1 //===-- AMDGPUTargetMachine.cpp - TargetMachine for hw codegen targets-----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// The AMDGPU target machine contains all of the hardware specific 11 /// information needed to emit code for R600 and SI GPUs. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPUTargetMachine.h" 16 #include "AMDGPU.h" 17 #include "AMDGPUAliasAnalysis.h" 18 #include "AMDGPUCallLowering.h" 19 #include "AMDGPUInstructionSelector.h" 20 #include "AMDGPULegalizerInfo.h" 21 #include "AMDGPUMacroFusion.h" 22 #include "AMDGPUTargetObjectFile.h" 23 #include "AMDGPUTargetTransformInfo.h" 24 #include "GCNIterativeScheduler.h" 25 #include "GCNSchedStrategy.h" 26 #include "R600MachineScheduler.h" 27 #include "SIMachineFunctionInfo.h" 28 #include "SIMachineScheduler.h" 29 #include "llvm/CodeGen/GlobalISel/IRTranslator.h" 30 #include "llvm/CodeGen/GlobalISel/InstructionSelect.h" 31 #include "llvm/CodeGen/GlobalISel/Legalizer.h" 32 #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" 33 #include "llvm/CodeGen/MIRParser/MIParser.h" 34 #include "llvm/CodeGen/Passes.h" 35 #include "llvm/CodeGen/TargetPassConfig.h" 36 #include "llvm/IR/Attributes.h" 37 #include "llvm/IR/Function.h" 38 #include "llvm/IR/LegacyPassManager.h" 39 #include "llvm/Pass.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Compiler.h" 42 #include "llvm/Support/TargetRegistry.h" 43 #include "llvm/Target/TargetLoweringObjectFile.h" 44 #include "llvm/Transforms/IPO.h" 45 #include "llvm/Transforms/IPO/AlwaysInliner.h" 46 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 47 #include "llvm/Transforms/Scalar.h" 48 #include "llvm/Transforms/Scalar/GVN.h" 49 #include "llvm/Transforms/Utils.h" 50 #include "llvm/Transforms/Vectorize.h" 51 #include <memory> 52 53 using namespace llvm; 54 55 static cl::opt<bool> EnableR600StructurizeCFG( 56 "r600-ir-structurize", 57 cl::desc("Use StructurizeCFG IR pass"), 58 cl::init(true)); 59 60 static cl::opt<bool> EnableSROA( 61 "amdgpu-sroa", 62 cl::desc("Run SROA after promote alloca pass"), 63 cl::ReallyHidden, 64 cl::init(true)); 65 66 static cl::opt<bool> 67 EnableEarlyIfConversion("amdgpu-early-ifcvt", cl::Hidden, 68 cl::desc("Run early if-conversion"), 69 cl::init(false)); 70 71 static cl::opt<bool> 72 OptExecMaskPreRA("amdgpu-opt-exec-mask-pre-ra", cl::Hidden, 73 cl::desc("Run pre-RA exec mask optimizations"), 74 cl::init(true)); 75 76 static cl::opt<bool> EnableR600IfConvert( 77 "r600-if-convert", 78 cl::desc("Use if conversion pass"), 79 cl::ReallyHidden, 80 cl::init(true)); 81 82 // Option to disable vectorizer for tests. 83 static cl::opt<bool> EnableLoadStoreVectorizer( 84 "amdgpu-load-store-vectorizer", 85 cl::desc("Enable load store vectorizer"), 86 cl::init(true), 87 cl::Hidden); 88 89 // Option to control global loads scalarization 90 static cl::opt<bool> ScalarizeGlobal( 91 "amdgpu-scalarize-global-loads", 92 cl::desc("Enable global load scalarization"), 93 cl::init(true), 94 cl::Hidden); 95 96 // Option to run internalize pass. 97 static cl::opt<bool> InternalizeSymbols( 98 "amdgpu-internalize-symbols", 99 cl::desc("Enable elimination of non-kernel functions and unused globals"), 100 cl::init(false), 101 cl::Hidden); 102 103 // Option to inline all early. 