1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief The AMDGPU target machine contains all of the hardware specific 12 /// information needed to emit code for R600 and SI GPUs. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUTargetMachine.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUAliasAnalysis.h" 19 #include "AMDGPUCallLowering.h" 20 #include "AMDGPUInstructionSelector.h" 21 #include "AMDGPULegalizerInfo.h" 22 #include "AMDGPUMacroFusion.h" 23 #include "AMDGPUTargetObjectFile.h" 24 #include "AMDGPUTargetTransformInfo.h" 25 #include "GCNIterativeScheduler.h" 26 #include "GCNSchedStrategy.h" 27 #include "R600MachineScheduler.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/TargetPassConfig.h" 35 #include "llvm/IR/Attributes.h" 36 #include "llvm/IR/Function.h" 37 #include "llvm/IR/LegacyPassManager.h" 38 #include "llvm/Pass.h" 39 #include "llvm/Support/CommandLine.h" 40 #include "llvm/Support/Compiler.h" 41 #include "llvm/Support/TargetRegistry.h" 42 #include "llvm/Target/TargetLoweringObjectFile.h" 43 #include "llvm/Transforms/IPO.h" 44 #include "llvm/Transforms/IPO/AlwaysInliner.h" 45 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 46 #include "llvm/Transforms/Scalar.h" 47 #include "llvm/Transforms/Scalar/GVN.h" 48 #include "llvm/Transforms/Vectorize.h" 49 #include <memory> 50 51 using namespace llvm; 52 53 static cl::opt<bool> EnableR600StructurizeCFG( 54 "r600-ir-structurize", 55 cl::desc("Use StructurizeCFG IR pass"), 56 cl::init(true)); 57 58 static cl::opt<bool> EnableSROA( 59 "amdgpu-sroa", 60 cl::desc("Run SROA after promote alloca pass"), 61 cl::ReallyHidden, 62 cl::init(true)); 63 64 static cl::opt<bool> 65 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 66 cl::desc("Run early if-conversion"), 67 cl::init(false)); 68 69 static cl::opt<bool> EnableR600IfConvert( 70 "r600-if-convert", 71 cl::desc("Use if conversion pass"), 72 cl::ReallyHidden, 73 cl::init(true)); 74 75 // Option to disable vectorizer for tests. 76 static cl::opt<bool> EnableLoadStoreVectorizer( 77 "amdgpu-load-store-vectorizer", 78 cl::desc("Enable load store vectorizer"), 79 cl::init(true), 80 cl::Hidden); 81 82 // Option to to control global loads scalarization 83 static cl::opt<bool> ScalarizeGlobal( 84 "amdgpu-scalarize-global-loads", 85 cl::desc("Enable global load scalarization"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to run internalize pass. 90 static cl::opt<bool> InternalizeSymbols( 91 "amdgpu-internalize-symbols", 92 cl::desc("Enable elimination of non-kernel functions and unused globals"), 93 cl::init(false), 94 cl::Hidden); 95 96 // Option to inline all early. 97 static cl::opt<bool> EarlyInlineAll( 98 "amdgpu-early-inline-all", 99 cl::desc("Inline all functions early"), 100 cl::init(false), 101 cl::Hidden); 102 103 static cl::opt<bool> EnableSDWAPeephole( 104 "amdgpu-sdwa-peephole", 105 cl::desc("Enable SDWA peepholer"), 106 cl::init(true)); 107 108 // Enable address space based alias analysis 109 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 110 cl::desc("Enable AMDGPU Alias Analysis"), 111 cl::init(true)); 112 113 // Option to enable new waitcnt insertion pass. 114 static cl::opt<bool> EnableSIInsertWaitcntsPass( 115 "enable-si-insert-waitcnts", 116 cl::desc("Use new waitcnt insertion pass"), 117 cl::init(true)); 118 119 // Option to run late CFG structurizer 120 static cl::opt<bool> LateCFGStructurize( 121 "amdgpu-late-structurize", 122 cl::desc("Enable late CFG structurization"), 123 cl::init(false), 124 cl::Hidden); 125 126 static cl::opt<bool> EnableAMDGPUFunctionCalls( 127 "amdgpu-function-calls", 128 cl::Hidden, 129 cl::desc("Enable AMDGPU function call support"), 130 cl::init(false)); 131 132 // Enable lib calls simplifications 133 static cl::opt<bool> EnableLibCallSimplify( 134 "amdgpu-simplify-libcall", 135 cl::desc("Enable mdgpu library simplifications"), 136 cl::init(true), 137 cl::Hidden); 138 139 extern "C" void LLVMInitializeAMDGPUTarget() { 140 // Register the target 141 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 142 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 143 144 