1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600MachineScheduler.h" 25 #include "SIMachineFunctionInfo.h" 26 #include "SIMachineScheduler.h" 27 #include "TargetInfo/AMDGPUTargetInfo.h" 28 #include "llvm/Analysis/CGSCCPassManager.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/Localizer.h" 33 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 34 #include "llvm/CodeGen/MIRParser/MIParser.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/LegacyPassManager.h" 37 #include "llvm/IR/PassManager.h" 38 #include "llvm/InitializePasses.h" 39 #include "llvm/Passes/PassBuilder.h" 40 #include "llvm/Support/TargetRegistry.h" 41 #include "llvm/Transforms/IPO.h" 42 #include "llvm/Transforms/IPO/AlwaysInliner.h" 43 #include "llvm/Transforms/IPO/GlobalDCE.h" 44 #include "llvm/Transforms/IPO/Internalize.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 51 #include "llvm/Transforms/Vectorize.h" 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 static cl::opt<bool, true> EnableAMDGPUFixedFunctionABIOpt( 140 "amdgpu-fixed-function-abi", 141 cl::desc("Enable all implicit function arguments"), 142 cl::location(AMDGPUTargetMachine::EnableFixedFunctionABI), 143 cl::init(false), 144 cl::Hidden); 145 146 // Enable lib calls simplifications 147 static cl::opt<bool> EnableLibCallSimplify( 148 "amdgpu-simplify-libcall", 149 cl::desc("Enable amdgpu library simplifications"), 150 cl::init(true), 151 cl::Hidden); 152 153 static cl::opt<bool> EnableLowerKernelArguments( 154 "amdgpu-ir-lower-kernel-arguments", 155 cl::desc("Lower kernel argument loads in IR pass"), 156 cl::init(true), 157 cl::Hidden); 158 159 static cl::opt<bool> EnableRegReassign( 160 "amdgpu-reassign-regs", 161 cl::desc("Enable register reassign optimizations on gfx10+"), 162 cl::init(true), 163 cl::Hidden); 164 165 // Enable atomic optimization 166 static cl::opt<bool> EnableAtomicOptimizations( 167 "amdgpu-atomic-optimizations", 168 cl::desc("Enable atomic optimizations"), 169 cl::init(false), 170 cl::Hidden); 171 172 // Enable Mode register optimization 173 static cl::opt<bool> EnableSIModeRegisterPass( 174 "amdgpu-mode-register", 175 cl::desc("Enable mode register pass"), 176 cl::init(true), 177 cl::Hidden); 178 179 // Option is used in lit tests to prevent deadcoding of patterns inspected. 180 static cl::opt<bool> 181 EnableDCEInRA("amdgpu-dce-in-ra", 182 cl::init(true), cl::Hidden, 183 cl::desc("Enable machine DCE inside regalloc")); 184 185 static cl::opt<bool> EnableScalarIRPasses( 186 "amdgpu-scalar-ir-passes", 187 cl::desc("Enable scalar IR passes"), 188 cl::init(true), 189 cl::Hidden); 190 191 static cl::opt<bool> EnableStructurizerWorkarounds( 192 "amdgpu-enable-structurizer-workarounds", 193 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 194 cl::Hidden); 195 196 static cl::opt<bool, true> EnableLowerModuleLDS( 197 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 198 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 199 cl::Hidden); 200 201 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 202 // Register the target 203 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 204 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 205 206 PassRegistry *PR = PassRegistry::getPassRegistry(); 207 initializeR600ClauseMergePassPass(*PR); 208 initializeR600ControlFlowFinalizerPass(*PR); 209 initializeR600PacketizerPass(*PR); 210 initializeR600ExpandSpecialInstrsPassPass(*PR); 211 initializeR600VectorRegMergerPass(*PR); 212 initializeGlobalISel(*PR); 213 initializeAMDGPUDAGToDAGISelPass(*PR); 214 initializeGCNDPPCombinePass(*PR); 215 initializeSILowerI1CopiesPass(*PR); 216 initializeSILowerSGPRSpillsPass(*PR); 217 initializeSIFixSGPRCopiesPass(*PR); 218 initializeSIFixVGPRCopiesPass(*PR); 219 initializeSIFoldOperandsPass(*PR); 220 initializeSIPeepholeSDWAPass(*PR); 221 initializeSIShrinkInstructionsPass(*PR); 222 initializeSIOptimizeExecMaskingPreRAPass(*PR); 223 initializeSILoadStoreOptimizerPass(*PR); 224 initializeAMDGPUFixFunctionBitcastsPass(*PR); 225 initializeAMDGPUAlwaysInlinePass(*PR); 226 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 227 initializeAMDGPUAnnotateUniformValuesPass(*PR); 228 initializeAMDGPUArgumentUsageInfoPass(*PR); 229 initializeAMDGPUAtomicOptimizerPass(*PR); 230 initializeAMDGPULowerKernelArgumentsPass(*PR); 231 initializeAMDGPULowerKernelAttributesPass(*PR); 232 initializeAMDGPULowerIntrinsicsPass(*PR); 233 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 234 initializeAMDGPUPostLegalizerCombinerPass(*PR); 235 initializeAMDGPUPreLegalizerCombinerPass(*PR); 236 initializeAMDGPURegBankCombinerPass(*PR); 237 initializeAMDGPUPromoteAllocaPass(*PR); 238 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 239 initializeAMDGPUCodeGenPreparePass(*PR); 240 initializeAMDGPULateCodeGenPreparePass(*PR); 241 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 242 initializeAMDGPUPropagateAttributesLatePass(*PR); 243 initializeAMDGPULowerModuleLDSPass(*PR); 244 initializeAMDGPURewriteOutArgumentsPass(*PR); 245 initializeAMDGPUUnifyMetadataPass(*PR); 246 initializeSIAnnotateControlFlowPass(*PR); 247 initializeSIInsertHardClausesPass(*PR); 248 initializeSIInsertWaitcntsPass(*PR); 249 initializeSIModeRegisterPass(*PR); 250 initializeSIWholeQuadModePass(*PR); 251 initializeSILowerControlFlowPass(*PR); 252 initializeSIPreEmitPeepholePass(*PR); 253 initializeSILateBranchLoweringPass(*PR); 254 initializeSIMemoryLegalizerPass(*PR); 255 initializeSIOptimizeExecMaskingPass(*PR); 256 initializeSIPreAllocateWWMRegsPass(*PR); 257 initializeSIFormMemoryClausesPass(*PR); 258 initializeSIPostRABundlerPass(*PR); 259 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 