104 static cl::opt<bool> EarlyInlineAll( 105 "amdgpu-early-inline-all", 106 cl::desc("Inline all functions early"), 107 cl::init(false), 108 cl::Hidden); 109 110 static cl::opt<bool> EnableSDWAPeephole( 111 "amdgpu-sdwa-peephole", 112 cl::desc("Enable SDWA peepholer"), 113 cl::init(true)); 114 115 static cl::opt<bool> EnableDPPCombine( 116 "amdgpu-dpp-combine", 117 cl::desc("Enable DPP combiner"), 118 cl::init(true)); 119 120 // Enable address space based alias analysis 121 static cl::opt<bool> EnableAMDGPUAliasAnalysis("enable-amdgpu-aa", cl::Hidden, 122 cl::desc("Enable AMDGPU Alias Analysis"), 123 cl::init(true)); 124 125 // Option to run late CFG structurizer 126 static cl::opt<bool, true> LateCFGStructurize( 127 "amdgpu-late-structurize", 128 cl::desc("Enable late CFG structurization"), 129 cl::location(AMDGPUTargetMachine::EnableLateStructurizeCFG), 130 cl::Hidden); 131 132 static cl::opt<bool, true> EnableAMDGPUFunctionCallsOpt( 133 "amdgpu-function-calls", 134 cl::desc("Enable AMDGPU function call support"), 135 cl::location(AMDGPUTargetMachine::EnableFunctionCalls), 136 cl::init(true), 137 cl::Hidden); 138 139 // Enable lib calls simplifications 140 static cl::opt<bool> EnableLibCallSimplify( 141 "amdgpu-simplify-libcall", 142 cl::desc("Enable amdgpu library simplifications"), 143 cl::init(true), 144 cl::Hidden); 145 146 static cl::opt<bool> EnableLowerKernelArguments( 147 "amdgpu-ir-lower-kernel-arguments", 148 cl::desc("Lower kernel argument loads in IR pass"), 149 cl::init(true), 150 cl::Hidden); 151 152 static cl::opt<bool> EnableRegReassign( 153 "amdgpu-reassign-regs", 154 cl::desc("Enable register reassign optimizations on gfx10+"), 155 cl::init(true), 156 cl::Hidden); 157 158 // Enable atomic optimization 159 static cl::opt<bool> EnableAtomicOptimizations( 160 "amdgpu-atomic-optimizations", 161 cl::desc("Enable atomic optimizations"), 162 cl::init(false), 163 cl::Hidden); 164 165 // Enable Mode register optimization 166 static cl::opt<bool> EnableSIModeRegisterPass( 167 "amdgpu-mode-register", 168 cl::desc("Enable mode register pass"), 169 cl::init(true), 170 cl::Hidden); 171 172 // Option is used in lit tests to prevent deadcoding of patterns inspected. 173 static cl::opt<bool> 174 EnableDCEInRA("amdgpu-dce-in-ra", 175 cl::init(true), cl::Hidden, 176 cl::desc("Enable machine DCE inside regalloc")); 177 178 static cl::opt<bool> EnableScalarIRPasses( 179 "amdgpu-scalar-ir-passes", 180 cl::desc("Enable scalar IR passes"), 181 cl::init(true), 182 cl::Hidden); 183 184 extern "C" void LLVMInitializeAMDGPUTarget() { 185 // Register the target 186 RegisterTargetMachine<R600TargetMachine> X(getTheAMDGPUTarget()); 187 RegisterTargetMachine<GCNTargetMachine> Y(getTheGCNTarget()); 188 189 PassRegistry *PR = PassRegistry::getPassRegistry(); 190 initializeR600ClauseMergePassPass(*PR); 191 initializeR600ControlFlowFinalizerPass(*PR); 192 initializeR600PacketizerPass(*PR); 193 initializeR600ExpandSpecialInstrsPassPass(*PR); 194 initializeR600VectorRegMergerPass(*PR); 195 initializeGlobalISel(*PR); 196 initializeAMDGPUDAGToDAGISelPass(*PR); 197 initializeGCNDPPCombinePass(*PR); 198 initializeSILowerI1CopiesPass(*PR); 199 initializeSIFixSGPRCopiesPass(*PR); 200 initializeSIFixVGPRCopiesPass(*PR); 201 initializeSIFixupVectorISelPass(*PR); 202 initializeSIFoldOperandsPass(*PR); 203 initializeSIPeepholeSDWAPass(*PR); 204 initializeSIShrinkInstructionsPass(*PR); 205 initializeSIOptimizeExecMaskingPreRAPass(*PR); 206 initializeSILoadStoreOptimizerPass(*PR); 207 initializeAMDGPUFixFunctionBitcastsPass(*PR); 208 initializeAMDGPUAlwaysInlinePass(*PR); 209 initializeAMDGPUAnnotateKernelFeaturesPass(*PR); 210 initializeAMDGPUAnnotateUniformValuesPass(*PR); 211 initializeAMDGPUArgumentUsageInfoPass(*PR); 212 initializeAMDGPUAtomicOptimizerPass(*PR); 213 initializeAMDGPULowerKernelArgumentsPass(*PR); 