1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for SI+ GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUExportClustering.h" 19 #include "AMDGPUMacroFusion.h" 20 #include "AMDGPUTargetObjectFile.h" 21 #include "AMDGPUTargetTransformInfo.h" 22 #include "GCNIterativeScheduler.h" 23 #include "GCNSchedStrategy.h" 24 #include "R600.h" 25 #include "R600TargetMachine.h" 26 #include "SIMachineFunctionInfo.h" 27 #include "SIMachineScheduler.h" 28 #include "TargetInfo/AMDGPUTargetInfo.h" 29 #include "llvm/Analysis/CGSCCPassManager.h" 30 #include "llvm/CodeGen/GlobalISel/CSEInfo.h" 31 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 32 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 33 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 34 #include "llvm/CodeGen/GlobalISel/Localizer.h" 35 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 36 #include "llvm/CodeGen/MIRParser/MIParser.h" 37 #include "llvm/CodeGen/Passes.h" 38 #include "llvm/CodeGen/RegAllocRegistry.h" 39 #include "llvm/CodeGen/TargetPassConfig.h" 40 #include "llvm/IR/IntrinsicsAMDGPU.h" 41 #include "llvm/IR/LegacyPassManager.h" 42 #include "llvm/IR/PassManager.h" 43 #include "llvm/IR/PatternMatch.h" 44 #include "llvm/InitializePasses.h" 45 #include "llvm/MC/TargetRegistry.h" 46 #include "llvm/Passes/PassBuilder.h" 47 #include "llvm/Transforms/IPO.h" 48 #include "llvm/Transforms/IPO/AlwaysInliner.h" 49 #include "llvm/Transforms/IPO/GlobalDCE.h" 50 #include "llvm/Transforms/IPO/Internalize.h" 51 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 52 #include "llvm/Transforms/Scalar.h" 53 #include "llvm/Transforms/Scalar/GVN.h" 54 #include "llvm/Transforms/Scalar/InferAddressSpaces.h" 55 #include "llvm/Transforms/Utils.h" 56 #include "llvm/Transforms/Utils/SimplifyLibCalls.h" 57 #include "llvm/Transforms/Vectorize.h" 58 59 using namespace llvm; 60 using namespace llvm::PatternMatch; 61 62 namespace { 63 class SGPRRegisterRegAlloc : public RegisterRegAllocBase<SGPRRegisterRegAlloc> { 64 public: 65 SGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 66 : RegisterRegAllocBase(N, D, C) {} 67 }; 68 69 class VGPRRegisterRegAlloc : public RegisterRegAllocBase<VGPRRegisterRegAlloc> { 70 public: 71 VGPRRegisterRegAlloc(const char *N, const char *D, FunctionPassCtor C) 72 : RegisterRegAllocBase(N, D, C) {} 73 }; 74 75 static bool onlyAllocateSGPRs(const TargetRegisterInfo &TRI, 76 const TargetRegisterClass &RC) { 77 return static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 78 } 79 80 static bool onlyAllocateVGPRs(const TargetRegisterInfo &TRI, 81 const TargetRegisterClass &RC) { 82 return !static_cast<const SIRegisterInfo &>(TRI).isSGPRClass(&RC); 83 } 84 85 86 /// -{sgpr|vgpr}-regalloc=... command line option. 87 static FunctionPass *useDefaultRegisterAllocator() { return nullptr; } 88 89 /// A dummy default pass factory indicates whether the register allocator is 90 /// overridden on the command line. 91 static llvm::once_flag InitializeDefaultSGPRRegisterAllocatorFlag; 92 static llvm::once_flag InitializeDefaultVGPRRegisterAllocatorFlag; 93 94 static SGPRRegisterRegAlloc 95 defaultSGPRRegAlloc("default", 96 "pick SGPR register allocator based on -O option", 97 useDefaultRegisterAllocator); 98 99 static cl::opt<SGPRRegisterRegAlloc::FunctionPassCtor, false, 100 RegisterPassParser<SGPRRegisterRegAlloc>> 101 SGPRRegAlloc("sgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 102 cl::desc("Register allocator to use for SGPRs")); 103 104 static cl::opt<VGPRRegisterRegAlloc::FunctionPassCtor, false, 105 RegisterPassParser<VGPRRegisterRegAlloc>> 106 VGPRRegAlloc("vgpr-regalloc", cl::Hidden, cl::init(&useDefaultRegisterAllocator), 107 cl::desc("Register allocator to use for VGPRs")); 108 109 110 static void initializeDefaultSGPRRegisterAllocatorOnce() { 111 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 112 113 if (!Ctor) { 114 Ctor = SGPRRegAlloc; 115 SGPRRegisterRegAlloc::setDefault(SGPRRegAlloc); 116 } 117 } 118 119 static void initializeDefaultVGPRRegisterAllocatorOnce() { 120 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 121 122 if (!Ctor) { 123 Ctor = VGPRRegAlloc; 124 VGPRRegisterRegAlloc::setDefault(VGPRRegAlloc); 125 } 126 } 127 128 static FunctionPass *createBasicSGPRRegisterAllocator() { 129 return createBasicRegisterAllocator(onlyAllocateSGPRs); 130 } 131 132 static FunctionPass *createGreedySGPRRegisterAllocator() { 133 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 134 } 135 136 static FunctionPass *createFastSGPRRegisterAllocator() { 137 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 138 } 139 140 static FunctionPass *createBasicVGPRRegisterAllocator() { 141 return createBasicRegisterAllocator(onlyAllocateVGPRs); 142 } 143 144 static FunctionPass *createGreedyVGPRRegisterAllocator() { 145 return createGreedyRegisterAllocator(onlyAllocateVGPRs); 146 } 147 148 static FunctionPass *createFastVGPRRegisterAllocator() { 149 return createFastRegisterAllocator(onlyAllocateVGPRs, true); 150 } 151 152 static SGPRRegisterRegAlloc basicRegAllocSGPR( 153 "basic", "basic register allocator", createBasicSGPRRegisterAllocator); 154 static SGPRRegisterRegAlloc greedyRegAllocSGPR( 155 "greedy", "greedy register allocator", createGreedySGPRRegisterAllocator); 156 157 static SGPRRegisterRegAlloc fastRegAllocSGPR( 158 "fast", "fast register allocator", createFastSGPRRegisterAllocator); 159 160 161 static VGPRRegisterRegAlloc basicRegAllocVGPR( 162 "basic", "basic register allocator", createBasicVGPRRegisterAllocator); 163 static VGPRRegisterRegAlloc greedyRegAllocVGPR( 164 "greedy", "greedy register allocator", createGreedyVGPRRegisterAllocator); 165 166 static VGPRRegisterRegAlloc fastRegAllocVGPR( 167 "fast", "fast register allocator", createFastVGPRRegisterAllocator); 168 } 169 170 static cl::opt<bool> EnableSROA( 171 "amdgpu-sroa", 172 cl::desc("Run SROA after promote alloca pass"), 173 cl::ReallyHidden, 174 cl::init(true)); 175 176 static cl::opt<bool> 177 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 178 cl::desc("Run early if-conversion"), 179 cl::init(false)); 180 181 static cl::opt<bool> 182 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 183 cl::desc("Run pre-RA exec mask optimizations"), 184 cl::init(true)); 185 186 // Option to disable vectorizer for tests. 187 static cl::opt<bool> EnableLoadStoreVectorizer( 188 "amdgpu-load-store-vectorizer", 189 cl::desc("Enable load store vectorizer"), 190 cl::init(true), 191 cl::Hidden); 192 193 // Option to control global loads scalarization 194 static cl::opt<bool> ScalarizeGlobal( 195 "amdgpu-scalarize-global-loads", 196 cl::desc("Enable global load scalarization"), 197 cl::init(true), 198 cl::Hidden); 199 200 // Option to run internalize pass. 201 static cl::opt<bool> InternalizeSymbols( 202 "amdgpu-internalize-symbols", 203 cl::desc("Enable elimination of non-kernel functions and unused globals"), 204 cl::init(false), 205 cl::Hidden); 206 207 // Option to inline all early. 