PassRegistry *PR = PassRegistry::getPassRegistry(); 145 initializeR600ClauseMergePassPass(*PR); 146 initializeR600ControlFlowFinalizerPass(*PR); 147 initializeR600PacketizerPass(*PR); 148 initializeR600ExpandSpecialInstrsPassPass(*PR); 149 initializeR600VectorRegMergerPass(*PR); 150 initializeAMDGPUDAGToDAGISelPass(*PR); 151 initializeSILowerI1CopiesPass(*PR); 152 initializeSIFixSGPRCopiesPass(*PR); 153 initializeSIFixVGPRCopiesPass(*PR); 154 initializeSIFoldOperandsPass(*PR); 155 initializeSIPeepholeSDWAPass(*PR); 156 initializeSIShrinkInstructionsPass(*PR); 157 initializeSIOptimizeExecMaskingPreRAPass(*PR); 158 initializeSILoadStoreOptimizerPass(*PR); 159 initializeAMDGPUAlwaysInlinePass(*PR); 160 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 161 initializeAMDGPUAnnotateUniformValuesPass(*PR); 162 initializeAMDGPUArgumentUsageInfoPass(*PR); 163 initializeAMDGPULowerIntrinsicsPass(*PR); 164 initializeAMDGPUPromoteAllocaPass(*PR); 165 initializeAMDGPUCodeGenPreparePass(*PR); 166 initializeAMDGPURewriteOutArgumentsPass(*PR); 167 initializeAMDGPUUnifyMetadataPass(*PR); 168 initializeSIAnnotateControlFlowPass(*PR); 169 initializeSIInsertWaitsPass(*PR); 170 initializeSIInsertWaitcntsPass(*PR); 171 initializeSIWholeQuadModePass(*PR); 172 initializeSILowerControlFlowPass(*PR); 173 initializeSIInsertSkipsPass(*PR); 174 initializeSIMemoryLegalizerPass(*PR); 175 initializeSIDebuggerInsertNopsPass(*PR); 176 initializeSIOptimizeExecMaskingPass(*PR); 177 initializeSIFixWWMLivenessPass(*PR); 178 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 179 initializeAMDGPUAAWrapperPassPass(*PR); 180 initializeAMDGPUUseNativeCallsPass(*PR); 181 initializeAMDGPUSimplifyLibCallsPass(*PR); 182 } 183 184 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 185 return llvm::make_unique<AMDGPUTargetObjectFile>(); 186 } 187 188 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 189 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 190 } 191 192 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 193 return new SIScheduleDAGMI(C); 194 } 195 196 static ScheduleDAGInstrs * 197 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 198 ScheduleDAGMILive *DAG = 199 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 200 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 201 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 202 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 203 return DAG; 204 } 205 206 static ScheduleDAGInstrs * 207 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 208 auto DAG = new GCNIterativeScheduler(C, 209 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 210 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 211 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 212 return DAG; 213 } 214 215 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 216 return new GCNIterativeScheduler(C, 217 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 218 } 219 220 static MachineSchedRegistry 221 R600SchedRegistry("r600", "Run R600's custom scheduler", 222 createR600MachineScheduler); 223 224 static MachineSchedRegistry 225 SISchedRegistry("si", "Run SI's custom scheduler", 226 createSIMachineScheduler); 227 228 static MachineSchedRegistry 229 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 230 "Run GCN scheduler to maximize occupancy", 231 createGCNMaxOccupancyMachineScheduler); 232 233 static MachineSchedRegistry 234 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 235 "Run GCN scheduler to maximize occupancy (experimental)", 236 createIterativeGCNMaxOccupancyMachineScheduler); 237 238 static MachineSchedRegistry 239 GCNMinRegSchedRegistry("gcn-minreg", 240 "Run GCN iterative scheduler for minimal register usage (experimental)", 241 createMinRegScheduler); 242 243 static StringRef computeDataLayout(const Triple &TT) { 244 if (TT.getArch() == Triple::r600) { 245 // 32-bit pointers. 246 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 247 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 248 } 249 250 // 32-bit private, local, and region pointers. 