214 initializeAMDGPULowerKernelAttributesPass(*PR); 215 initializeAMDGPULowerIntrinsicsPass(*PR); 216 initializeAMDGPUOpenCLEnqueuedBlockLoweringPass(*PR); 217 initializeAMDGPUPromoteAllocaPass(*PR); 218 initializeAMDGPUCodeGenPreparePass(*PR); 219 initializeAMDGPURewriteOutArgumentsPass(*PR); 220 initializeAMDGPUUnifyMetadataPass(*PR); 221 initializeSIAnnotateControlFlowPass(*PR); 222 initializeSIInsertWaitcntsPass(*PR); 223 initializeSIModeRegisterPass(*PR); 224 initializeSIWholeQuadModePass(*PR); 225 initializeSILowerControlFlowPass(*PR); 226 initializeSIInsertSkipsPass(*PR); 227 initializeSIMemoryLegalizerPass(*PR); 228 initializeSIOptimizeExecMaskingPass(*PR); 229 initializeSIPreAllocateWWMRegsPass(*PR); 230 initializeSIFormMemoryClausesPass(*PR); 231 initializeAMDGPUUnifyDivergentExitNodesPass(*PR); 232 initializeAMDGPUAAWrapperPassPass(*PR); 233 initializeAMDGPUExternalAAWrapperPass(*PR); 234 initializeAMDGPUUseNativeCallsPass(*PR); 235 initializeAMDGPUSimplifyLibCallsPass(*PR); 236 initializeAMDGPUInlinerPass(*PR); 237 initializeGCNRegBankReassignPass(*PR); 238 initializeGCNNSAReassignPass(*PR); 239 } 240 241 static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) { 242 return llvm::make_unique<AMDGPUTargetObjectFile>(); 243 } 244 245 static ScheduleDAGInstrs *createR600MachineScheduler(MachineSchedContext *C) { 246 return new ScheduleDAGMILive(C, llvm::make_unique<R600SchedStrategy>()); 247 } 248 249 static ScheduleDAGInstrs *createSIMachineScheduler(MachineSchedContext *C) { 250 return new SIScheduleDAGMI(C); 251 } 252 253 static ScheduleDAGInstrs * 254 createGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 255 ScheduleDAGMILive *DAG = 256 new GCNScheduleDAGMILive(C, make_unique<GCNMaxOccupancySchedStrategy>(C)); 257 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 258 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 259 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 260 return DAG; 261 } 262 263 static ScheduleDAGInstrs * 264 createIterativeGCNMaxOccupancyMachineScheduler(MachineSchedContext *C) { 265 auto DAG = new GCNIterativeScheduler(C, 266 GCNIterativeScheduler::SCHEDULE_LEGACYMAXOCCUPANCY); 267 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 268 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 269 return DAG; 270 } 271 272 static ScheduleDAGInstrs *createMinRegScheduler(MachineSchedContext *C) { 273 return new GCNIterativeScheduler(C, 274 GCNIterativeScheduler::SCHEDULE_MINREGFORCED); 275 } 276 277 static ScheduleDAGInstrs * 278 createIterativeILPMachineScheduler(MachineSchedContext *C) { 279 auto DAG = new GCNIterativeScheduler(C, 280 GCNIterativeScheduler::SCHEDULE_ILP); 281 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 282 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 283 DAG->addMutation(createAMDGPUMacroFusionDAGMutation()); 284 return DAG; 285 } 286 287 static MachineSchedRegistry 288 R600SchedRegistry("r600", "Run R600's custom scheduler", 289 createR600MachineScheduler); 290 291 static MachineSchedRegistry 292 SISchedRegistry("si", "Run SI's custom scheduler", 293 createSIMachineScheduler); 294 295 static MachineSchedRegistry 296 GCNMaxOccupancySchedRegistry("gcn-max-occupancy", 297 "Run GCN scheduler to maximize occupancy", 298 createGCNMaxOccupancyMachineScheduler); 299 300 static MachineSchedRegistry 301 IterativeGCNMaxOccupancySchedRegistry("gcn-max-occupancy-experimental", 302 "Run GCN scheduler to maximize occupancy (experimental)", 303 createIterativeGCNMaxOccupancyMachineScheduler); 304 305 static MachineSchedRegistry 306 GCNMinRegSchedRegistry("gcn-minreg", 307 "Run GCN iterative scheduler for minimal register usage (experimental)", 308 createMinRegScheduler); 309 310 static MachineSchedRegistry 311 GCNILPSchedRegistry("gcn-ilp", 312 "Run GCN iterative scheduler for ILP scheduling (experimental)", 313 createIterativeILPMachineScheduler); 314 315 static StringRef computeDataLayout(const Triple &TT) { 316 if (TT.getArch() == Triple::r600) { 317 // 32-bit pointers. 