260 initializeAMDGPUAAWrapperPassPass(*PR); 261 initializeAMDGPUExternalAAWrapperPass(*PR); 262 initializeAMDGPUUseNativeCallsPass(*PR); 263 initializeAMDGPUSimplifyLibCallsPass(*PR); 264 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 265 initializeGCNNSAReassignPass(*PR); 266 } 267 268 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 269 return std::make_unique<AMDGPUTargetObjectFile>(); 270 } 271 272 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 273 return new ScheduleDAGMILive(C, std::make_unique<R600SchedStrategy>()); 274 } 275 276 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 277 return new SIScheduleDAGMI(C); 278 } 279 280 static ScheduleDAGInstrs * 281 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 282 ScheduleDAGMILive *DAG = 283 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 284 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 285 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 286 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 287 return DAG; 288 } 289 290 static ScheduleDAGInstrs * 291 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 292 auto DAG = new GCNIterativeScheduler(C, 293 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 294 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 295 return DAG; 296 } 297 298 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 299 return new GCNIterativeScheduler(C, 300 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 301 } 302 303 static ScheduleDAGInstrs * 304 createIterativeILPMachineScheduler(MachineSchedContext *C) { 305 auto DAG = new GCNIterativeScheduler(C, 306 GCNIterativeScheduler::SCHEDULE_ILP); 307 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 308 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 309 return DAG; 310 } 311 312 static MachineSchedRegistry 313 R600SchedRegistry("r600", "Run R600's custom scheduler", 314 createR600MachineScheduler); 315 316 static MachineSchedRegistry 317 SISchedRegistry("si", "Run SI's custom scheduler", 318 createSIMachineScheduler); 319 320 static MachineSchedRegistry 321 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 322 "Run GCN scheduler to maximize occupancy", 323 createGCNMaxOccupancyMachineScheduler); 324 325 static MachineSchedRegistry 326 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 327 "Run GCN scheduler to maximize occupancy (experimental)", 328 createIterativeGCNMaxOccupancyMachineScheduler); 329 330 static MachineSchedRegistry 331 GCNMinRegSchedRegistry("gcn-minreg", 332 "Run GCN iterative scheduler for minimal register usage (experimental)", 333 createMinRegScheduler); 334 335 static MachineSchedRegistry 336 GCNILPSchedRegistry("gcn-ilp", 337 "Run GCN iterative scheduler for ILP scheduling (experimental)", 338 createIterativeILPMachineScheduler); 339 340 static StringRef computeDataLayout(const Triple &TT) { 341 if (TT.getArch() == Triple::r600) { 342 // 32-bit pointers. 343 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 344 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 345 } 346 347 // 32-bit private, local, and region pointers. 64-bit global, constant and 348 // flat, non-integral buffer fat pointers. 349 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 350 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 351 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 352 "-ni:7"; 353 } 354 355 LLVM_READNONE 356 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 357 if (!GPU.empty()) 358 return GPU; 359 360 // Need to default to a target with flat support for HSA. 361 if (TT.getArch() == Triple::amdgcn) 362 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 363 364 return "r600"; 365 } 366 367 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 368 // The AMDGPU toolchain only supports generating shared objects, so we 369 // must always use PIC. 370 return Reloc::PIC_; 371 } 372 373 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 374 StringRef CPU, StringRef FS, 375 TargetOptions Options, 376 Optional<Reloc::Model> RM, 377 Optional<CodeModel::Model> CM, 378 CodeGenOpt::Level OptLevel) 379 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 380 FS, Options, getEffectiveRelocModel(RM), 381 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 382 TLOF(createTLOF(getTargetTriple())) { 383 initAsmInfo(); 384 if (TT.getArch() == Triple::amdgcn) { 385 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 386 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 387 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 388 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 389 } 390 } 391 392 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 393 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 394 bool AMDGPUTargetMachine::EnableFixedFunctionABI = false; 395 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 396 397 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 398 399 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 400 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 401 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 402 } 403 404 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 405 Attribute FSAttr = F.getFnAttribute("target-features"); 406 407 return FSAttr.isValid() ? FSAttr.getValueAsString() 408 : getTargetFeatureString(); 409 } 410 411 /// Predicate for Internalize pass. 412 static bool mustPreserveGV(const GlobalValue &GV) { 413 if (const Function *F = dyn_cast<Function>(&GV)) 414 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 415 416 return !GV.use_empty(); 417 } 418 419 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 420 Builder.DivergentTarget = true; 421 