()); 891 if (!LateCFGStructurize) { 892 addPass(createSIAnnotateControlFlowPass()); 893 } 894 addPass(createLCSSAPass()); 895 896 return false; 897 } 898 899 void GCNPassConfig::addMachineSSAOptimization() { 900 TargetPassConfig::addMachineSSAOptimization(); 901 902 // We want to fold operands after PeepholeOptimizer has run (or as part of 903 // it), because it will eliminate extra copies making it easier to fold the 904 // real source operand. We want to eliminate dead instructions after, so that 905 // we see fewer uses of the copies. We then need to clean up the dead 906 // instructions leftover after the operands are folded as well. 907 // 908 // XXX - Can we get away without running DeadMachineInstructionElim again? 909 addPass(&SIFoldOperandsID); 910 if (EnableDPPCombine) 911 addPass(&GCNDPPCombineID); 912 addPass(&DeadMachineInstructionElimID); 913 addPass(&SILoadStoreOptimizerID); 914 if (EnableSDWAPeephole) { 915 addPass(&SIPeepholeSDWAID); 916 addPass(&EarlyMachineLICMID); 917 addPass(&MachineCSEID); 918 addPass(&SIFoldOperandsID); 919 addPass(&DeadMachineInstructionElimID); 920 } 921 addPass(createSIShrinkInstructionsPass()); 922 } 923 924 bool GCNPassConfig::addILPOpts() { 925 if (EnableEarlyIfConversion) 926 addPass(&EarlyIfConverterID); 927 928 TargetPassConfig::addILPOpts(); 929 return false; 930 } 931 932 bool GCNPassConfig::addInstSelector() { 933 AMDGPUPassConfig::addInstSelector(); 934 addPass(&SIFixSGPRCopiesID); 935 addPass(createSILowerI1CopiesPass()); 936 addPass(createSIAddIMGInitPass()); 937 return false; 938 } 939 940 bool GCNPassConfig::addIRTranslator() { 941 addPass(new IRTranslator()); 942 return false; 943 } 944 945 void GCNPassConfig::addPreLegalizeMachineIR() { 946 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 947 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 948 addPass(new Localizer()); 949 } 950 951 bool GCNPassConfig::addLegalizeMachineIR() { 952 addPass(new Legalizer()); 953 return false; 954 } 955 956 void GCNPassConfig::addPreRegBankSelect() { 957 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 958 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 959 } 960 961 bool GCNPassConfig::addRegBankSelect() { 962 addPass(new RegBankSelect()); 963 return false; 964 } 965 966 bool GCNPassConfig::addGlobalInstructionSelect() { 967 addPass(new InstructionSelect()); 968 return false; 969 } 970 971 void GCNPassConfig::addPreRegAlloc() { 972 if (LateCFGStructurize) { 973 addPass(createAMDGPUMachineCFGStructurizerPass()); 974 } 975 addPass(createSIWholeQuadModePass()); 976 } 977 978 void GCNPassConfig::addFastRegAlloc() { 979 // FIXME: We have to disable the verifier here because of PHIElimination + 980 // TwoAddressInstructions disabling it. 981 982 // This must be run immediately after phi elimination and before 983 // TwoAddressInstructions, otherwise the processing of the tied operand of 984 // SI_ELSE will introduce a copy of the tied operand source after the else. 985 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 986 987 // This must be run just after RegisterCoalescing. 988 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 989 990 TargetPassConfig::addFastRegAlloc(); 991 } 992 993 void GCNPassConfig::addOptimizedRegAlloc() { 994 if (OptExecMaskPreRA) 995 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 996 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 997 998 // This must be run immediately after phi elimination and before 999 // TwoAddressInstructions, otherwise the processing of the tied operand of 1000 // SI_ELSE will introduce a copy of the tied operand source after the else. 1001 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1002 1003 // This must be run just after RegisterCoalescing. 1004 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 1005 1006 if (EnableDCEInRA) 1007 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1008 1009 TargetPassConfig::addOptimizedRegAlloc(); 1010 } 1011 1012 bool GCNPassConfig::addPreRewrite() { 1013 if (EnableRegReassign) { 1014 addPass(&GCNNSAReassignID); 1015 addPass(&GCNRegBankReassignID); 1016 } 1017 return true; 1018 } 1019 1020 void GCNPassConfig::addPostRegAlloc() { 1021 addPass(&SIFixVGPRCopiesID); 1022 if (getOptLevel() > CodeGenOpt::None) 1023 addPass(&SIOptimizeExecMaskingID); 1024 TargetPassConfig::addPostRegAlloc(); 1025 1026 // Equivalent of PEI for SGPRs. 1027 addPass(&SILowerSGPRSpillsID); 1028 } 1029 1030 void GCNPassConfig::addPreSched2() { 1031 addPass(&SIPostRABundlerID); 1032 } 1033 1034 void GCNPassConfig::addPreEmitPass() { 1035 addPass(createSIMemoryLegalizerPass()); 1036 addPass(createSIInsertWaitcntsPass()); 1037 addPass(createSIShrinkInstructionsPass()); 1038 addPass(createSIModeRegisterPass()); 1039 1040 // The hazard recognizer that runs as part of the post-ra scheduler does not 1041 // guarantee to be able handle all hazards correctly. This is because if there 1042 // are multiple scheduling regions in a basic block, the regions are scheduled 1043 // bottom up, so when we begin to schedule a region we don't know what 1044 // instructions were emitted directly before it. 1045 // 1046 // Here we add a stand-alone hazard recognizer pass which can handle all 1047 // cases. 1048 // 1049 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 1050 // be better for it to emit S_NOP <N> when possible. 