64-bit global, constant and 251 // flat. 252 if (TT.getEnvironmentName() == "amdgiz" || 253 TT.getEnvironmentName() == "amdgizcl") 254 return "e-p:64:64-p1:64:64-p2:64:64-p3:32:32-p4:32:32-p5:32:32" 255 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 256 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-A5"; 257 return "e-p:32:32-p1:64:64-p2:64:64-p3:32:32-p4:64:64-p5:32:32" 258 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 259 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64"; 260 } 261 262 LLVM_READNONE 263 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 264 if (!GPU.empty()) 265 return GPU; 266 267 if (TT.getArch() == Triple::amdgcn) 268 return "generic"; 269 270 return "r600"; 271 } 272 273 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 274 // The AMDGPU toolchain only supports generating shared objects, so we 275 // must always use PIC. 276 return Reloc::PIC_; 277 } 278 279 static CodeModel::Model getEffectiveCodeModel(Optional<CodeModel::Model> CM) { 280 if (CM) 281 return *CM; 282 return CodeModel::Small; 283 } 284 285 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 286 StringRef CPU, StringRef FS, 287 TargetOptions Options, 288 Optional<Reloc::Model> RM, 289 Optional<CodeModel::Model> CM, 290 CodeGenOpt::Level OptLevel) 291 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 292 FS, Options, getEffectiveRelocModel(RM), 293 getEffectiveCodeModel(CM), OptLevel), 294 TLOF(createTLOF(getTargetTriple())) { 295 AS = AMDGPU::getAMDGPUAS(TT); 296 initAsmInfo(); 297 } 298 299 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 300 301 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 302 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 303 return GPUAttr.hasAttribute(Attribute::None) ? 304 getTargetCPU() : GPUAttr.getValueAsString(); 305 } 306 307 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 308 Attribute FSAttr = F.getFnAttribute("target-features"); 309 310 return FSAttr.hasAttribute(Attribute::None) ? 311 getTargetFeatureString() : 312 FSAttr.getValueAsString(); 313 } 314 315 static ImmutablePass *createAMDGPUExternalAAWrapperPass() { 316 return createExternalAAWrapperPass([](Pass &P, Function &, AAResults &AAR) { 317 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 318 AAR.addAAResult(WrapperPass->getResult()); 319 }); 320 } 321 322 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 323 Builder.DivergentTarget = true; 324 325 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 326 bool Internalize = InternalizeSymbols && EnableOpt && 327 (getTargetTriple().getArch() == Triple::amdgcn); 328 bool EarlyInline = EarlyInlineAll && EnableOpt; 329 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 330 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 331 332 Builder.addExtension( 333 PassManagerBuilder::EP_ModuleOptimizerEarly, 334 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 335 legacy::PassManagerBase &PM) { 336 if (AMDGPUAA) { 337 PM.add(createAMDGPUAAWrapperPass()); 338 PM.add(createAMDGPUExternalAAWrapperPass()); 339 } 340 PM.add(createAMDGPUUnifyMetadataPass()); 341 if (Internalize) { 342 PM.add(createInternalizePass([=](const GlobalValue &GV) -> bool { 343 if (const Function *F = dyn_cast<Function>(&GV)) { 344 if (F->isDeclaration()) 345 return true; 346 switch (F->getCallingConv()) { 347 default: 348 return false; 349 case CallingConv::AMDGPU_VS: 350 case CallingConv::AMDGPU_HS: 351 case CallingConv::AMDGPU_GS: 352 case CallingConv::AMDGPU_PS: 353 case CallingConv::AMDGPU_CS: 354 case CallingConv::AMDGPU_KERNEL: 355 case CallingConv::SPIR_KERNEL: 356 return true; 357 } 358 } 359 return !GV.use_empty(); 360 })); 361 PM.add(createGlobalDCEPass()); 362 } 363 if (EarlyInline) 364 PM.add(createAMDGPUAlwaysInlinePass(false)); 365 }); 366 367 Builder.addExtension( 368 PassManagerBuilder::EP_EarlyAsPossible, 369 [AMDGPUAA, LibCallSimplify](const PassManagerBuilder &, 370 legacy::PassManagerBase &PM) { 371 if (AMDGPUAA) { 372 PM.add(createAMDGPUAAWrapperPass()); 373 PM.add(createAMDGPUExternalAAWrapperPass()); 374 } 375 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 376 if (LibCallSimplify) 377 PM.add(llvm::createAMDGPUSimplifyLibCallsPass()); 378 }); 379 380 Builder.addExtension( 381 PassManagerBuilder::EP_CGSCCOptimizerLate, 382 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 383 // Add infer address spaces pass to the opt pipeline after inlining 384 // but before SROA to increase SROA opportunities. 