422 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 423 bool Internalize = InternalizeSymbols; 424 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 425 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 426 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 427 428 if (EnableFunctionCalls) { 429 delete Builder.Inliner; 430 Builder.Inliner = createFunctionInliningPass(); 431 } 432 433 Builder.addExtension( 434 PassManagerBuilder::EP_ModuleOptimizerEarly, 435 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 436 legacy::PassManagerBase &PM) { 437 if (AMDGPUAA) { 438 PM.add(createAMDGPUAAWrapperPass()); 439 PM.add(createAMDGPUExternalAAWrapperPass()); 440 } 441 PM.add(createAMDGPUUnifyMetadataPass()); 442 PM.add(createAMDGPUPrintfRuntimeBinding()); 443 if (Internalize) 444 PM.add(createInternalizePass(mustPreserveGV)); 445 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 446 if (Internalize) 447 PM.add(createGlobalDCEPass()); 448 if (EarlyInline) 449 PM.add(createAMDGPUAlwaysInlinePass(false)); 450 }); 451 452 Builder.addExtension( 453 PassManagerBuilder::EP_EarlyAsPossible, 454 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 455 legacy::PassManagerBase &PM) { 456 if (AMDGPUAA) { 457 PM.add(createAMDGPUAAWrapperPass()); 458 PM.add(createAMDGPUExternalAAWrapperPass()); 459 } 460 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 461 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 462 if (LibCallSimplify) 463 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 464 }); 465 466 Builder.addExtension( 467 PassManagerBuilder::EP_CGSCCOptimizerLate, 468 [EnableOpt](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 469 // Add infer address spaces pass to the opt pipeline after inlining 470 // but before SROA to increase SROA opportunities. 471 PM.add(createInferAddressSpacesPass()); 472 473 // This should run after inlining to have any chance of doing anything, 474 // and before other cleanup optimizations. 475 PM.add(createAMDGPULowerKernelAttributesPass()); 476 477 // Promote alloca to vector before SROA and loop unroll. If we manage 478 // to eliminate allocas before unroll we may choose to unroll less. 479 if (EnableOpt) 480 PM.add(createAMDGPUPromoteAllocaToVector()); 481 }); 482 } 483 484 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 485 AAM.registerFunctionAnalysis<AMDGPUAA>(); 486 } 487 488 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 489 PB.registerPipelineParsingCallback( 490 [this](StringRef PassName, ModulePassManager &PM, 491 ArrayRef<PassBuilder::PipelineElement>) { 492 if (PassName == "amdgpu-propagate-attributes-late") { 493 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 494 return true; 495 } 496 if (PassName == "amdgpu-unify-metadata") { 497 PM.addPass(AMDGPUUnifyMetadataPass()); 498 return true; 499 } 500 if (PassName == "amdgpu-printf-runtime-binding") { 501 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 502 return true; 503 } 504 if (PassName == "amdgpu-always-inline") { 505 PM.addPass(AMDGPUAlwaysInlinePass()); 506 return true; 507 } 508 if (PassName == "amdgpu-lower-module-lds") { 509 PM.addPass(AMDGPULowerModuleLDSPass()); 510 return true; 511 } 512 return false; 513 }); 514 PB.registerPipelineParsingCallback( 515 [this](StringRef PassName, FunctionPassManager &PM, 516 ArrayRef<PassBuilder::PipelineElement>) { 517 if (PassName == "amdgpu-simplifylib") { 518 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 519 return true; 520 } 521 if (PassName == "amdgpu-usenative") { 522 PM.addPass(AMDGPUUseNativeCallsPass()); 523 return true; 524 } 525 if (PassName == "amdgpu-promote-alloca") { 526 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 527 return true; 528 } 529 if (PassName == "amdgpu-promote-alloca-to-vector") { 530 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 531 return true; 532 } 533 if (PassName == "amdgpu-lower-kernel-attributes") { 534 PM.addPass(AMDGPULowerKernelAttributesPass()); 535 return true; 536 } 537 if (PassName == "amdgpu-propagate-attributes-early") { 538 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 539 return true; 540 } 541 return false; 542 }); 543 544 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 545 FAM.registerPass([&] { return AMDGPUAA(); }); 546 }); 547 548 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 549 if (AAName == "amdgpu-aa") { 550 AAM.registerFunctionAnalysis<AMDGPUAA>(); 551 return true; 552 } 553 return false; 554 }); 555 556 PB.registerPipelineStartEPCallback( 557 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 558 FunctionPassManager FPM; 559 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 560 FPM.addPass(AMDGPUUseNativeCallsPass()); 561 if (EnableLibCallSimplify && 562 Level != PassBuilder::OptimizationLevel::O0) 563 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 564 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 565 }); 566 567 PB.registerPipelineEarlySimplificationEPCallback( 568 [this](ModulePassManager &PM, PassBuilder::OptimizationLevel Level) { 569 if (Level == PassBuilder::OptimizationLevel::O0) 570 return; 571 572 PM.addPass(AMDGPUUnifyMetadataPass()); 573 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 574 575 if (InternalizeSymbols) { 576 // Global variables may have dead uses which need to be removed. 577 // Otherwise these useless global variables will not get internalized. 