208 static cl::opt<bool> EarlyInlineAll( 209 "amdgpu-early-inline-all", 210 cl::desc("Inline all functions early"), 211 cl::init(false), 212 cl::Hidden); 213 214 static cl::opt<bool> EnableSDWAPeephole( 215 "amdgpu-sdwa-peephole", 216 cl::desc("Enable SDWA peepholer"), 217 cl::init(true)); 218 219 static cl::opt<bool> EnableDPPCombine( 220 "amdgpu-dpp-combine", 221 cl::desc("Enable DPP combiner"), 222 cl::init(true)); 223 224 // Enable address space based alias analysis 225 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 226 cl::desc("Enable AMDGPU Alias Analysis"), 227 cl::init(true)); 228 229 // Option to run late CFG structurizer 230 static cl::opt<bool, true> LateCFGStructurize( 231 "amdgpu-late-structurize", 232 cl::desc("Enable late CFG structurization"), 233 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 234 cl::Hidden); 235 236 // Enable lib calls simplifications 237 static cl::opt<bool> EnableLibCallSimplify( 238 "amdgpu-simplify-libcall", 239 cl::desc("Enable amdgpu library simplifications"), 240 cl::init(true), 241 cl::Hidden); 242 243 static cl::opt<bool> EnableLowerKernelArguments( 244 "amdgpu-ir-lower-kernel-arguments", 245 cl::desc("Lower kernel argument loads in IR pass"), 246 cl::init(true), 247 cl::Hidden); 248 249 static cl::opt<bool> EnableRegReassign( 250 "amdgpu-reassign-regs", 251 cl::desc("Enable register reassign optimizations on gfx10+"), 252 cl::init(true), 253 cl::Hidden); 254 255 static cl::opt<bool> OptVGPRLiveRange( 256 "amdgpu-opt-vgpr-liverange", 257 cl::desc("Enable VGPR liverange optimizations for if-else structure"), 258 cl::init(true), cl::Hidden); 259 260 // Enable atomic optimization 261 static cl::opt<bool> EnableAtomicOptimizations( 262 "amdgpu-atomic-optimizations", 263 cl::desc("Enable atomic optimizations"), 264 cl::init(false), 265 cl::Hidden); 266 267 // Enable Mode register optimization 268 static cl::opt<bool> EnableSIModeRegisterPass( 269 "amdgpu-mode-register", 270 cl::desc("Enable mode register pass"), 271 cl::init(true), 272 cl::Hidden); 273 274 // Option is used in lit tests to prevent deadcoding of patterns inspected. 275 static cl::opt<bool> 276 EnableDCEInRA("amdgpu-dce-in-ra", 277 cl::init(true), cl::Hidden, 278 cl::desc("Enable machine DCE inside regalloc")); 279 280 static cl::opt<bool> EnableSetWavePriority("amdgpu-set-wave-priority", 281 cl::desc("Adjust wave priority"), 282 cl::init(false), cl::Hidden); 283 284 static cl::opt<bool> EnableScalarIRPasses( 285 "amdgpu-scalar-ir-passes", 286 cl::desc("Enable scalar IR passes"), 287 cl::init(true), 288 cl::Hidden); 289 290 static cl::opt<bool> EnableStructurizerWorkarounds( 291 "amdgpu-enable-structurizer-workarounds", 292 cl::desc("Enable workarounds for the StructurizeCFG pass"), cl::init(true), 293 cl::Hidden); 294 295 static cl::opt<bool> EnableLDSReplaceWithPointer( 296 "amdgpu-enable-lds-replace-with-pointer", 297 cl::desc("Enable LDS replace with pointer pass"), cl::init(false), 298 cl::Hidden); 299 300 static cl::opt<bool, true> EnableLowerModuleLDS( 301 "amdgpu-enable-lower-module-lds", cl::desc("Enable lower module lds pass"), 302 cl::location(AMDGPUTargetMachine::EnableLowerModuleLDS), cl::init(true), 303 cl::Hidden); 304 305 static cl::opt<bool> EnablePreRAOptimizations( 306 "amdgpu-enable-pre-ra-optimizations", 307 cl::desc("Enable Pre-RA optimizations pass"), cl::init(true), 308 cl::Hidden); 309 310 static cl::opt<bool> EnablePromoteKernelArguments( 311 "amdgpu-enable-promote-kernel-arguments", 312 cl::desc("Enable promotion of flat kernel pointer arguments to global"), 313 cl::Hidden, cl::init(true)); 314 315 extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAMDGPUTarget() { 316 // Register the target 317 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 318 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 319 320 PassRegistry *PR = PassRegistry::getPassRegistry(); 321 initializeR600ClauseMergePassPass(*PR); 322 initializeR600ControlFlowFinalizerPass(*PR); 323 initializeR600PacketizerPass(*PR); 324 initializeR600ExpandSpecialInstrsPassPass(*PR); 325 initializeR600VectorRegMergerPass(*PR); 326 initializeGlobalISel(*PR); 327 initializeAMDGPUDAGToDAGISelPass(*PR); 328 initializeGCNDPPCombinePass(*PR); 329 initializeSILowerI1CopiesPass(*PR); 330 initializeSILowerSGPRSpillsPass(*PR); 331 initializeSIFixSGPRCopiesPass(*PR); 332 initializeSIFixVGPRCopiesPass(*PR); 333 initializeSIFoldOperandsPass(*PR); 334 initializeSIPeepholeSDWAPass(*PR); 335 initializeSIShrinkInstructionsPass(*PR); 336 initializeSIOptimizeExecMaskingPreRAPass(*PR); 337 initializeSIOptimizeVGPRLiveRangePass(*PR); 338 initializeSILoadStoreOptimizerPass(*PR); 339 initializeAMDGPUCtorDtorLoweringPass(*PR); 340 initializeAMDGPUAlwaysInlinePass(*PR); 341 initializeAMDGPUAttributorPass(*PR); 342 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 343 initializeAMDGPUAnnotateUniformValuesPass(*PR); 344 initializeAMDGPUArgumentUsageInfoPass(*PR); 345 initializeAMDGPUAtomicOptimizerPass(*PR); 346 initializeAMDGPULowerKernelArgumentsPass(*PR); 347 initializeAMDGPUPromoteKernelArgumentsPass(*PR); 348 initializeAMDGPULowerKernelAttributesPass(*PR); 349 initializeAMDGPULowerIntrinsicsPass(*PR); 350 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 351 initializeAMDGPUPostLegalizerCombinerPass(*PR); 352 initializeAMDGPUPreLegalizerCombinerPass(*PR); 353 initializeAMDGPURegBankCombinerPass(*PR); 354 initializeAMDGPUPromoteAllocaPass(*PR); 355 initializeAMDGPUPromoteAllocaToVectorPass(*PR); 356 initializeAMDGPUCodeGenPreparePass(*PR); 357 initializeAMDGPULateCodeGenPreparePass(*PR); 358 initializeAMDGPUPropagateAttributesEarlyPass(*PR); 359 initializeAMDGPUPropagateAttributesLatePass(*PR); 360 initializeAMDGPUReplaceLDSUseWithPointerPass(*PR); 361 initializeAMDGPULowerModuleLDSPass(*PR); 362 initializeAMDGPURewriteOutArgumentsPass(*PR); 363 initializeAMDGPUUnifyMetadataPass(*PR); 364 initializeSIAnnotateControlFlowPass(*PR); 365 initializeSIInsertHardClausesPass(*PR); 366 initializeSIInsertWaitcntsPass(*PR); 367 initializeSIModeRegisterPass(*PR); 368 initializeSIWholeQuadModePass(*PR); 369 initializeSILowerControlFlowPass(*PR); 370 initializeSIPreEmitPeepholePass(*PR); 371 initializeSILateBranchLoweringPass(*PR); 372 initializeSIMemoryLegalizerPass(*PR); 373 initializeSIOptimizeExecMaskingPass(*PR); 374 initializeSIPreAllocateWWMRegsPass(*PR); 375 initializeSIFormMemoryClausesPass(*PR); 376 initializeSIPostRABundlerPass(*PR); 377 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 378 initializeAMDGPUAAWrapperPassPass(*PR); 379 initializeAMDGPUExternalAAWrapperPass(*PR); 380 initializeAMDGPUUseNativeCallsPass(*PR); 381 initializeAMDGPUSimplifyLibCallsPass(*PR); 382 initializeAMDGPUPrintfRuntimeBindingPass(*PR); 383 initializeAMDGPUResourceUsageAnalysisPass(*PR); 384 initializeGCNNSAReassignPass(*PR); 385 initializeGCNPreRAOptimizationsPass(*PR); 386 } 387 388 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 389 return std::make_unique<AMDGPUTargetObjectFile>(); 390 } 391 392 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 393 return new SIScheduleDAGMI(C); 394 } 395 396 