385 PM.add(createInferAddressSpacesPass()); 386 }); 387 } 388 389 //===----------------------------------------------------------------------===// 390 // R600 Target Machine (R600 -> Cayman) 391 //===----------------------------------------------------------------------===// 392 393 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 394 StringRef CPU, StringRef FS, 395 TargetOptions Options, 396 Optional<Reloc::Model> RM, 397 Optional<CodeModel::Model> CM, 398 CodeGenOpt::Level OL, bool JIT) 399 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 400 setRequiresStructuredCFG(true); 401 } 402 403 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 404 const Function &F) const { 405 StringRef GPU = getGPUName(F); 406 StringRef FS = getFeatureString(F); 407 408 SmallString<128> SubtargetKey(GPU); 409 SubtargetKey.append(FS); 410 411 auto &I = SubtargetMap[SubtargetKey]; 412 if (!I) { 413 // This needs to be done before we create a new subtarget since any 414 // creation will depend on the TM and the code generation flags on the 415 // function that reside in TargetOptions. 416 resetTargetOptions(F); 417 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 418 } 419 420 return I.get(); 421 } 422 423 //===----------------------------------------------------------------------===// 424 // GCN Target Machine (SI+) 425 //===----------------------------------------------------------------------===// 426 427 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 428 StringRef CPU, StringRef FS, 429 TargetOptions Options, 430 Optional<Reloc::Model> RM, 431 Optional<CodeModel::Model> CM, 432 CodeGenOpt::Level OL, bool JIT) 433 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 434 435 const SISubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 436 StringRef GPU = getGPUName(F); 437 StringRef FS = getFeatureString(F); 438 439 SmallString<128> SubtargetKey(GPU); 440 SubtargetKey.append(FS); 441 442 auto &I = SubtargetMap[SubtargetKey]; 443 if (!I) { 444 // This needs to be done before we create a new subtarget since any 445 // creation will depend on the TM and the code generation flags on the 446 // function that reside in TargetOptions. 447 resetTargetOptions(F); 448 I = llvm::make_unique<SISubtarget>(TargetTriple, GPU, FS, *this); 449 } 450 451 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 452 453 return I.get(); 454 } 455 456 //===----------------------------------------------------------------------===// 457 // AMDGPU Pass Setup 458 //===----------------------------------------------------------------------===// 459 460 namespace { 461 462 class AMDGPUPassConfig : public TargetPassConfig { 463 public: 464 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 465 : TargetPassConfig(TM, PM) { 466 // Exceptions and StackMaps are not supported, so these passes will never do 467 // anything. 468 disablePass(&StackMapLivenessID); 469 disablePass(&FuncletLayoutID); 470 } 471 472 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 473 return getTM<AMDGPUTargetMachine>(); 474 } 475 476 ScheduleDAGInstrs * 477 createMachineScheduler(MachineSchedContext *C) const override { 478 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 479 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 480 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 481 return DAG; 482 } 483 484 void addEarlyCSEOrGVNPass(); 485 void addStraightLineScalarOptimizationPasses(); 486 void addIRPasses() override; 487 void addCodeGenPrepare() override; 488 bool addPreISel() override; 489 bool addInstSelector() override; 490 bool addGCPasses() override; 491 }; 492 493 class R600PassConfig final : public AMDGPUPassConfig { 494 public: 495 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 496 : AMDGPUPassConfig(TM, PM) {} 497 498 ScheduleDAGInstrs *createMachineScheduler( 