318 return "e-p:32:32-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 319 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5"; 320 } 321 322 // 32-bit private, local, and region pointers. 64-bit global, constant and 323 // flat, non-integral buffer fat pointers. 324 return "e-p:64:64-p1:64:64-p2:32:32-p3:32:32-p4:64:64-p5:32:32-p6:32:32" 325 "-i64:64-v16:16-v24:32-v32:32-v48:64-v96:128" 326 "-v192:256-v256:256-v512:512-v1024:1024-v2048:2048-n32:64-S32-A5" 327 "-ni:7"; 328 } 329 330 LLVM_READNONE 331 static StringRef getGPUOrDefault(const Triple &TT, StringRef GPU) { 332 if (!GPU.empty()) 333 return GPU; 334 335 // Need to default to a target with flat support for HSA. 336 if (TT.getArch() == Triple::amdgcn) 337 return TT.getOS() == Triple::AMDHSA ? "generic-hsa" : "generic"; 338 339 return "r600"; 340 } 341 342 static Reloc::Model getEffectiveRelocModel(Optional<Reloc::Model> RM) { 343 // The AMDGPU toolchain only supports generating shared objects, so we 344 // must always use PIC. 345 return Reloc::PIC_; 346 } 347 348 AMDGPUTargetMachine::AMDGPUTargetMachine(const Target &T, const Triple &TT, 349 StringRef CPU, StringRef FS, 350 TargetOptions Options, 351 Optional<Reloc::Model> RM, 352 Optional<CodeModel::Model> CM, 353 CodeGenOpt::Level OptLevel) 354 : LLVMTargetMachine(T, computeDataLayout(TT), TT, getGPUOrDefault(TT, CPU), 355 FS, Options, getEffectiveRelocModel(RM), 356 getEffectiveCodeModel(CM, CodeModel::Small), OptLevel), 357 TLOF(createTLOF(getTargetTriple())) { 358 initAsmInfo(); 359 } 360 361 bool AMDGPUTargetMachine::EnableLateStructurizeCFG = false; 362 bool AMDGPUTargetMachine::EnableFunctionCalls = false; 363 364 AMDGPUTargetMachine::~AMDGPUTargetMachine() = default; 365 366 StringRef AMDGPUTargetMachine::getGPUName(const Function &F) const { 367 Attribute GPUAttr = F.getFnAttribute("target-cpu"); 368 return GPUAttr.hasAttribute(Attribute::None) ? 369 getTargetCPU() : GPUAttr.getValueAsString(); 370 } 371 372 StringRef AMDGPUTargetMachine::getFeatureString(const Function &F) const { 373 Attribute FSAttr = F.getFnAttribute("target-features"); 374 375 return FSAttr.hasAttribute(Attribute::None) ? 376 getTargetFeatureString() : 377 FSAttr.getValueAsString(); 378 } 379 380 /// Predicate for Internalize pass. 381 static bool mustPreserveGV(const GlobalValue &GV) { 382 if (const Function *F = dyn_cast<Function>(&GV)) 383 return F->isDeclaration() || AMDGPU::isEntryFunctionCC(F->getCallingConv()); 384 385 return !GV.use_empty(); 386 } 387 388 void AMDGPUTargetMachine::adjustPassManager(PassManagerBuilder &Builder) { 389 Builder.DivergentTarget = true; 390 391 bool EnableOpt = getOptLevel() > CodeGenOpt::None; 392 bool Internalize = InternalizeSymbols; 393 bool EarlyInline = EarlyInlineAll && EnableOpt && !EnableFunctionCalls; 394 bool AMDGPUAA = EnableAMDGPUAliasAnalysis && EnableOpt; 395 bool LibCallSimplify = EnableLibCallSimplify && EnableOpt; 396 397 if (EnableFunctionCalls) { 398 delete Builder.Inliner; 399 Builder.Inliner = createAMDGPUFunctionInliningPass(); 400 } 401 402 Builder.addExtension( 403 