static ScheduleDAGInstrs * 397 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 398 ScheduleDAGMILive *DAG = 399 new GCNScheduleDAGMILive(C, std::make_unique<GCNMaxOccupancySchedStrategy>(C)); 400 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 401 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 402 DAG->addMutation(createAMDGPUExportClusteringDAGMutation()); 403 return DAG; 404 } 405 406 static ScheduleDAGInstrs * 407 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 408 auto DAG = new GCNIterativeScheduler(C, 409 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 410 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 411 return DAG; 412 } 413 414 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 415 return new GCNIterativeScheduler(C, 416 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 417 } 418 419 static ScheduleDAGInstrs * 420 createIterativeILPMachineScheduler(MachineSchedContext *C) { 421 auto DAG = new GCNIterativeScheduler(C, 422 GCNIterativeScheduler::SCHEDULE_ILP); 423 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 424 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 425 return DAG; 426 } 427 428 static MachineSchedRegistry 429 SISchedRegistry("si", "Run SI's custom scheduler", 430 createSIMachineScheduler); 431 432 static MachineSchedRegistry 433 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 434 "Run GCN scheduler to maximize occupancy", 435 createGCNMaxOccupancyMachineScheduler); 436 437 static MachineSchedRegistry 438 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 439 "Run GCN scheduler to maximize occupancy (experimental)", 440 createIterativeGCNMaxOccupancyMachineScheduler); 441 442 static MachineSchedRegistry 443 GCNMinRegSchedRegistry("gcn-minreg", 444 "Run GCN iterative scheduler for minimal register usage (experimental)", 445 createMinRegScheduler); 446 447 static MachineSchedRegistry 448 GCNILPSchedRegistry("gcn-ilp", 449 "Run GCN iterative scheduler for ILP scheduling (experimental)", 450 createIterativeILPMachineScheduler); 451 452 static StringRef computeDataLayout(const Triple &TT) { 453 if (TT.getArch() == Triple::r600) { 454 // 32-bit pointers. 455 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 456 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1"; 457 } 458 459 // 32-bit private, local, and region pointers. 64-bit global, constant and 460 // flat, non-integral buffer fat pointers. 461 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 462 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 463 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5-G1" 464 "-ni:7"; 465 } 466 467 LLVM_READNONE 468 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 469 if (!GPU.empty()) 470 return GPU; 471 472 // Need to default to a target with flat support for HSA. 473 if (TT.getArch() == Triple::amdgcn) 474 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 475 476 return "r600"; 477 } 478 479 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 480 // The AMDGPU toolchain only supports generating shared objects, so we 481 // must always use PIC. 482 return Reloc::PIC_; 483 } 484 485 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 486 StringRef CPU, StringRef FS, 487 TargetOptions Options, 488 Optional<Reloc::Model> RM, 489 Optional<CodeModel::Model> CM, 490 CodeGenOpt::Level OptLevel) 491 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 492 FS, Options, getEffectiveRelocModel(RM), 493 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 494 TLOF(createTLOF(getTargetTriple())) { 495 initAsmInfo(); 496 if (TT.getArch() == Triple::amdgcn) { 497 if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize64")) 498 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave64)); 499 else if (getMCSubtargetInfo()->checkFeatures("+wavefrontsize32")) 500 MRI.reset(llvm::createGCNMCRegisterInfo(AMDGPUDwarfFlavour::Wave32)); 501 } 502 } 503 504 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 505 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 506 bool AMDGPUTargetMachine::EnableLowerModuleLDS = true; 507 508 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 509 510 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 511 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 512 return GPUAttr.isValid() ? GPUAttr.getValueAsString() : getTargetCPU(); 513 } 514 515 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 516 Attribute FSAttr = F.getFnAttribute("target-features"); 517 518 return FSAttr.isValid() ? FSAttr.getValueAsString() 519 : getTargetFeatureString(); 520 } 521 522 /// Predicate for Internalize pass. 523 static bool mustPreserveGV(const GlobalValue &GV) { 524 if (const Function *F = dyn_cast<Function>(&GV)) 525 return F->isDeclaration() || F->getName().startswith("__asan_") || 526 F->getName().startswith("__sanitizer_") || 527 AMDGPU::isEntryFunctionCC(F->getCallingConv()); 528 529 GV.removeDeadConstantUsers(); 530 return !GV.use_empty(); 531 } 532 533 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 534 Builder.DivergentTarget = true; 535 536 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 537 bool Internalize = InternalizeSymbols; 538 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 539 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 540 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 541 bool PromoteKernelArguments = 542 EnablePromoteKernelArguments && getOptLevel() > CodeGenOpt::Less; 543 544 if (EnableFunctionCalls) { 545 delete Builder.Inliner; 546 Builder.Inliner = createFunctionInliningPass(); 547 } 548 549 Builder.addExtension( 550 PassManagerBuilder::EP_ModuleOptimizerEarly, 551 [Internalize, EarlyInline, AMDGPUAA, this](const PassManagerBuilder &, 552 legacy::PassManagerBase &PM) { 553 if (AMDGPUAA) { 554 PM.add(createAMDGPUAAWrapperPass()); 555 PM.add(createAMDGPUExternalAAWrapperPass()); 556 } 557 PM.add(createAMDGPUUnifyMetadataPass()); 558 PM.add(createAMDGPUPrintfRuntimeBinding()); 559 if (Internalize) 560 PM.add(createInternalizePass(mustPreserveGV)); 561 PM.add(createAMDGPUPropagateAttributesLatePass(this)); 562 if (Internalize) 563 PM.add(createGlobalDCEPass()); 564 if (EarlyInline) 565 PM.add(createAMDGPUAlwaysInlinePass(false)); 566 }); 567 568 Builder.addExtension( 569 PassManagerBuilder::EP_EarlyAsPossible, 570 [AMDGPUAA, LibCallSimplify, this](const PassManagerBuilder &, 571 legacy::PassManagerBase &PM) { 572 if (AMDGPUAA) { 573 PM.add(createAMDGPUAAWrapperPass()); 574 PM.add(createAMDGPUExternalAAWrapperPass()); 575 } 576 PM.add(llvm::createAMDGPUPropagateAttributesEarlyPass(this)); 577 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 578 if (LibCallSimplify) 579 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(this)); 580 }); 581 582 Builder.addExtension( 583 PassManagerBuilder::EP_CGSCCOptimizerLate, 584 [EnableOpt, PromoteKernelArguments](const PassManagerBuilder &, 585 legacy::PassManagerBase &PM) { 586 // Add promote kernel arguments pass to the opt pipeline right before 587 // infer address spaces which is needed to do actual address space 588 // rewriting. 