499 MachineSchedContext *C) const override { 500 return createR600MachineScheduler(C); 501 } 502 503 bool addPreISel() override; 504 bool addInstSelector() override; 505 void addPreRegAlloc() override; 506 void addPreSched2() override; 507 void addPreEmitPass() override; 508 }; 509 510 class GCNPassConfig final : public AMDGPUPassConfig { 511 public: 512 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 513 : AMDGPUPassConfig(TM, PM) { 514 // It is necessary to know the register usage of the entire call graph. We 515 // allow calls without EnableAMDGPUFunctionCalls if they are marked 516 // noinline, so this is always required. 517 setRequiresCodeGenSCCOrder(true); 518 } 519 520 GCNTargetMachine &getGCNTargetMachine() const { 521 return getTM<GCNTargetMachine>(); 522 } 523 524 ScheduleDAGInstrs * 525 createMachineScheduler(MachineSchedContext *C) const override; 526 527 bool addPreISel() override; 528 void addMachineSSAOptimization() override; 529 bool addILPOpts() override; 530 bool addInstSelector() override; 531 bool addIRTranslator() override; 532 bool addLegalizeMachineIR() override; 533 bool addRegBankSelect() override; 534 bool addGlobalInstructionSelect() override; 535 void addFastRegAlloc(FunctionPass *RegAllocPass) override; 536 void addOptimizedRegAlloc(FunctionPass *RegAllocPass) override; 537 void addPreRegAlloc() override; 538 void addPostRegAlloc() override; 539 void addPreSched2() override; 540 void addPreEmitPass() override; 541 }; 542 543 } // end anonymous namespace 544 545 TargetIRAnalysis AMDGPUTargetMachine::getTargetIRAnalysis() { 546 return TargetIRAnalysis([this](const Function &F) { 547 return TargetTransformInfo(AMDGPUTTIImpl(this, F)); 548 }); 549 } 550 551 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 552 if (getOptLevel() == CodeGenOpt::Aggressive) 553 addPass(createGVNPass()); 554 else 555 addPass(createEarlyCSEPass()); 556 } 557 558 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 559 addPass(createSeparateConstOffsetFromGEPPass()); 560 addPass(createSpeculativeExecutionPass()); 561 // ReassociateGEPs exposes more opportunites for SLSR. See 562 // the example in reassociate-geps-and-slsr.ll. 563 addPass(createStraightLineStrengthReducePass()); 564 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 565 // EarlyCSE can reuse. 566 addEarlyCSEOrGVNPass(); 567 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 568 addPass(createNaryReassociatePass()); 569 // NaryReassociate on GEPs creates redundant common expressions, so run 570 // EarlyCSE after it. 571 addPass(createEarlyCSEPass()); 572 } 573 574 void AMDGPUPassConfig::addIRPasses() { 575 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 576 577 // There is no reason to run these. 578 disablePass(&StackMapLivenessID); 579 disablePass(&FuncletLayoutID); 580 disablePass(&PatchableFunctionID); 581 582 addPass(createAMDGPULowerIntrinsicsPass()); 583 584 if (TM.getTargetTriple().getArch() == Triple::r600 || 585 !EnableAMDGPUFunctionCalls) { 586 // Function calls are not supported, so make sure we inline everything. 587 addPass(createAMDGPUAlwaysInlinePass()); 588 addPass(createAlwaysInlinerLegacyPass()); 589 // We need to add the barrier noop pass, otherwise adding the function 590 // inlining pass will cause all of the PassConfigs passes to be run 591 // one function at a time, which means if we have a nodule with two 592 // functions, then we will generate code for the first function 593 // without ever running any passes on the second. 