578 PM.addPass(GlobalDCEPass()); 579 PM.addPass(InternalizePass(mustPreserveGV)); 580 } 581 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 582 if (InternalizeSymbols) { 583 PM.addPass(GlobalDCEPass()); 584 } 585 if (EarlyInlineAll && !EnableFunctionCalls) 586 PM.addPass(AMDGPUAlwaysInlinePass()); 587 }); 588 589 PB.registerCGSCCOptimizerLateEPCallback( 590 [this](CGSCCPassManager &PM, PassBuilder::OptimizationLevel Level) { 591 if (Level == PassBuilder::OptimizationLevel::O0) 592 return; 593 594 FunctionPassManager FPM; 595 596 // Add infer address spaces pass to the opt pipeline after inlining 597 // but before SROA to increase SROA opportunities. 598 FPM.addPass(InferAddressSpacesPass()); 599 600 // This should run after inlining to have any chance of doing 601 // anything, and before other cleanup optimizations. 602 FPM.addPass(AMDGPULowerKernelAttributesPass()); 603 604 if (Level != PassBuilder::OptimizationLevel::O0) { 605 // Promote alloca to vector before SROA and loop unroll. If we 606 // manage to eliminate allocas before unroll we may choose to unroll 607 // less. 608 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 609 } 610 611 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 612 }); 613 } 614 615 //===----------------------------------------------------------------------===// 616 // R600 Target Machine (R600 -> Cayman) 617 //===----------------------------------------------------------------------===// 618 619 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 620 StringRef CPU, StringRef FS, 621 TargetOptions Options, 622 Optional<Reloc::Model> RM, 623 Optional<CodeModel::Model> CM, 624 CodeGenOpt::Level OL, bool JIT) 625 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 626 setRequiresStructuredCFG(true); 627 628 // Override the default since calls aren't supported for r600. 629 if (EnableFunctionCalls && 630 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 631 EnableFunctionCalls = false; 632 } 633 634 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 635 const Function &F) const { 636 StringRef GPU = getGPUName(F); 637 StringRef FS = getFeatureString(F); 638 639 SmallString<128> SubtargetKey(GPU); 640 SubtargetKey.append(FS); 641 642 auto &I = SubtargetMap[SubtargetKey]; 643 if (!I) { 644 // This needs to be done before we create a new subtarget since any 645 // creation will depend on the TM and the code generation flags on the 646 // function that reside in TargetOptions. 647 resetTargetOptions(F); 648 I = std::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 649 } 650 651 return I.get(); 652 } 653 654 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 655 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 656 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 657 AddrSpace == AMDGPUAS::REGION_ADDRESS) 658 ? -1 659 : 0; 660 } 661 662 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 663 unsigned DestAS) const { 664 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 665 AMDGPU::isFlatGlobalAddrSpace(DestAS); 666 } 667 668 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 669 const auto *LD = dyn_cast<LoadInst>(V); 670 if (!LD) 671 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 672 673 // It must be a generic pointer loaded. 674 assert(V->getType()->isPointerTy() && 675 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 676 677 const auto *Ptr = LD->getPointerOperand(); 678 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 679 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 680 // For a generic pointer loaded from the constant memory, it could be assumed 681 // as a global pointer since the constant memory is only populated on the 682 // host side. As implied by the offload programming model, only global 683 // pointers could be referenced on the host side. 684 return AMDGPUAS::GLOBAL_ADDRESS; 685 } 686 687 TargetTransformInfo 688 R600TargetMachine::getTargetTransformInfo(const Function &F) { 689 return TargetTransformInfo(R600TTIImpl(this, F)); 690 } 691 692 //===----------------------------------------------------------------------===// 693 // GCN Target Machine (SI+) 694 //===----------------------------------------------------------------------===// 695 696 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 697 StringRef CPU, StringRef FS, 698 TargetOptions Options, 699 Optional<Reloc::Model> RM, 700 Optional<CodeModel::Model> CM, 701 CodeGenOpt::Level OL, bool JIT) 702 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 703 704 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 705 StringRef GPU = getGPUName(F); 706 StringRef FS = getFeatureString(F); 707 708 SmallString<128> SubtargetKey(GPU); 709 SubtargetKey.append(FS); 710 711 auto &I = SubtargetMap[SubtargetKey]; 712 if (!I) { 713 // This needs to be done before we create a new subtarget since any 714 // creation will depend on the TM and the code generation flags on the 715 // function that reside in TargetOptions. 716 resetTargetOptions(F); 717 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 718 } 719 720 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 721 722 return I.get(); 723 } 724 725 TargetTransformInfo 726 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 727 return TargetTransformInfo(GCNTTIImpl(this, F)); 728 } 729 730 //===----------------------------------------------------------------------===// 731 // AMDGPU Pass Setup 732 //===----------------------------------------------------------------------===// 733 734 namespace { 735 736 class AMDGPUPassConfig : public TargetPassConfig { 737 public: 738 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 739 : TargetPassConfig(TM, PM) { 740 // Exceptions and StackMaps are not supported, so these passes will never do 741 // anything. 