1051 addPass(&PostRAHazardRecognizerID); 1052 if (getOptLevel() > CodeGenOpt::None) 1053 addPass(&SIInsertHardClausesID); 1054 1055 addPass(&SIRemoveShortExecBranchesID); 1056 addPass(&SIInsertSkipsPassID); 1057 addPass(&SIPreEmitPeepholeID); 1058 addPass(&BranchRelaxationPassID); 1059 } 1060 1061 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1062 return new GCNPassConfig(*this, PM); 1063 } 1064 1065 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1066 return new yaml::SIMachineFunctionInfo(); 1067 } 1068 1069 yaml::MachineFunctionInfo * 1070 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1071 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1072 return new yaml::SIMachineFunctionInfo(*MFI, 1073 *MF.getSubtarget().getRegisterInfo()); 1074 } 1075 1076 bool GCNTargetMachine::parseMachineFunctionInfo( 1077 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1078 SMDiagnostic &Error, SMRange &SourceRange) const { 1079 const yaml::SIMachineFunctionInfo &YamlMFI = 1080 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1081 MachineFunction &MF = PFS.MF; 1082 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1083 1084 MFI->initializeBaseYamlFields(YamlMFI); 1085 1086 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1087 Register TempReg; 1088 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1089 SourceRange = RegName.SourceRange; 1090 return true; 1091 } 1092 RegVal = TempReg; 1093 1094 return false; 1095 }; 1096 1097 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1098 // Create a diagnostic for a the register string literal. 1099 const MemoryBuffer &Buffer = 1100 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1101 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1102 RegName.Value.size(), SourceMgr::DK_Error, 1103 "incorrect register class for field", RegName.Value, 1104 None, None); 1105 SourceRange = RegName.SourceRange; 1106 return true; 1107 }; 1108 1109 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1110 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1111 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1112 return true; 1113 1114 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1115 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1116 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1117 } 1118 1119 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1120 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1121 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1122 } 1123 1124 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1125 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1126 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1127 } 1128 1129 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1130 const TargetRegisterClass &RC, 1131 ArgDescriptor &Arg, unsigned UserSGPRs, 1132 unsigned SystemSGPRs) { 1133 // Skip parsing if it's not present. 1134 if (!A) 1135 return false; 1136 1137 if (A->IsRegister) { 1138 Register Reg; 1139 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1140 SourceRange = A->RegisterName.SourceRange; 1141 return true; 1142 } 1143 if (!RC.contains(Reg)) 1144 return diagnoseRegisterClass(A->RegisterName); 1145 Arg = ArgDescriptor::createRegister(Reg); 1146 } else 1147 Arg = ArgDescriptor::createStack(A->StackOffset); 1148 // Check and apply the optional mask. 1149 if (A->Mask) 1150 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1151 1152 MFI->NumUserSGPRs += UserSGPRs; 1153 MFI->NumSystemSGPRs += SystemSGPRs; 1154 return false; 1155 }; 1156 1157 if (YamlMFI.ArgInfo && 1158 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1159 AMDGPU::SGPR_128RegClass, 1160 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1161 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1162 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1163 2, 0) || 1164 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1165 MFI->ArgInfo.QueuePtr, 2, 0) || 1166 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1167 AMDGPU::SReg_64RegClass, 1168 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1169 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1170 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1171 2, 0) || 1172 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1173 AMDGPU::SReg_64RegClass, 1174 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1175 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1176 AMDGPU::SGPR_32RegClass, 1177 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1178 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1179 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1180 0, 1) || 1181 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1182 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1183 0, 1) || 1184 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1185 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1186 0, 1) || 1187 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1188 AMDGPU::SGPR_32RegClass, 1189 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1190 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1191 AMDGPU::SGPR_32RegClass, 1192 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1193 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1194 AMDGPU::SReg_64RegClass, 1195 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1196 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1197 AMDGPU::SReg_64RegClass, 1198 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1199 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1200 AMDGPU::VGPR_32RegClass, 1201 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1202 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1203 AMDGPU::VGPR_32RegClass, 1204 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1205 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1206 AMDGPU::VGPR_32RegClass, 1207 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1208 return true; 1209 1210 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1211 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1212 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1213 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1214 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1215 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1216 1217 return false; 1218 } 1219