589 if (PromoteKernelArguments) 590 PM.add(createAMDGPUPromoteKernelArgumentsPass()); 591 592 // Add infer address spaces pass to the opt pipeline after inlining 593 // but before SROA to increase SROA opportunities. 594 PM.add(createInferAddressSpacesPass()); 595 596 // This should run after inlining to have any chance of doing anything, 597 // and before other cleanup optimizations. 598 PM.add(createAMDGPULowerKernelAttributesPass()); 599 600 // Promote alloca to vector before SROA and loop unroll. If we manage 601 // to eliminate allocas before unroll we may choose to unroll less. 602 if (EnableOpt) 603 PM.add(createAMDGPUPromoteAllocaToVector()); 604 }); 605 } 606 607 void AMDGPUTargetMachine::registerDefaultAliasAnalyses(AAManager &AAM) { 608 AAM.registerFunctionAnalysis<AMDGPUAA>(); 609 } 610 611 void AMDGPUTargetMachine::registerPassBuilderCallbacks(PassBuilder &PB) { 612 PB.registerPipelineParsingCallback( 613 [this](StringRef PassName, ModulePassManager &PM, 614 ArrayRef<PassBuilder::PipelineElement>) { 615 if (PassName == "amdgpu-propagate-attributes-late") { 616 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 617 return true; 618 } 619 if (PassName == "amdgpu-unify-metadata") { 620 PM.addPass(AMDGPUUnifyMetadataPass()); 621 return true; 622 } 623 if (PassName == "amdgpu-printf-runtime-binding") { 624 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 625 return true; 626 } 627 if (PassName == "amdgpu-always-inline") { 628 PM.addPass(AMDGPUAlwaysInlinePass()); 629 return true; 630 } 631 if (PassName == "amdgpu-replace-lds-use-with-pointer") { 632 PM.addPass(AMDGPUReplaceLDSUseWithPointerPass()); 633 return true; 634 } 635 if (PassName == "amdgpu-lower-module-lds") { 636 PM.addPass(AMDGPULowerModuleLDSPass()); 637 return true; 638 } 639 return false; 640 }); 641 PB.registerPipelineParsingCallback( 642 [this](StringRef PassName, FunctionPassManager &PM, 643 ArrayRef<PassBuilder::PipelineElement>) { 644 if (PassName == "amdgpu-simplifylib") { 645 PM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 646 return true; 647 } 648 if (PassName == "amdgpu-usenative") { 649 PM.addPass(AMDGPUUseNativeCallsPass()); 650 return true; 651 } 652 if (PassName == "amdgpu-promote-alloca") { 653 PM.addPass(AMDGPUPromoteAllocaPass(*this)); 654 return true; 655 } 656 if (PassName == "amdgpu-promote-alloca-to-vector") { 657 PM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 658 return true; 659 } 660 if (PassName == "amdgpu-lower-kernel-attributes") { 661 PM.addPass(AMDGPULowerKernelAttributesPass()); 662 return true; 663 } 664 if (PassName == "amdgpu-propagate-attributes-early") { 665 PM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 666 return true; 667 } 668 if (PassName == "amdgpu-promote-kernel-arguments") { 669 PM.addPass(AMDGPUPromoteKernelArgumentsPass()); 670 return true; 671 } 672 return false; 673 }); 674 675 PB.registerAnalysisRegistrationCallback([](FunctionAnalysisManager &FAM) { 676 FAM.registerPass([&] { return AMDGPUAA(); }); 677 }); 678 679 PB.registerParseAACallback([](StringRef AAName, AAManager &AAM) { 680 if (AAName == "amdgpu-aa") { 681 AAM.registerFunctionAnalysis<AMDGPUAA>(); 682 return true; 683 } 684 return false; 685 }); 686 687 PB.registerPipelineStartEPCallback( 688 [this](ModulePassManager &PM, OptimizationLevel Level) { 689 FunctionPassManager FPM; 690 FPM.addPass(AMDGPUPropagateAttributesEarlyPass(*this)); 691 FPM.addPass(AMDGPUUseNativeCallsPass()); 692 if (EnableLibCallSimplify && Level != OptimizationLevel::O0) 693 FPM.addPass(AMDGPUSimplifyLibCallsPass(*this)); 694 PM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM))); 695 }); 696 697 PB.registerPipelineEarlySimplificationEPCallback( 698 [this](ModulePassManager &PM, OptimizationLevel Level) { 699 if (Level == OptimizationLevel::O0) 700 return; 701 702 PM.addPass(AMDGPUUnifyMetadataPass()); 703 PM.addPass(AMDGPUPrintfRuntimeBindingPass()); 704 705 if (InternalizeSymbols) { 706 PM.addPass(InternalizePass(mustPreserveGV)); 707 } 708 PM.addPass(AMDGPUPropagateAttributesLatePass(*this)); 709 if (InternalizeSymbols) { 710 PM.addPass(GlobalDCEPass()); 711 } 712 if (EarlyInlineAll && !EnableFunctionCalls) 713 PM.addPass(AMDGPUAlwaysInlinePass()); 714 }); 715 716 PB.registerCGSCCOptimizerLateEPCallback( 717 [this](CGSCCPassManager &PM, OptimizationLevel Level) { 718 if (Level == OptimizationLevel::O0) 719 return; 720 721 FunctionPassManager FPM; 722 723 // Add promote kernel arguments pass to the opt pipeline right before 724 // infer address spaces which is needed to do actual address space 725 // rewriting. 726 if (Level.getSpeedupLevel() > OptimizationLevel::O1.getSpeedupLevel() && 727 EnablePromoteKernelArguments) 728 FPM.addPass(AMDGPUPromoteKernelArgumentsPass()); 729 730 // Add infer address spaces pass to the opt pipeline after inlining 731 // but before SROA to increase SROA opportunities. 732 FPM.addPass(InferAddressSpacesPass()); 733 734 // This should run after inlining to have any chance of doing 735 // anything, and before other cleanup optimizations. 736 FPM.addPass(AMDGPULowerKernelAttributesPass()); 737 738 if (Level != OptimizationLevel::O0) { 739 // Promote alloca to vector before SROA and loop unroll. If we 740 // manage to eliminate allocas before unroll we may choose to unroll 741 // less. 742 FPM.addPass(AMDGPUPromoteAllocaToVectorPass(*this)); 743 } 744 745 PM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM))); 746 }); 747 } 748 749 int64_t AMDGPUTargetMachine::getNullPointerValue(unsigned AddrSpace) { 750 return (AddrSpace == AMDGPUAS::LOCAL_ADDRESS || 751 AddrSpace == AMDGPUAS::PRIVATE_ADDRESS || 752 AddrSpace == AMDGPUAS::REGION_ADDRESS) 753 ? -1 754 : 0; 755 } 756 757 bool AMDGPUTargetMachine::isNoopAddrSpaceCast(unsigned SrcAS, 758 unsigned DestAS) const { 759 return AMDGPU::isFlatGlobalAddrSpace(SrcAS) && 760 AMDGPU::isFlatGlobalAddrSpace(DestAS); 761 } 762 763 unsigned AMDGPUTargetMachine::getAssumedAddrSpace(const Value *V) const { 764 const auto *LD = dyn_cast<LoadInst>(V); 765 if (!LD) 766 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 767 768 // It must be a generic pointer loaded. 769 assert(V->getType()->isPointerTy() && 770 V->getType()->getPointerAddressSpace() == AMDGPUAS::FLAT_ADDRESS); 771 772 const auto *Ptr = LD->getPointerOperand(); 773 if (Ptr->getType()->getPointerAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) 774 return AMDGPUAS::UNKNOWN_ADDRESS_SPACE; 775 // For a generic pointer loaded from the constant memory, it could be assumed 776 // as a global pointer since the constant memory is only populated on the 777 // host side. As implied by the offload programming model, only global 778 // pointers could be referenced on the host side. 779 return AMDGPUAS::GLOBAL_ADDRESS; 780 } 781 782 std::pair<const Value *, unsigned> 783 AMDGPUTargetMachine::getPredicatedAddrSpace(const Value *V) const { 784 if (auto *II = dyn_cast<IntrinsicInst>(V)) { 785 switch (II->getIntrinsicID()) { 786 case Intrinsic::amdgcn_is_shared: 787 return std::make_pair(II->getArgOperand(0), AMDGPUAS::LOCAL_ADDRESS); 788 case Intrinsic::amdgcn_is_private: 789 return std::make_pair(II->getArgOperand(0), AMDGPUAS::PRIVATE_ADDRESS); 790 default: 791 break; 792 } 793 return std::make_pair(nullptr, -1); 794 } 795 // Check the global pointer predication based on 796 // (!is_share(p) && !is_private(p)). Note that logic 'and' is commutative and 797 // the order of 'is_shared' and 'is_private' is not significant. 