PassManagerBuilder::EP_ModuleOptimizerEarly, 404 [Internalize, EarlyInline, AMDGPUAA](const PassManagerBuilder &, 405 legacy::PassManagerBase &PM) { 406 if (AMDGPUAA) { 407 PM.add(createAMDGPUAAWrapperPass()); 408 PM.add(createAMDGPUExternalAAWrapperPass()); 409 } 410 PM.add(createAMDGPUUnifyMetadataPass()); 411 if (Internalize) { 412 PM.add(createInternalizePass(mustPreserveGV)); 413 PM.add(createGlobalDCEPass()); 414 } 415 if (EarlyInline) 416 PM.add(createAMDGPUAlwaysInlinePass(false)); 417 }); 418 419 const auto &Opt = Options; 420 Builder.addExtension( 421 PassManagerBuilder::EP_EarlyAsPossible, 422 [AMDGPUAA, LibCallSimplify, &Opt](const PassManagerBuilder &, 423 legacy::PassManagerBase &PM) { 424 if (AMDGPUAA) { 425 PM.add(createAMDGPUAAWrapperPass()); 426 PM.add(createAMDGPUExternalAAWrapperPass()); 427 } 428 PM.add(llvm::createAMDGPUUseNativeCallsPass()); 429 if (LibCallSimplify) 430 PM.add(llvm::createAMDGPUSimplifyLibCallsPass(Opt)); 431 }); 432 433 Builder.addExtension( 434 PassManagerBuilder::EP_CGSCCOptimizerLate, 435 [](const PassManagerBuilder &, legacy::PassManagerBase &PM) { 436 // Add infer address spaces pass to the opt pipeline after inlining 437 // but before SROA to increase SROA opportunities. 438 PM.add(createInferAddressSpacesPass()); 439 440 // This should run after inlining to have any chance of doing anything, 441 // and before other cleanup optimizations. 442 PM.add(createAMDGPULowerKernelAttributesPass()); 443 }); 444 } 445 446 //===----------------------------------------------------------------------===// 447 // R600 Target Machine (R600 -> Cayman) 448 //===----------------------------------------------------------------------===// 449 450 R600TargetMachine::R600TargetMachine(const Target &T, const Triple &TT, 451 StringRef CPU, StringRef FS, 452 TargetOptions Options, 453 Optional<Reloc::Model> RM, 454 Optional<CodeModel::Model> CM, 455 CodeGenOpt::Level OL, bool JIT) 456 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) { 457 setRequiresStructuredCFG(true); 458 459 // Override the default since calls aren't supported for r600. 460 if (EnableFunctionCalls && 461 EnableAMDGPUFunctionCallsOpt.getNumOccurrences() == 0) 462 EnableFunctionCalls = false; 463 } 464 465 const R600Subtarget *R600TargetMachine::getSubtargetImpl( 466 const Function &F) const { 467 StringRef GPU = getGPUName(F); 468 StringRef FS = getFeatureString(F); 469 470 SmallString<128> SubtargetKey(GPU); 471 SubtargetKey.append(FS); 472 473 auto &I = SubtargetMap[SubtargetKey]; 474 if (!I) { 475 // This needs to be done before we create a new subtarget since any 476 // creation will depend on the TM and the code generation flags on the 477 // function that reside in TargetOptions. 478 resetTargetOptions(F); 479 I = llvm::make_unique<R600Subtarget>(TargetTriple, GPU, FS, *this); 480 } 481 482 return I.get(); 483 } 484 485 TargetTransformInfo 486 R600TargetMachine::getTargetTransformInfo(const Function &F) { 487 return TargetTransformInfo(R600TTIImpl(this, F)); 488 } 489 490 //===----------------------------------------------------------------------===// 491 // GCN Target Machine (SI+) 492 //===----------------------------------------------------------------------===// 493 494 GCNTargetMachine::GCNTargetMachine(const Target &T, const Triple &TT, 495 StringRef CPU, StringRef FS, 496 TargetOptions Options, 497 Optional<Reloc::Model> RM, 498 Optional<CodeModel::Model> CM, 499 CodeGenOpt::Level OL, bool JIT) 500 : AMDGPUTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL) {} 501 502 const GCNSubtarget *GCNTargetMachine::getSubtargetImpl(const Function &F) const { 503 StringRef GPU = getGPUName(F); 504 StringRef FS = getFeatureString(F); 505 506 SmallString<128> SubtargetKey(GPU); 507 SubtargetKey.append(FS); 508 509 auto &I = SubtargetMap[SubtargetKey]; 510 if (!I) { 511 // This needs to be done before we create a new subtarget since any 512 // creation will depend on the TM and the code generation flags on the 513 // function that reside in TargetOptions. 