742 disablePass(&StackMapLivenessID); 743 disablePass(&FuncletLayoutID); 744 } 745 746 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 747 return getTM<AMDGPUTargetMachine>(); 748 } 749 750 ScheduleDAGInstrs * 751 createMachineScheduler(MachineSchedContext *C) const override { 752 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 753 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 754 return DAG; 755 } 756 757 void addEarlyCSEOrGVNPass(); 758 void addStraightLineScalarOptimizationPasses(); 759 void addIRPasses() override; 760 void addCodeGenPrepare() override; 761 bool addPreISel() override; 762 bool addInstSelector() override; 763 bool addGCPasses() override; 764 765 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 766 }; 767 768 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 769 return getStandardCSEConfigForOpt(TM->getOptLevel()); 770 } 771 772 class R600PassConfig final : public AMDGPUPassConfig { 773 public: 774 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 775 : AMDGPUPassConfig(TM, PM) {} 776 777 ScheduleDAGInstrs *createMachineScheduler( 778 MachineSchedContext *C) const override { 779 return createR600MachineScheduler(C); 780 } 781 782 bool addPreISel() override; 783 bool addInstSelector() override; 784 void addPreRegAlloc() override; 785 void addPreSched2() override; 786 void addPreEmitPass() override; 787 }; 788 789 class GCNPassConfig final : public AMDGPUPassConfig { 790 public: 791 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 792 : AMDGPUPassConfig(TM, PM) { 793 // It is necessary to know the register usage of the entire call graph. We 794 // allow calls without EnableAMDGPUFunctionCalls if they are marked 795 // noinline, so this is always required. 796 setRequiresCodeGenSCCOrder(true); 797 } 798 799 GCNTargetMachine &getGCNTargetMachine() const { 800 return getTM<GCNTargetMachine>(); 801 } 802 803 ScheduleDAGInstrs * 804 createMachineScheduler(MachineSchedContext *C) const override; 805 806 bool addPreISel() override; 807 void addMachineSSAOptimization() override; 808 bool addILPOpts() override; 809 bool addInstSelector() override; 810 bool addIRTranslator() override; 811 void addPreLegalizeMachineIR() override; 812 bool addLegalizeMachineIR() override; 813 void addPreRegBankSelect() override; 814 bool addRegBankSelect() override; 815 void addPreGlobalInstructionSelect() override; 816 bool addGlobalInstructionSelect() override; 817 void addFastRegAlloc() override; 818 void addOptimizedRegAlloc() override; 819 void addPreRegAlloc() override; 820 bool addPreRewrite() override; 821 void addPostRegAlloc() override; 822 void addPreSched2() override; 823 void addPreEmitPass() override; 824 }; 825 826 } // end anonymous namespace 827 828 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 829 if (getOptLevel() == CodeGenOpt::Aggressive) 830 addPass(createGVNPass()); 831 else 832 addPass(createEarlyCSEPass()); 833 } 834 835 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 836 addPass(createLICMPass()); 837 addPass(createSeparateConstOffsetFromGEPPass()); 838 addPass(createSpeculativeExecutionPass()); 839 // ReassociateGEPs exposes more opportunites for SLSR. See 840 // the example in reassociate-geps-and-slsr.ll. 841 addPass(createStraightLineStrengthReducePass()); 842 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 843 // EarlyCSE can reuse. 844 addEarlyCSEOrGVNPass(); 845 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 846 addPass(createNaryReassociatePass()); 847 // NaryReassociate on GEPs creates redundant common expressions, so run 848 // EarlyCSE after it. 849 addPass(createEarlyCSEPass()); 850 } 851 852 void AMDGPUPassConfig::addIRPasses() { 853 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 854 855 // There is no reason to run these. 856 disablePass(&StackMapLivenessID); 857 disablePass(&FuncletLayoutID); 858 disablePass(&PatchableFunctionID); 859 860 addPass(createAMDGPUPrintfRuntimeBinding()); 861 862 // This must occur before inlining, as the inliner will not look through 863 // bitcast calls. 864 addPass(createAMDGPUFixFunctionBitcastsPass()); 865 866 // A call to propagate attributes pass in the backend in case opt was not run. 867 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 868 869 addPass(createAtomicExpandPass()); 870 871 872 addPass(createAMDGPULowerIntrinsicsPass()); 873 874 // Function calls are not supported, so make sure we inline everything. 875 addPass(createAMDGPUAlwaysInlinePass()); 876 addPass(createAlwaysInlinerLegacyPass()); 877 // We need to add the barrier noop pass, otherwise adding the function 878 // inlining pass will cause all of the PassConfigs passes to be run 879 // one function at a time, which means if we have a nodule with two 880 // functions, then we will generate code for the first function 881 // without ever running any passes on the second. 882 addPass(createBarrierNoopPass()); 883 884 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 885 if (TM.getTargetTriple().getArch() == Triple::r600) 886 addPass(createR600OpenCLImageTypeLoweringPass()); 887 888 // Replace OpenCL enqueued block function pointers with global variables. 