798 Value *Ptr; 799 if (match( 800 const_cast<Value *>(V), 801 m_c_And(m_Not(m_Intrinsic<Intrinsic::amdgcn_is_shared>(m_Value(Ptr))), 802 m_Not(m_Intrinsic<Intrinsic::amdgcn_is_private>( 803 m_Deferred(Ptr)))))) 804 return std::make_pair(Ptr, AMDGPUAS::GLOBAL_ADDRESS); 805 806 return std::make_pair(nullptr, -1); 807 } 808 809 //===----------------------------------------------------------------------===// 810 // GCN Target Machine (SI+) 811 //===----------------------------------------------------------------------===// 812 813 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 814 StringRef CPU, StringRef FS, 815 TargetOptions Options, 816 Optional<Reloc::Model> RM, 817 Optional<CodeModel::Model> CM, 818 CodeGenOpt::Level OL, bool JIT) 819 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 820 821 const TargetSubtargetInfo * 822 GCNTargetMachine::getSubtargetImpl(const Function &F) const { 823 StringRef GPU = getGPUName(F); 824 StringRef FS = getFeatureString(F); 825 826 SmallString<128> SubtargetKey(GPU); 827 SubtargetKey.append(FS); 828 829 auto &I = SubtargetMap[SubtargetKey]; 830 if (!I) { 831 // This needs to be done before we create a new subtarget since any 832 // creation will depend on the TM and the code generation flags on the 833 // function that reside in TargetOptions. 834 resetTargetOptions(F); 835 I = std::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 836 } 837 838 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 839 840 return I.get(); 841 } 842 843 TargetTransformInfo 844 GCNTargetMachine::getTargetTransformInfo(const Function &F) const { 845 return TargetTransformInfo(GCNTTIImpl(this, F)); 846 } 847 848 //===----------------------------------------------------------------------===// 849 // AMDGPU Pass Setup 850 //===----------------------------------------------------------------------===// 851 852 std::unique_ptr<CSEConfigBase> llvm::AMDGPUPassConfig::getCSEConfig() const { 853 return getStandardCSEConfigForOpt(TM->getOptLevel()); 854 } 855 856 namespace { 857 858 class GCNPassConfig final : public AMDGPUPassConfig { 859 public: 860 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 861 : AMDGPUPassConfig(TM, PM) { 862 // It is necessary to know the register usage of the entire call graph. We 863 // allow calls without EnableAMDGPUFunctionCalls if they are marked 864 // noinline, so this is always required. 865 setRequiresCodeGenSCCOrder(true); 866 substitutePass(&PostRASchedulerID, &PostMachineSchedulerID); 867 } 868 869 GCNTargetMachine &getGCNTargetMachine() const { 870 return getTM<GCNTargetMachine>(); 871 } 872 873 ScheduleDAGInstrs * 874 createMachineScheduler(MachineSchedContext *C) const override; 875 876 ScheduleDAGInstrs * 877 createPostMachineScheduler(MachineSchedContext *C) const override { 878 ScheduleDAGMI *DAG = createGenericSchedPostRA(C); 879 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 880 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 881 DAG->addMutation(ST.createFillMFMAShadowMutation(DAG->TII)); 882 return DAG; 883 } 884 885 bool addPreISel() override; 886 void addMachineSSAOptimization() override; 887 bool addILPOpts() override; 888 bool addInstSelector() override; 889 bool addIRTranslator() override; 890 void addPreLegalizeMachineIR() override; 891 bool addLegalizeMachineIR() override; 892 void addPreRegBankSelect() override; 893 bool addRegBankSelect() override; 894 void addPreGlobalInstructionSelect() override; 895 bool addGlobalInstructionSelect() override; 896 void addFastRegAlloc() override; 897 void addOptimizedRegAlloc() override; 898 899 FunctionPass *createSGPRAllocPass(bool Optimized); 900 FunctionPass *createVGPRAllocPass(bool Optimized); 901 FunctionPass *createRegAllocPass(bool Optimized) override; 902 903 bool addRegAssignAndRewriteFast() override; 904 bool addRegAssignAndRewriteOptimized() override; 905 906 void addPreRegAlloc() override; 907 bool addPreRewrite() override; 908 void addPostRegAlloc() override; 909 void addPreSched2() override; 910 void addPreEmitPass() override; 911 }; 912 913 } // end anonymous namespace 914 915 AMDGPUPassConfig::AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 916 : TargetPassConfig(TM, PM) { 917 // Exceptions and StackMaps are not supported, so these passes will never do 918 // anything. 919 disablePass(&StackMapLivenessID); 920 disablePass(&FuncletLayoutID); 921 // Garbage collection is not supported. 922 disablePass(&GCLoweringID); 923 disablePass(&ShadowStackGCLoweringID); 924 } 925 926 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 927 if (getOptLevel() == CodeGenOpt::Aggressive) 928 addPass(createGVNPass()); 929 else 930 addPass(createEarlyCSEPass()); 931 } 932 933 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 934 addPass(createLICMPass()); 935 addPass(createSeparateConstOffsetFromGEPPass()); 936 addPass(createSpeculativeExecutionPass()); 937 // ReassociateGEPs exposes more opportunities for SLSR. See 938 // the example in reassociate-geps-and-slsr.ll. 939 addPass(createStraightLineStrengthReducePass()); 940 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 941 // EarlyCSE can reuse. 942 addEarlyCSEOrGVNPass(); 943 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 944 addPass(createNaryReassociatePass()); 945 // NaryReassociate on GEPs creates redundant common expressions, so run 946 // EarlyCSE after it. 947 addPass(createEarlyCSEPass()); 948 } 949 950 void AMDGPUPassConfig::addIRPasses() { 951 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 952 953 // There is no reason to run these. 954 disablePass(&StackMapLivenessID); 955 disablePass(&FuncletLayoutID); 956 disablePass(&PatchableFunctionID); 957 958 addPass(createAMDGPUPrintfRuntimeBinding()); 959 addPass(createAMDGPUCtorDtorLoweringPass()); 960 961 // A call to propagate attributes pass in the backend in case opt was not run. 962 addPass(createAMDGPUPropagateAttributesEarlyPass(&TM)); 963 964 addPass(createAMDGPULowerIntrinsicsPass()); 965 966 // Function calls are not supported, so make sure we inline everything. 967 addPass(createAMDGPUAlwaysInlinePass()); 968 addPass(createAlwaysInlinerLegacyPass()); 969 // We need to add the barrier noop pass, otherwise adding the function 970 // inlining pass will cause all of the PassConfigs passes to be run 971 // one function at a time, which means if we have a nodule with two 972 // functions, then we will generate code for the first function 973 // without ever running any passes on the second. 