514 resetTargetOptions(F); 515 I = llvm::make_unique<GCNSubtarget>(TargetTriple, GPU, FS, *this); 516 } 517 518 I->setScalarizeGlobalBehavior(ScalarizeGlobal); 519 520 return I.get(); 521 } 522 523 TargetTransformInfo 524 GCNTargetMachine::getTargetTransformInfo(const Function &F) { 525 return TargetTransformInfo(GCNTTIImpl(this, F)); 526 } 527 528 //===----------------------------------------------------------------------===// 529 // AMDGPU Pass Setup 530 //===----------------------------------------------------------------------===// 531 532 namespace { 533 534 class AMDGPUPassConfig : public TargetPassConfig { 535 public: 536 AMDGPUPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 537 : TargetPassConfig(TM, PM) { 538 // Exceptions and StackMaps are not supported, so these passes will never do 539 // anything. 540 disablePass(&StackMapLivenessID); 541 disablePass(&FuncletLayoutID); 542 } 543 544 AMDGPUTargetMachine &getAMDGPUTargetMachine() const { 545 return getTM<AMDGPUTargetMachine>(); 546 } 547 548 ScheduleDAGInstrs * 549 createMachineScheduler(MachineSchedContext *C) const override { 550 ScheduleDAGMILive *DAG = createGenericSchedLive(C); 551 DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI)); 552 DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI)); 553 return DAG; 554 } 555 556 void addEarlyCSEOrGVNPass(); 557 void addStraightLineScalarOptimizationPasses(); 558 void addIRPasses() override; 559 void addCodeGenPrepare() override; 560 bool addPreISel() override; 561 bool addInstSelector() override; 562 bool addGCPasses() override; 563 564 std::unique_ptr<CSEConfigBase> getCSEConfig() const override; 565 }; 566 567 std::unique_ptr<CSEConfigBase> AMDGPUPassConfig::getCSEConfig() const { 568 return getStandardCSEConfigForOpt(TM->getOptLevel()); 569 } 570 571 class R600PassConfig final : public AMDGPUPassConfig { 572 public: 573 R600PassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 574 : AMDGPUPassConfig(TM, PM) {} 575 576 ScheduleDAGInstrs *createMachineScheduler( 577 MachineSchedContext *C) const override { 578 return createR600MachineScheduler(C); 579 } 580 581 bool addPreISel() override; 582 bool addInstSelector() override; 583 void addPreRegAlloc() override; 584 void addPreSched2() override; 585 void addPreEmitPass() override; 586 }; 587 588 class GCNPassConfig final : public AMDGPUPassConfig { 589 public: 590 GCNPassConfig(LLVMTargetMachine &TM, PassManagerBase &PM) 591 : AMDGPUPassConfig(TM, PM) { 592 // It is necessary to know the register usage of the entire call graph. We 593 // allow calls without EnableAMDGPUFunctionCalls if they are marked 594 // noinline, so this is always required. 