889 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 890 891 // Can increase LDS used by kernel so runs before PromoteAlloca 892 if (EnableLowerModuleLDS) 893 addPass(createAMDGPULowerModuleLDSPass()); 894 895 if (TM.getOptLevel() > CodeGenOpt::None) { 896 addPass(createInferAddressSpacesPass()); 897 addPass(createAMDGPUPromoteAlloca()); 898 899 if (EnableSROA) 900 addPass(createSROAPass()); 901 if (EnableScalarIRPasses.getNumOccurrences() 902 ? EnableScalarIRPasses 903 : TM.getOptLevel() > CodeGenOpt::Less) 904 addStraightLineScalarOptimizationPasses(); 905 906 if (EnableAMDGPUAliasAnalysis) { 907 addPass(createAMDGPUAAWrapperPass()); 908 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 909 AAResults &AAR) { 910 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 911 AAR.addAAResult(WrapperPass->getResult()); 912 })); 913 } 914 } 915 916 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 917 // TODO: May want to move later or split into an early and late one. 918 addPass(createAMDGPUCodeGenPreparePass()); 919 } 920 921 TargetPassConfig::addIRPasses(); 922 923 // EarlyCSE is not always strong enough to clean up what LSR produces. For 924 // example, GVN can combine 925 // 926 // %0 = add %a, %b 927 // %1 = add %b, %a 928 // 929 // and 930 // 931 // %0 = shl nsw %a, 2 932 // %1 = shl %a, 2 933 // 934 // but EarlyCSE can do neither of them. 935 if (EnableScalarIRPasses.getNumOccurrences() 936 ? EnableScalarIRPasses 937 : TM.getOptLevel() > CodeGenOpt::Less) 938 addEarlyCSEOrGVNPass(); 939 } 940 941 void AMDGPUPassConfig::addCodeGenPrepare() { 942 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 943 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 944 945 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 946 EnableLowerKernelArguments) 947 addPass(createAMDGPULowerKernelArgumentsPass()); 948 949 addPass(&AMDGPUPerfHintAnalysisID); 950 951 TargetPassConfig::addCodeGenPrepare(); 952 953 if (EnableLoadStoreVectorizer.getNumOccurrences() 954 ? EnableLoadStoreVectorizer 955 : TM->getOptLevel() > CodeGenOpt::Less) 956 addPass(createLoadStoreVectorizerPass()); 957 958 // LowerSwitch pass may introduce unreachable blocks that can 959 // cause unexpected behavior for subsequent passes. Placing it 960 // here seems better that these blocks would get cleaned up by 961 // UnreachableBlockElim inserted next in the pass flow. 962 addPass(createLowerSwitchPass()); 963 } 964 965 bool AMDGPUPassConfig::addPreISel() { 966 addPass(createFlattenCFGPass()); 967 return false; 968 } 969 970 bool AMDGPUPassConfig::addInstSelector() { 971 // Defer the verifier until FinalizeISel. 972 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel()), false); 973 return false; 974 } 975 976 bool AMDGPUPassConfig::addGCPasses() { 977 // Do nothing. GC is not supported. 978 return false; 979 } 980 981 //===----------------------------------------------------------------------===// 982 // R600 Pass Setup 983 //===----------------------------------------------------------------------===// 984 985 bool R600PassConfig::addPreISel() { 986 AMDGPUPassConfig::addPreISel(); 987 988 if (EnableR600StructurizeCFG) 989 addPass(createStructurizeCFGPass()); 990 return false; 991 } 992 993 bool R600PassConfig::addInstSelector() { 994 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 995 return false; 996 } 997 998 void R600PassConfig::addPreRegAlloc() { 999 addPass(createR600VectorRegMerger()); 1000 } 1001 1002 void R600PassConfig::addPreSched2() { 1003 addPass(createR600EmitClauseMarkers(), false); 1004 if (EnableR600IfConvert) 1005 addPass(&IfConverterID, false); 1006 addPass(createR600ClauseMergePass(), false); 1007 } 1008 1009 void R600PassConfig::addPreEmitPass() { 1010 addPass(createAMDGPUCFGStructurizerPass(), false); 1011 addPass(createR600ExpandSpecialInstrsPass(), false); 1012 addPass(&FinalizeMachineBundlesID, false); 1013 addPass(createR600Packetizer(), false); 1014 addPass(createR600ControlFlowFinalizer(), false); 1015 } 1016 1017 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 1018 return new R600PassConfig(*this, PM); 1019 } 1020 1021 //===----------------------------------------------------------------------===// 1022 // GCN Pass Setup 1023 //===----------------------------------------------------------------------===// 1024 1025 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1026 MachineSchedContext *C) const { 1027 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1028 if (ST.enableSIScheduler()) 1029 return createSIMachineScheduler(C); 1030 return createGCNMaxOccupancyMachineScheduler(C); 1031 } 1032 1033 bool GCNPassConfig::addPreISel() { 1034 AMDGPUPassConfig::addPreISel(); 1035 1036 addPass(createAMDGPULateCodeGenPreparePass()); 1037 if (EnableAtomicOptimizations) { 1038 addPass(createAMDGPUAtomicOptimizerPass()); 1039 } 1040 1041 // FIXME: We need to run a pass to propagate the attributes when calls are 1042 // supported. 1043 1044 addPass(createSinkingPass()); 1045 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1046 // regions formed by them. 1047 addPass(&AMDGPUUnifyDivergentExitNodesID); 1048 if (!LateCFGStructurize) { 1049 if (EnableStructurizerWorkarounds) { 1050 addPass(createFixIrreduciblePass()); 1051 addPass(createUnifyLoopExitsPass()); 1052 } 1053 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1054 } 1055 addPass(createAMDGPUAnnotateUniformValues()); 1056 if (!LateCFGStructurize) { 1057 addPass(createSIAnnotateControlFlowPass()); 1058 } 1059 addPass(createLCSSAPass()); 1060 1061 return false; 1062 } 1063 1064 void GCNPassConfig::addMachineSSAOptimization() { 1065 TargetPassConfig::addMachineSSAOptimization(); 1066 1067 // We want to fold operands after PeepholeOptimizer has run (or as part of 1068 // it), because it will eliminate extra copies making it easier to fold the 1069 // real source operand. We want to eliminate dead instructions after, so that 1070 // we see fewer uses of the copies. We then need to clean up the dead 1071 // instructions leftover after the operands are folded as well. 1072 // 1073 // XXX - Can we get away without running DeadMachineInstructionElim again? 