594 addPass(createBarrierNoopPass()); 595 } 596 597 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 598 // TODO: May want to move later or split into an early and late one. 599 600 addPass(createAMDGPUCodeGenPreparePass()); 601 } 602 603 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 604 addPass(createAMDGPUOpenCLImageTypeLoweringPass()); 605 606 if (TM.getOptLevel() > CodeGenOpt::None) { 607 addPass(createInferAddressSpacesPass()); 608 addPass(createAMDGPUPromoteAlloca()); 609 610 if (EnableSROA) 611 addPass(createSROAPass()); 612 613 addStraightLineScalarOptimizationPasses(); 614 615 if (EnableAMDGPUAliasAnalysis) { 616 addPass(createAMDGPUAAWrapperPass()); 617 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 618 AAResults &AAR) { 619 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 620 AAR.addAAResult(WrapperPass->getResult()); 621 })); 622 } 623 } 624 625 TargetPassConfig::addIRPasses(); 626 627 // EarlyCSE is not always strong enough to clean up what LSR produces. For 628 // example, GVN can combine 629 // 630 // %0 = add %a, %b 631 // %1 = add %b, %a 632 // 633 // and 634 // 635 // %0 = shl nsw %a, 2 636 // %1 = shl %a, 2 637 // 638 // but EarlyCSE can do neither of them. 639 if (getOptLevel() != CodeGenOpt::None) 640 addEarlyCSEOrGVNPass(); 641 } 642 643 void AMDGPUPassConfig::addCodeGenPrepare() { 644 TargetPassConfig::addCodeGenPrepare(); 645 646 if (EnableLoadStoreVectorizer) 647 addPass(createLoadStoreVectorizerPass()); 648 } 649 650 bool AMDGPUPassConfig::addPreISel() { 651 addPass(createFlattenCFGPass()); 652 return false; 653 } 654 655 bool AMDGPUPassConfig::addInstSelector() { 656 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 657 return false; 658 } 659 660 bool AMDGPUPassConfig::addGCPasses() { 661 // Do nothing. GC is not supported. 662 return false; 663 } 664 665 //===----------------------------------------------------------------------===// 666 // R600 Pass Setup 667 //===----------------------------------------------------------------------===// 668 669 bool R600PassConfig::addPreISel() { 670 AMDGPUPassConfig::addPreISel(); 671 672 if (EnableR600StructurizeCFG) 673 addPass(createStructurizeCFGPass()); 674 return false; 675 } 676 677 bool R600PassConfig::addInstSelector() { 678 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 679 return false; 680 } 681 682 void R600PassConfig::addPreRegAlloc() { 683 addPass(createR600VectorRegMerger()); 684 } 685 686 void R600PassConfig::addPreSched2() { 687 addPass(createR600EmitClauseMarkers(), false); 688 if (EnableR600IfConvert) 689 addPass(&IfConverterID, false); 690 addPass(createR600ClauseMergePass(), false); 691 } 692 693 void R600PassConfig::addPreEmitPass() { 694 addPass(createAMDGPUCFGStructurizerPass(), false); 695 addPass(createR600ExpandSpecialInstrsPass(), false); 696 addPass(&FinalizeMachineBundlesID, false); 697 addPass(createR600Packetizer(), false); 698 addPass(createR600ControlFlowFinalizer(), false); 699 } 700 701 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 702 return new R600PassConfig(*this, PM); 703 } 704 705 //===----------------------------------------------------------------------===// 706 // GCN Pass Setup 707 //===----------------------------------------------------------------------===// 708 709 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 710 MachineSchedContext *C) const { 711 const SISubtarget &ST = C->MF->getSubtarget<SISubtarget>(); 712 if (ST.enableSIScheduler()) 713 return createSIMachineScheduler(C); 714 return createGCNMaxOccupancyMachineScheduler(C); 715 } 716 717 bool GCNPassConfig::addPreISel() { 718 AMDGPUPassConfig::addPreISel(); 719 720 // FIXME: We need to run a pass to propagate the attributes when calls are 721 // supported. 722 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 723 724 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 725 // regions formed by them. 726 addPass(&AMDGPUUnifyDivergentExitNodesID); 727 if (!LateCFGStructurize) { 728 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 729 } 730 addPass(createSinkingPass()); 731 addPass(createAMDGPUAnnotateUniformValues()); 732 if (!LateCFGStructurize) { 733 addPass(createSIAnnotateControlFlowPass()); 734 } 735 736 return false; 737 } 738 739 void GCNPassConfig::addMachineSSAOptimization() { 740 TargetPassConfig::addMachineSSAOptimization(); 741 742 // We want to fold operands after PeepholeOptimizer has run (or as part of 743 // it), because it will eliminate extra copies making it easier to fold the 744 // real source operand. We want to eliminate dead instructions after, so that 745 // we see fewer uses of the copies. We then need to clean up the dead 746 // instructions leftover after the operands are folded as well. 747 // 748 // XXX - Can we get away without running DeadMachineInstructionElim again? 