595 setRequiresCodeGenSCCOrder(true); 596 } 597 598 GCNTargetMachine &getGCNTargetMachine() const { 599 return getTM<GCNTargetMachine>(); 600 } 601 602 ScheduleDAGInstrs * 603 createMachineScheduler(MachineSchedContext *C) const override; 604 605 bool addPreISel() override; 606 void addMachineSSAOptimization() override; 607 bool addILPOpts() override; 608 bool addInstSelector() override; 609 bool addIRTranslator() override; 610 bool addLegalizeMachineIR() override; 611 bool addRegBankSelect() override; 612 bool addGlobalInstructionSelect() override; 613 void addFastRegAlloc() override; 614 void addOptimizedRegAlloc() override; 615 void addPreRegAlloc() override; 616 bool addPreRewrite() override; 617 void addPostRegAlloc() override; 618 void addPreSched2() override; 619 void addPreEmitPass() override; 620 }; 621 622 } // end anonymous namespace 623 624 void AMDGPUPassConfig::addEarlyCSEOrGVNPass() { 625 if (getOptLevel() == CodeGenOpt::Aggressive) 626 addPass(createGVNPass()); 627 else 628 addPass(createEarlyCSEPass()); 629 } 630 631 void AMDGPUPassConfig::addStraightLineScalarOptimizationPasses() { 632 addPass(createLICMPass()); 633 addPass(createSeparateConstOffsetFromGEPPass()); 634 addPass(createSpeculativeExecutionPass()); 635 // ReassociateGEPs exposes more opportunites for SLSR. See 636 // the example in reassociate-geps-and-slsr.ll. 637 addPass(createStraightLineStrengthReducePass()); 638 // SeparateConstOffsetFromGEP and SLSR creates common expressions which GVN or 639 // EarlyCSE can reuse. 640 addEarlyCSEOrGVNPass(); 641 // Run NaryReassociate after EarlyCSE/GVN to be more effective. 642 addPass(createNaryReassociatePass()); 643 // NaryReassociate on GEPs creates redundant common expressions, so run 644 // EarlyCSE after it. 645 addPass(createEarlyCSEPass()); 646 } 647 648 void AMDGPUPassConfig::addIRPasses() { 649 const AMDGPUTargetMachine &TM = getAMDGPUTargetMachine(); 650 651 // There is no reason to run these. 652 disablePass(&StackMapLivenessID); 653 disablePass(&FuncletLayoutID); 654 disablePass(&PatchableFunctionID); 655 656 addPass(createAtomicExpandPass()); 657 658 // This must occur before inlining, as the inliner will not look through 659 // bitcast calls. 660 addPass(createAMDGPUFixFunctionBitcastsPass()); 661 662 addPass(createAMDGPULowerIntrinsicsPass()); 663 664 // Function calls are not supported, so make sure we inline everything. 665 addPass(createAMDGPUAlwaysInlinePass()); 666 addPass(createAlwaysInlinerLegacyPass()); 667 // We need to add the barrier noop pass, otherwise adding the function 668 // inlining pass will cause all of the PassConfigs passes to be run 669 // one function at a time, which means if we have a nodule with two 670 // functions, then we will generate code for the first function 671 // without ever running any passes on the second. 672 addPass(createBarrierNoopPass()); 673 674 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 675 // TODO: May want to move later or split into an early and late one. 676 677 addPass(createAMDGPUCodeGenPreparePass()); 678 } 679 680 // Handle uses of OpenCL image2d_t, image3d_t and sampler_t arguments. 681 if (TM.getTargetTriple().getArch() == Triple::r600) 682 addPass(createR600OpenCLImageTypeLoweringPass()); 683 684 // Replace OpenCL enqueued block function pointers with global variables. 685 addPass(createAMDGPUOpenCLEnqueuedBlockLoweringPass()); 686 687 if (TM.getOptLevel() > CodeGenOpt::None) { 688 addPass(createInferAddressSpacesPass()); 689 addPass(createAMDGPUPromoteAlloca()); 690 691 if (EnableSROA) 692 addPass(createSROAPass()); 693 694 if (EnableScalarIRPasses) 695 addStraightLineScalarOptimizationPasses(); 696 697 if (EnableAMDGPUAliasAnalysis) { 698 addPass(createAMDGPUAAWrapperPass()); 699 addPass(createExternalAAWrapperPass([](Pass &P, Function &, 700 AAResults &AAR) { 701 if (auto *WrapperPass = P.getAnalysisIfAvailable<AMDGPUAAWrapperPass>()) 702 AAR.addAAResult(WrapperPass->getResult()); 