1074 addPass(&SIFoldOperandsID); 1075 if (EnableDPPCombine) 1076 addPass(&GCNDPPCombineID); 1077 addPass(&SILoadStoreOptimizerID); 1078 if (EnableSDWAPeephole.getNumOccurrences() 1079 ? EnableSDWAPeephole 1080 : TM->getOptLevel() > CodeGenOpt::Less) { 1081 addPass(&SIPeepholeSDWAID); 1082 addPass(&EarlyMachineLICMID); 1083 addPass(&MachineCSEID); 1084 addPass(&SIFoldOperandsID); 1085 } 1086 addPass(&DeadMachineInstructionElimID); 1087 addPass(createSIShrinkInstructionsPass()); 1088 } 1089 1090 bool GCNPassConfig::addILPOpts() { 1091 if (EnableEarlyIfConversion) 1092 addPass(&EarlyIfConverterID); 1093 1094 TargetPassConfig::addILPOpts(); 1095 return false; 1096 } 1097 1098 bool GCNPassConfig::addInstSelector() { 1099 AMDGPUPassConfig::addInstSelector(); 1100 addPass(&SIFixSGPRCopiesID); 1101 addPass(createSILowerI1CopiesPass()); 1102 return false; 1103 } 1104 1105 bool GCNPassConfig::addIRTranslator() { 1106 addPass(new IRTranslator(getOptLevel())); 1107 return false; 1108 } 1109 1110 void GCNPassConfig::addPreLegalizeMachineIR() { 1111 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1112 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1113 addPass(new Localizer()); 1114 } 1115 1116 bool GCNPassConfig::addLegalizeMachineIR() { 1117 addPass(new Legalizer()); 1118 return false; 1119 } 1120 1121 void GCNPassConfig::addPreRegBankSelect() { 1122 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1123 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1124 } 1125 1126 bool GCNPassConfig::addRegBankSelect() { 1127 addPass(new RegBankSelect()); 1128 return false; 1129 } 1130 1131 void GCNPassConfig::addPreGlobalInstructionSelect() { 1132 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1133 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1134 } 1135 1136 bool GCNPassConfig::addGlobalInstructionSelect() { 1137 addPass(new InstructionSelect(getOptLevel())); 1138 return false; 1139 } 1140 1141 void GCNPassConfig::addPreRegAlloc() { 1142 if (LateCFGStructurize) { 1143 addPass(createAMDGPUMachineCFGStructurizerPass()); 1144 } 1145 } 1146 1147 void GCNPassConfig::addFastRegAlloc() { 1148 // FIXME: We have to disable the verifier here because of PHIElimination + 1149 // TwoAddressInstructions disabling it. 1150 1151 // This must be run immediately after phi elimination and before 1152 // TwoAddressInstructions, otherwise the processing of the tied operand of 1153 // SI_ELSE will introduce a copy of the tied operand source after the else. 1154 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1155 1156 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1157 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1158 1159 TargetPassConfig::addFastRegAlloc(); 1160 } 1161 1162 void GCNPassConfig::addOptimizedRegAlloc() { 1163 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1164 // instructions that cause scheduling barriers. 1165 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1166 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1167 1168 if (OptExecMaskPreRA) 1169 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1170 1171 // This is not an essential optimization and it has a noticeable impact on 1172 // compilation time, so we only enable it from O2. 1173 if (TM->getOptLevel() > CodeGenOpt::Less) 1174 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1175 1176 // This must be run immediately after phi elimination and before 1177 // TwoAddressInstructions, otherwise the processing of the tied operand of 1178 // SI_ELSE will introduce a copy of the tied operand source after the else. 1179 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 1180 1181 if (EnableDCEInRA) 1182 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1183 1184 TargetPassConfig::addOptimizedRegAlloc(); 1185 } 1186 1187 bool GCNPassConfig::addPreRewrite() { 1188 if (EnableRegReassign) 1189 addPass(&GCNNSAReassignID); 1190 return true; 1191 } 1192 1193 void GCNPassConfig::addPostRegAlloc() { 1194 addPass(&SIFixVGPRCopiesID); 1195 if (getOptLevel() > CodeGenOpt::None) 1196 addPass(&SIOptimizeExecMaskingID); 1197 TargetPassConfig::addPostRegAlloc(); 1198 1199 // Equivalent of PEI for SGPRs. 1200 addPass(&SILowerSGPRSpillsID); 1201 } 1202 1203 void GCNPassConfig::addPreSched2() { 1204 addPass(&SIPostRABundlerID); 1205 } 1206 1207 void GCNPassConfig::addPreEmitPass() { 1208 addPass(createSIMemoryLegalizerPass()); 1209 addPass(createSIInsertWaitcntsPass()); 1210 addPass(createSIShrinkInstructionsPass()); 1211 addPass(createSIModeRegisterPass()); 1212 1213 if (getOptLevel() > CodeGenOpt::None) 1214 addPass(&SIInsertHardClausesID); 1215 1216 addPass(&SILateBranchLoweringPassID); 1217 if (getOptLevel() > CodeGenOpt::None) 1218 addPass(&SIPreEmitPeepholeID); 1219 // The hazard recognizer that runs as part of the post-ra scheduler does not 1220 // guarantee to be able handle all hazards correctly. This is because if there 1221 // are multiple scheduling regions in a basic block, the regions are scheduled 1222 // bottom up, so when we begin to schedule a region we don't know what 1223 // instructions were emitted directly before it. 1224 // 1225 // Here we add a stand-alone hazard recognizer pass which can handle all 1226 // cases. 1227 addPass(&PostRAHazardRecognizerID); 1228 addPass(&BranchRelaxationPassID); 1229 } 1230 1231 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1232 return new GCNPassConfig(*this, PM); 1233 } 1234 1235 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1236 return new yaml::SIMachineFunctionInfo(); 1237 } 1238 1239 yaml::MachineFunctionInfo * 1240 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1241 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1242 return new yaml::SIMachineFunctionInfo( 1243 *MFI, *MF.getSubtarget().getRegisterInfo(), MF); 1244 } 1245 1246 bool GCNTargetMachine::parseMachineFunctionInfo( 1247 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1248 SMDiagnostic &Error, SMRange &SourceRange) const { 1249 const yaml::SIMachineFunctionInfo &YamlMFI = 1250 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1251 MachineFunction &MF = PFS.MF; 1252 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1253 1254 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1255 return true; 1256 1257 if (MFI->Occupancy == 0) { 1258 // Fixup the subtarget dependent default value. 