749 addPass(&SIFoldOperandsID); 750 addPass(&DeadMachineInstructionElimID); 751 addPass(&SILoadStoreOptimizerID); 752 if (EnableSDWAPeephole) { 753 addPass(&SIPeepholeSDWAID); 754 addPass(&MachineLICMID); 755 addPass(&MachineCSEID); 756 addPass(&SIFoldOperandsID); 757 addPass(&DeadMachineInstructionElimID); 758 } 759 addPass(createSIShrinkInstructionsPass()); 760 } 761 762 bool GCNPassConfig::addILPOpts() { 763 if (EnableEarlyIfConversion) 764 addPass(&EarlyIfConverterID); 765 766 TargetPassConfig::addILPOpts(); 767 return false; 768 } 769 770 bool GCNPassConfig::addInstSelector() { 771 AMDGPUPassConfig::addInstSelector(); 772 addPass(createSILowerI1CopiesPass()); 773 addPass(&SIFixSGPRCopiesID); 774 return false; 775 } 776 777 bool GCNPassConfig::addIRTranslator() { 778 addPass(new IRTranslator()); 779 return false; 780 } 781 782 bool GCNPassConfig::addLegalizeMachineIR() { 783 addPass(new Legalizer()); 784 return false; 785 } 786 787 bool GCNPassConfig::addRegBankSelect() { 788 addPass(new RegBankSelect()); 789 return false; 790 } 791 792 bool GCNPassConfig::addGlobalInstructionSelect() { 793 addPass(new InstructionSelect()); 794 return false; 795 } 796 797 void GCNPassConfig::addPreRegAlloc() { 798 if (LateCFGStructurize) { 799 addPass(createAMDGPUMachineCFGStructurizerPass()); 800 } 801 addPass(createSIWholeQuadModePass()); 802 } 803 804 void GCNPassConfig::addFastRegAlloc(FunctionPass *RegAllocPass) { 805 // FIXME: We have to disable the verifier here because of PHIElimination + 806 // TwoAddressInstructions disabling it. 807 808 // This must be run immediately after phi elimination and before 809 // TwoAddressInstructions, otherwise the processing of the tied operand of 810 // SI_ELSE will introduce a copy of the tied operand source after the else. 811 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 812 813 // This must be run after SILowerControlFlow, since it needs to use the 814 // machine-level CFG, but before register allocation. 815 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 816 817 TargetPassConfig::addFastRegAlloc(RegAllocPass); 818 } 819 820 void GCNPassConfig::addOptimizedRegAlloc(FunctionPass *RegAllocPass) { 821 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 822 823 // This must be run immediately after phi elimination and before 824 // TwoAddressInstructions, otherwise the processing of the tied operand of 825 // SI_ELSE will introduce a copy of the tied operand source after the else. 826 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 827 828 // This must be run after SILowerControlFlow, since it needs to use the 829 // machine-level CFG, but before register allocation. 830 insertPass(&SILowerControlFlowID, &SIFixWWMLivenessID, false); 831 832 TargetPassConfig::addOptimizedRegAlloc(RegAllocPass); 833 } 834 835 void GCNPassConfig::addPostRegAlloc() { 836 addPass(&SIFixVGPRCopiesID); 837 addPass(&SIOptimizeExecMaskingID); 838 TargetPassConfig::addPostRegAlloc(); 839 } 840 841 void GCNPassConfig::addPreSched2() { 842 } 843 844 void GCNPassConfig::addPreEmitPass() { 845 // The hazard recognizer that runs as part of the post-ra scheduler does not 846 // guarantee to be able handle all hazards correctly. This is because if there 847 // are multiple scheduling regions in a basic block, the regions are scheduled 848 // bottom up, so when we begin to schedule a region we don't know what 849 // instructions were emitted directly before it. 850 // 851 // Here we add a stand-alone hazard recognizer pass which can handle all 852 // cases. 853 addPass(&PostRAHazardRecognizerID); 854 855 if (EnableSIInsertWaitcntsPass) 856 addPass(createSIInsertWaitcntsPass()); 857 else 858 addPass(createSIInsertWaitsPass()); 859 addPass(createSIShrinkInstructionsPass()); 860 addPass(&SIInsertSkipsPassID); 861 addPass(createSIMemoryLegalizerPass()); 862 addPass(createSIDebuggerInsertNopsPass()); 863 addPass(&BranchRelaxationPassID); 864 } 865 866 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 867 return new GCNPassConfig(*this, PM); 868 } 869 870