974 addPass(createBarrierNoopPass()); 975 976 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 977 if (TM.getTargetTriple().getArch() == Triple::r600) 978 addPass(createR600OpenCLImageTypeLoweringPass()); 979 980 // Replace OpenCL enqueued block function pointers with global variables. 981 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 982 983 // Can increase LDS used by kernel so runs before PromoteAlloca 984 if (EnableLowerModuleLDS) { 985 // The pass "amdgpu-replace-lds-use-with-pointer" need to be run before the 986 // pass "amdgpu-lower-module-lds", and also it required to be run only if 987 // "amdgpu-lower-module-lds" pass is enabled. 988 if (EnableLDSReplaceWithPointer) 989 addPass(createAMDGPUReplaceLDSUseWithPointerPass()); 990 991 addPass(createAMDGPULowerModuleLDSPass()); 992 } 993 994 if (TM.getOptLevel() > CodeGenOpt::None) 995 addPass(createInferAddressSpacesPass()); 996 997 addPass(createAtomicExpandPass()); 998 999 if (TM.getOptLevel() > CodeGenOpt::None) { 1000 addPass(createAMDGPUPromoteAlloca()); 1001 1002 if (EnableSROA) 1003 addPass(createSROAPass()); 1004 if (isPassEnabled(EnableScalarIRPasses)) 1005 addStraightLineScalarOptimizationPasses(); 1006 1007 if (EnableAMDGPUAliasAnalysis) { 1008 addPass(createAMDGPUAAWrapperPass()); 1009 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 1010 AAResults &AAR) { 1011 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 1012 AAR.addAAResult(WrapperPass->getResult()); 1013 })); 1014 } 1015 1016 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1017 // TODO: May want to move later or split into an early and late one. 1018 addPass(createAMDGPUCodeGenPreparePass()); 1019 } 1020 } 1021 1022 TargetPassConfig::addIRPasses(); 1023 1024 // EarlyCSE is not always strong enough to clean up what LSR produces. For 1025 // example, GVN can combine 1026 // 1027 // %0 = add %a, %b 1028 // %1 = add %b, %a 1029 // 1030 // and 1031 // 1032 // %0 = shl nsw %a, 2 1033 // %1 = shl %a, 2 1034 // 1035 // but EarlyCSE can do neither of them. 1036 if (isPassEnabled(EnableScalarIRPasses)) 1037 addEarlyCSEOrGVNPass(); 1038 } 1039 1040 void AMDGPUPassConfig::addCodeGenPrepare() { 1041 if (TM->getTargetTriple().getArch() == Triple::amdgcn) { 1042 addPass(createAMDGPUAttributorPass()); 1043 1044 // FIXME: This pass adds 2 hacky attributes that can be replaced with an 1045 // analysis, and should be removed. 1046 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 1047 } 1048 1049 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 1050 EnableLowerKernelArguments) 1051 addPass(createAMDGPULowerKernelArgumentsPass()); 1052 1053 TargetPassConfig::addCodeGenPrepare(); 1054 1055 if (isPassEnabled(EnableLoadStoreVectorizer)) 1056 addPass(createLoadStoreVectorizerPass()); 1057 1058 // LowerSwitch pass may introduce unreachable blocks that can 1059 // cause unexpected behavior for subsequent passes. Placing it 1060 // here seems better that these blocks would get cleaned up by 1061 // UnreachableBlockElim inserted next in the pass flow. 1062 addPass(createLowerSwitchPass()); 1063 } 1064 1065 bool AMDGPUPassConfig::addPreISel() { 1066 if (TM->getOptLevel() > CodeGenOpt::None) 1067 addPass(createFlattenCFGPass()); 1068 return false; 1069 } 1070 1071 bool AMDGPUPassConfig::addInstSelector() { 1072 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 1073 return false; 1074 } 1075 1076 bool AMDGPUPassConfig::addGCPasses() { 1077 // Do nothing. GC is not supported. 1078 return false; 1079 } 1080 1081 llvm::ScheduleDAGInstrs * 1082 AMDGPUPassConfig::createMachineScheduler(MachineSchedContext *C) const { 1083 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 1084 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 1085 return DAG; 1086 } 1087 1088 //===----------------------------------------------------------------------===// 1089 // GCN Pass Setup 1090 //===----------------------------------------------------------------------===// 1091 1092 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 1093 MachineSchedContext *C) const { 1094 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 1095 if (ST.enableSIScheduler()) 1096 return createSIMachineScheduler(C); 1097 return createGCNMaxOccupancyMachineScheduler(C); 1098 } 1099 1100 bool GCNPassConfig::addPreISel() { 1101 AMDGPUPassConfig::addPreISel(); 1102 1103 if (TM->getOptLevel() > CodeGenOpt::None) 1104 addPass(createAMDGPULateCodeGenPreparePass()); 1105 1106 if (isPassEnabled(EnableAtomicOptimizations, CodeGenOpt::Less)) { 1107 addPass(createAMDGPUAtomicOptimizerPass()); 1108 } 1109 1110 if (TM->getOptLevel() > CodeGenOpt::None) 1111 addPass(createSinkingPass()); 1112 1113 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 1114 // regions formed by them. 1115 addPass(&AMDGPUUnifyDivergentExitNodesID); 1116 if (!LateCFGStructurize) { 1117 if (EnableStructurizerWorkarounds) { 1118 addPass(createFixIrreduciblePass()); 1119 addPass(createUnifyLoopExitsPass()); 1120 } 1121 addPass(createStructurizeCFGPass(false)); // true -> SkipUniformRegions 1122 } 1123 addPass(createAMDGPUAnnotateUniformValues()); 1124 if (!LateCFGStructurize) { 1125 addPass(createSIAnnotateControlFlowPass()); 1126 } 1127 addPass(createLCSSAPass()); 1128 1129 if (TM->getOptLevel() > CodeGenOpt::Less) 1130 addPass(&AMDGPUPerfHintAnalysisID); 1131 1132 return false; 1133 } 1134 1135 void GCNPassConfig::addMachineSSAOptimization() { 1136 TargetPassConfig::addMachineSSAOptimization(); 1137 1138 // We want to fold operands after PeepholeOptimizer has run (or as part of 1139 // it), because it will eliminate extra copies making it easier to fold the 1140 // real source operand. We want to eliminate dead instructions after, so that 1141 // we see fewer uses of the copies. We then need to clean up the dead 1142 // instructions leftover after the operands are folded as well. 1143 // 1144 // XXX - Can we get away without running DeadMachineInstructionElim again? 1145 addPass(&SIFoldOperandsID); 1146 if (EnableDPPCombine) 1147 addPass(&GCNDPPCombineID); 1148 addPass(&SILoadStoreOptimizerID); 1149 if (isPassEnabled(EnableSDWAPeephole)) { 1150 addPass(&SIPeepholeSDWAID); 1151 addPass(&EarlyMachineLICMID); 1152 addPass(&MachineCSEID); 1153 addPass(&SIFoldOperandsID); 1154 } 1155 addPass(&DeadMachineInstructionElimID); 1156 addPass(createSIShrinkInstructionsPass()); 1157 } 1158 1159 bool GCNPassConfig::addILPOpts() { 1160 if (EnableEarlyIfConversion) 1161 addPass(&EarlyIfConverterID); 1162 1163 TargetPassConfig::addILPOpts(); 1164 return false; 1165 } 1166 1167 bool GCNPassConfig::addInstSelector() { 1168 AMDGPUPassConfig::addInstSelector(); 1169 addPass(&SIFixSGPRCopiesID); 1170 addPass(createSILowerI1CopiesPass()); 1171 return false; 1172 } 1173 1174 bool GCNPassConfig::addIRTranslator() { 1175 addPass(new IRTranslator(getOptLevel())); 1176 return false; 1177 } 1178 1179 void GCNPassConfig::addPreLegalizeMachineIR() { 1180 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1181 addPass(createAMDGPUPreLegalizeCombiner(IsOptNone)); 1182 addPass(new Localizer()); 1183 } 1184 1185 bool GCNPassConfig::addLegalizeMachineIR() { 1186 addPass(new