1259 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1260 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1261 } 1262 1263 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1264 Register TempReg; 1265 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1266 SourceRange = RegName.SourceRange; 1267 return true; 1268 } 1269 RegVal = TempReg; 1270 1271 return false; 1272 }; 1273 1274 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1275 // Create a diagnostic for a the register string literal. 1276 const MemoryBuffer &Buffer = 1277 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1278 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1279 RegName.Value.size(), SourceMgr::DK_Error, 1280 "incorrect register class for field", RegName.Value, 1281 None, None); 1282 SourceRange = RegName.SourceRange; 1283 return true; 1284 }; 1285 1286 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1287 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1288 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1289 return true; 1290 1291 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1292 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1293 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1294 } 1295 1296 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1297 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1298 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1299 } 1300 1301 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1302 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1303 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1304 } 1305 1306 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1307 const TargetRegisterClass &RC, 1308 ArgDescriptor &Arg, unsigned UserSGPRs, 1309 unsigned SystemSGPRs) { 1310 // Skip parsing if it's not present. 1311 if (!A) 1312 return false; 1313 1314 if (A->IsRegister) { 1315 Register Reg; 1316 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1317 SourceRange = A->RegisterName.SourceRange; 1318 return true; 1319 } 1320 if (!RC.contains(Reg)) 1321 return diagnoseRegisterClass(A->RegisterName); 1322 Arg = ArgDescriptor::createRegister(Reg); 1323 } else 1324 Arg = ArgDescriptor::createStack(A->StackOffset); 1325 // Check and apply the optional mask. 1326 if (A->Mask) 1327 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1328 1329 MFI->NumUserSGPRs += UserSGPRs; 1330 MFI->NumSystemSGPRs += SystemSGPRs; 1331 return false; 1332 }; 1333 1334 if (YamlMFI.ArgInfo && 1335 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1336 AMDGPU::SGPR_128RegClass, 1337 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1338 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1339 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1340 2, 0) || 1341 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1342 MFI->ArgInfo.QueuePtr, 2, 0) || 1343 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1344 AMDGPU::SReg_64RegClass, 1345 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1346 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1347 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1348 2, 0) || 1349 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1350 AMDGPU::SReg_64RegClass, 1351 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1352 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1353 AMDGPU::SGPR_32RegClass, 1354 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1355 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1356 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1357 0, 1) || 1358 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1359 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1360 0, 1) || 1361 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1362 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1363 0, 1) || 1364 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1365 AMDGPU::SGPR_32RegClass, 1366 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1367 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1368 AMDGPU::SGPR_32RegClass, 1369 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1370 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1371 AMDGPU::SReg_64RegClass, 1372 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1373 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1374 AMDGPU::SReg_64RegClass, 1375 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1376 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1377 AMDGPU::VGPR_32RegClass, 1378 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1379 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1380 AMDGPU::VGPR_32RegClass, 1381 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1382 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1383 AMDGPU::VGPR_32RegClass, 1384 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1385 return true; 1386 1387 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1388 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1389 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1390 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1391 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1392 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1393 1394 return false; 1395 } 1396