Legalizer()); 1187 return false; 1188 } 1189 1190 void GCNPassConfig::addPreRegBankSelect() { 1191 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1192 addPass(createAMDGPUPostLegalizeCombiner(IsOptNone)); 1193 } 1194 1195 bool GCNPassConfig::addRegBankSelect() { 1196 addPass(new RegBankSelect()); 1197 return false; 1198 } 1199 1200 void GCNPassConfig::addPreGlobalInstructionSelect() { 1201 bool IsOptNone = getOptLevel() == CodeGenOpt::None; 1202 addPass(createAMDGPURegBankCombiner(IsOptNone)); 1203 } 1204 1205 bool GCNPassConfig::addGlobalInstructionSelect() { 1206 addPass(new InstructionSelect(getOptLevel())); 1207 return false; 1208 } 1209 1210 void GCNPassConfig::addPreRegAlloc() { 1211 if (LateCFGStructurize) { 1212 addPass(createAMDGPUMachineCFGStructurizerPass()); 1213 } 1214 } 1215 1216 void GCNPassConfig::addFastRegAlloc() { 1217 // FIXME: We have to disable the verifier here because of PHIElimination + 1218 // TwoAddressInstructions disabling it. 1219 1220 // This must be run immediately after phi elimination and before 1221 // TwoAddressInstructions, otherwise the processing of the tied operand of 1222 // SI_ELSE will introduce a copy of the tied operand source after the else. 1223 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1224 1225 insertPass(&TwoAddressInstructionPassID, &SIWholeQuadModeID); 1226 insertPass(&TwoAddressInstructionPassID, &SIPreAllocateWWMRegsID); 1227 1228 TargetPassConfig::addFastRegAlloc(); 1229 } 1230 1231 void GCNPassConfig::addOptimizedRegAlloc() { 1232 // Allow the scheduler to run before SIWholeQuadMode inserts exec manipulation 1233 // instructions that cause scheduling barriers. 1234 insertPass(&MachineSchedulerID, &SIWholeQuadModeID); 1235 insertPass(&MachineSchedulerID, &SIPreAllocateWWMRegsID); 1236 1237 if (OptExecMaskPreRA) 1238 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 1239 1240 if (isPassEnabled(EnablePreRAOptimizations)) 1241 insertPass(&RenameIndependentSubregsID, &GCNPreRAOptimizationsID); 1242 1243 // This is not an essential optimization and it has a noticeable impact on 1244 // compilation time, so we only enable it from O2. 1245 if (TM->getOptLevel() > CodeGenOpt::Less) 1246 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 1247 1248 // FIXME: when an instruction has a Killed operand, and the instruction is 1249 // inside a bundle, seems only the BUNDLE instruction appears as the Kills of 1250 // the register in LiveVariables, this would trigger a failure in verifier, 1251 // we should fix it and enable the verifier. 1252 if (OptVGPRLiveRange) 1253 insertPass(&LiveVariablesID, &SIOptimizeVGPRLiveRangeID); 1254 // This must be run immediately after phi elimination and before 1255 // TwoAddressInstructions, otherwise the processing of the tied operand of 1256 // SI_ELSE will introduce a copy of the tied operand source after the else. 1257 insertPass(&PHIEliminationID, &SILowerControlFlowID); 1258 1259 if (EnableDCEInRA) 1260 insertPass(&DetectDeadLanesID, &DeadMachineInstructionElimID); 1261 1262 TargetPassConfig::addOptimizedRegAlloc(); 1263 } 1264 1265 bool GCNPassConfig::addPreRewrite() { 1266 if (EnableRegReassign) 1267 addPass(&GCNNSAReassignID); 1268 return true; 1269 } 1270 1271 FunctionPass *GCNPassConfig::createSGPRAllocPass(bool Optimized) { 1272 // Initialize the global default. 1273 llvm::call_once(InitializeDefaultSGPRRegisterAllocatorFlag, 1274 initializeDefaultSGPRRegisterAllocatorOnce); 1275 1276 RegisterRegAlloc::FunctionPassCtor Ctor = SGPRRegisterRegAlloc::getDefault(); 1277 if (Ctor != useDefaultRegisterAllocator) 1278 return Ctor(); 1279 1280 if (Optimized) 1281 return createGreedyRegisterAllocator(onlyAllocateSGPRs); 1282 1283 return createFastRegisterAllocator(onlyAllocateSGPRs, false); 1284 } 1285 1286 FunctionPass *GCNPassConfig::createVGPRAllocPass(bool Optimized) { 1287 // Initialize the global default. 1288 llvm::call_once(InitializeDefaultVGPRRegisterAllocatorFlag, 1289 initializeDefaultVGPRRegisterAllocatorOnce); 1290 1291 RegisterRegAlloc::FunctionPassCtor Ctor = VGPRRegisterRegAlloc::getDefault(); 1292 if (Ctor != useDefaultRegisterAllocator) 1293 return Ctor(); 1294 1295 if (Optimized) 1296 return createGreedyVGPRRegisterAllocator(); 1297 1298 return createFastVGPRRegisterAllocator(); 1299 } 1300 1301 FunctionPass *GCNPassConfig::createRegAllocPass(bool Optimized) { 1302 llvm_unreachable("should not be used"); 1303 } 1304 1305 static const char RegAllocOptNotSupportedMessage[] = 1306 "-regalloc not supported with amdgcn. Use -sgpr-regalloc and -vgpr-regalloc"; 1307 1308 bool GCNPassConfig::addRegAssignAndRewriteFast() { 1309 if (!usingDefaultRegAlloc()) 1310 report_fatal_error(RegAllocOptNotSupportedMessage); 1311 1312 addPass(createSGPRAllocPass(false)); 1313 1314 // Equivalent of PEI for SGPRs. 1315 addPass(&SILowerSGPRSpillsID); 1316 1317 addPass(createVGPRAllocPass(false)); 1318 return true; 1319 } 1320 1321 bool GCNPassConfig::addRegAssignAndRewriteOptimized() { 1322 if (!usingDefaultRegAlloc()) 1323 report_fatal_error(RegAllocOptNotSupportedMessage); 1324 1325 addPass(createSGPRAllocPass(true)); 1326 1327 // Commit allocated register changes. This is mostly necessary because too 1328 // many things rely on the use lists of the physical registers, such as the 1329 // verifier. This is only necessary with allocators which use LiveIntervals, 1330 // since FastRegAlloc does the replacements itself. 1331 addPass(createVirtRegRewriter(false)); 1332 1333 // Equivalent of PEI for SGPRs. 1334 addPass(&SILowerSGPRSpillsID); 1335 1336 addPass(createVGPRAllocPass(true)); 1337 1338 addPreRewrite(); 1339 addPass(&VirtRegRewriterID); 1340 1341 return true; 1342 } 1343 1344 void GCNPassConfig::addPostRegAlloc() { 1345 addPass(&SIFixVGPRCopiesID); 1346 if (getOptLevel() > CodeGenOpt::None) 1347 addPass(&SIOptimizeExecMaskingID); 1348 TargetPassConfig::addPostRegAlloc(); 1349 } 1350 1351 void GCNPassConfig::addPreSched2() { 1352 if (TM->getOptLevel() > CodeGenOpt::None) 1353 addPass(createSIShrinkInstructionsPass()); 1354 addPass(&SIPostRABundlerID); 1355 } 1356 1357 void GCNPassConfig::addPreEmitPass() { 1358 addPass(createSIMemoryLegalizerPass()); 1359 addPass(createSIInsertWaitcntsPass()); 1360 1361 addPass(createSIModeRegisterPass()); 1362 1363 if (getOptLevel() > CodeGenOpt::None) 1364 addPass(&SIInsertHardClausesID); 1365 1366 addPass(&SILateBranchLoweringPassID); 1367 if (isPassEnabled(EnableSetWavePriority, CodeGenOpt::Less)) 1368 addPass(createAMDGPUSetWavePriorityPass()); 1369 if (getOptLevel() > CodeGenOpt::None) 1370 addPass(&SIPreEmitPeepholeID); 1371 // The hazard recognizer that runs as part of the post-ra scheduler does not 1372 // guarantee to be able handle all hazards correctly. This is because if there 1373 // are multiple scheduling regions in a basic block, the regions are scheduled 1374 // bottom up, so when we begin to schedule a region we don't know what 1375 // instructions were emitted directly before it. 1376 // 1377 // Here we add a stand-alone hazard recognizer pass which can handle all 1378 // cases. 1379 addPass(&PostRAHazardRecognizerID); 1380 addPass(&BranchRelaxationPassID); 1381 } 1382 1383 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 1384 return new GCNPassConfig(*this, PM); 1385 } 1386 1387 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 1388 return new yaml::SIMachineFunctionInfo(); 1389 } 1390 1391 yaml::MachineFunctionInfo * 1392 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 1393 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1394 return new yaml::SIMachineFunctionInfo( 1395 *MFI, *MF.getSubtarget().getRegisterInfo(), MF); 1396 } 1397 1398 bool GCNTargetMachine::parseMachineFunctionInfo( 1399 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 1400 SMDiagnostic &Error, SMRange &SourceRange) const { 1401 const yaml::SIMachineFunctionInfo &YamlMFI = 1402 static_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 1403 MachineFunction &MF = PFS.MF; 1404 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1405 1406 if (MFI->initializeBaseYamlFields(YamlMFI, MF, PFS, Error, SourceRange)) 1407 return true; 1408 1409 if (MFI->Occupancy == 0) { 1410 // Fixup the subtarget dependent default value. 1411 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>(); 1412 MFI->Occupancy = ST.computeOccupancy(MF.getFunction(), MFI->getLDSSize()); 1413 } 1414 1415 auto parseRegister = [&](const yaml::StringValue &RegName, Register &RegVal) { 1416 Register TempReg; 1417 if (parseNamedRegisterReference(PFS, TempReg, RegName.Value, Error)) { 1418 SourceRange = RegName.SourceRange; 1419 return true; 1420 } 1421 RegVal = TempReg; 1422 1423 return false; 1424 }; 1425 1426 auto parseOptionalRegister = [&](const yaml::StringValue &RegName, 1427 Register &RegVal) { 1428 return !RegName.Value.empty() && parseRegister(RegName, RegVal); 1429 }; 1430 1431 if (parseOptionalRegister(YamlMFI.VGPRForAGPRCopy, MFI->VGPRForAGPRCopy)) 1432 return true; 1433 1434 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1435 // Create a diagnostic for a the register string literal. 1436 const MemoryBuffer &Buffer = 1437 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1438 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1439 RegName.Value.size(), SourceMgr::DK_Error, 1440 "incorrect register class for field", RegName.Value, 1441 None, None); 1442 SourceRange = RegName.SourceRange; 1443 return true; 1444 }; 1445 1446 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1447 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1448 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1449 return true; 1450 1451 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1452 !AMDGPU::SGPR_128RegClass.contains(MFI->ScratchRSrcReg)) { 1453 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1454 } 1455 1456 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1457 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1458 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1459 } 1460 1461 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1462 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1463 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1464 } 1465 1466 for (const auto &YamlReg : YamlMFI.WWMReservedRegs) { 1467 Register ParsedReg; 1468 if (parseRegister(YamlReg, ParsedReg)) 1469 return true; 1470 1471 MFI->reserveWWMRegister(ParsedReg); 1472 } 1473 1474 auto parseAndCheckArgument = [&](const Optional<yaml::SIArgument> &A, 1475 const TargetRegisterClass &RC, 1476 ArgDescriptor &Arg, unsigned UserSGPRs, 1477 unsigned SystemSGPRs) { 1478 // Skip parsing if it's not present. 1479 if (!A) 1480 return false; 1481 1482 if (A->IsRegister) { 1483 Register Reg; 1484 if (parseNamedRegisterReference(PFS, Reg, A->RegisterName.Value, Error)) { 1485 SourceRange = A->RegisterName.SourceRange; 1486 return true; 1487 } 1488 if (!RC.contains(Reg)) 1489 return diagnoseRegisterClass(A->RegisterName); 1490 Arg = ArgDescriptor::createRegister(Reg); 1491 } else 1492 Arg = ArgDescriptor::createStack(A->StackOffset); 1493 // Check and apply the optional mask. 1494 if (A->Mask) 1495 Arg = ArgDescriptor::createArg(Arg, A->Mask.getValue()); 1496 1497 MFI->NumUserSGPRs += UserSGPRs; 1498 MFI->NumSystemSGPRs += SystemSGPRs; 1499 return false; 1500 }; 1501 1502 if (YamlMFI.ArgInfo && 1503 (parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentBuffer, 1504 AMDGPU::SGPR_128RegClass, 1505 MFI->ArgInfo.PrivateSegmentBuffer, 4, 0) || 1506 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchPtr, 1507 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchPtr, 1508 2, 0) || 1509 parseAndCheckArgument(YamlMFI.ArgInfo->QueuePtr, AMDGPU::SReg_64RegClass, 1510 MFI->ArgInfo.QueuePtr, 2, 0) || 1511 parseAndCheckArgument(YamlMFI.ArgInfo->KernargSegmentPtr, 1512 AMDGPU::SReg_64RegClass, 1513 MFI->ArgInfo.KernargSegmentPtr, 2, 0) || 1514 parseAndCheckArgument(YamlMFI.ArgInfo->DispatchID, 1515 AMDGPU::SReg_64RegClass, MFI->ArgInfo.DispatchID, 1516 2, 0) || 1517 parseAndCheckArgument(YamlMFI.ArgInfo->FlatScratchInit, 1518 AMDGPU::SReg_64RegClass, 1519 MFI->ArgInfo.FlatScratchInit, 2, 0) || 1520 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentSize, 1521 AMDGPU::SGPR_32RegClass, 1522 MFI->ArgInfo.PrivateSegmentSize, 0, 0) || 1523 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDX, 1524 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDX, 1525 0, 1) || 1526 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDY, 1527 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDY, 1528 0, 1) || 1529 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupIDZ, 1530 AMDGPU::SGPR_32RegClass, MFI->ArgInfo.WorkGroupIDZ, 1531 0, 1) || 1532 parseAndCheckArgument(YamlMFI.ArgInfo->WorkGroupInfo, 1533 AMDGPU::SGPR_32RegClass, 1534 MFI->ArgInfo.WorkGroupInfo, 0, 1) || 1535 parseAndCheckArgument(YamlMFI.ArgInfo->PrivateSegmentWaveByteOffset, 1536 AMDGPU::SGPR_32RegClass, 1537 MFI->ArgInfo.PrivateSegmentWaveByteOffset, 0, 1) || 1538 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitArgPtr, 1539 AMDGPU::SReg_64RegClass, 1540 MFI->ArgInfo.ImplicitArgPtr, 0, 0) || 1541 parseAndCheckArgument(YamlMFI.ArgInfo->ImplicitBufferPtr, 1542 AMDGPU::SReg_64RegClass, 1543 MFI->ArgInfo.ImplicitBufferPtr, 2, 0) || 1544 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDX, 1545 AMDGPU::VGPR_32RegClass, 1546 MFI->ArgInfo.WorkItemIDX, 0, 0) || 1547 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDY, 1548 AMDGPU::VGPR_32RegClass, 1549 MFI->ArgInfo.WorkItemIDY, 0, 0) || 1550 parseAndCheckArgument(YamlMFI.ArgInfo->WorkItemIDZ, 1551 AMDGPU::VGPR_32RegClass, 1552 MFI->ArgInfo.WorkItemIDZ, 0, 0))) 1553 return true; 1554 1555 MFI->Mode.IEEE = YamlMFI.Mode.IEEE; 1556 MFI->Mode.DX10Clamp = YamlMFI.Mode.DX10Clamp; 1557 MFI->Mode.FP32InputDenormals = YamlMFI.Mode.FP32InputDenormals; 1558 MFI->Mode.FP32OutputDenormals = YamlMFI.Mode.FP32OutputDenormals; 1559 MFI->Mode.FP64FP16InputDenormals = YamlMFI.Mode.FP64FP16InputDenormals; 1560 MFI->Mode.FP64FP16OutputDenormals = YamlMFI.Mode.FP64FP16OutputDenormals; 1561 1562 return false; 1563 } 1564