703 })); 704 } 705 } 706 707 TargetPassConfig::addIRPasses(); 708 709 // EarlyCSE is not always strong enough to clean up what LSR produces. For 710 // example, GVN can combine 711 // 712 // %0 = add %a, %b 713 // %1 = add %b, %a 714 // 715 // and 716 // 717 // %0 = shl nsw %a, 2 718 // %1 = shl %a, 2 719 // 720 // but EarlyCSE can do neither of them. 721 if (getOptLevel() != CodeGenOpt::None && EnableScalarIRPasses) 722 addEarlyCSEOrGVNPass(); 723 } 724 725 void AMDGPUPassConfig::addCodeGenPrepare() { 726 if (TM->getTargetTriple().getArch() == Triple::amdgcn) 727 addPass(createAMDGPUAnnotateKernelFeaturesPass()); 728 729 if (TM->getTargetTriple().getArch() == Triple::amdgcn && 730 EnableLowerKernelArguments) 731 addPass(createAMDGPULowerKernelArgumentsPass()); 732 733 TargetPassConfig::addCodeGenPrepare(); 734 735 if (EnableLoadStoreVectorizer) 736 addPass(createLoadStoreVectorizerPass()); 737 } 738 739 bool AMDGPUPassConfig::addPreISel() { 740 addPass(createLowerSwitchPass()); 741 addPass(createFlattenCFGPass()); 742 return false; 743 } 744 745 bool AMDGPUPassConfig::addInstSelector() { 746 addPass(createAMDGPUISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 747 return false; 748 } 749 750 bool AMDGPUPassConfig::addGCPasses() { 751 // Do nothing. GC is not supported. 752 return false; 753 } 754 755 //===----------------------------------------------------------------------===// 756 // R600 Pass Setup 757 //===----------------------------------------------------------------------===// 758 759 bool R600PassConfig::addPreISel() { 760 AMDGPUPassConfig::addPreISel(); 761 762 if (EnableR600StructurizeCFG) 763 addPass(createStructurizeCFGPass()); 764 return false; 765 } 766 767 bool R600PassConfig::addInstSelector() { 768 addPass(createR600ISelDag(&getAMDGPUTargetMachine(), getOptLevel())); 769 return false; 770 } 771 772 void R600PassConfig::addPreRegAlloc() { 773 addPass(createR600VectorRegMerger()); 774 } 775 776 void R600PassConfig::addPreSched2() { 777 addPass(createR600EmitClauseMarkers(), false); 778 if (EnableR600IfConvert) 779 addPass(&IfConverterID, false); 780 addPass(createR600ClauseMergePass(), false); 781 } 782 783 void R600PassConfig::addPreEmitPass() { 784 addPass(createAMDGPUCFGStructurizerPass(), false); 785 addPass(createR600ExpandSpecialInstrsPass(), false); 786 addPass(&FinalizeMachineBundlesID, false); 787 addPass(createR600Packetizer(), false); 788 addPass(createR600ControlFlowFinalizer(), false); 789 } 790 791 TargetPassConfig *R600TargetMachine::createPassConfig(PassManagerBase &PM) { 792 return new R600PassConfig(*this, PM); 793 } 794 795 //===----------------------------------------------------------------------===// 796 // GCN Pass Setup 797 //===----------------------------------------------------------------------===// 798 799 ScheduleDAGInstrs *GCNPassConfig::createMachineScheduler( 800 MachineSchedContext *C) const { 801 const GCNSubtarget &ST = C->MF->getSubtarget<GCNSubtarget>(); 802 if (ST.enableSIScheduler()) 803 return createSIMachineScheduler(C); 804 return createGCNMaxOccupancyMachineScheduler(C); 805 } 806 807 bool GCNPassConfig::addPreISel() { 808 AMDGPUPassConfig::addPreISel(); 809 810 if (EnableAtomicOptimizations) { 811 addPass(createAMDGPUAtomicOptimizerPass()); 812 } 813 814 // FIXME: We need to run a pass to propagate the attributes when calls are 815 // supported. 816 817 // Merge divergent exit nodes. StructurizeCFG won't recognize the multi-exit 818 // regions formed by them. 819 addPass(&AMDGPUUnifyDivergentExitNodesID); 820 if (!LateCFGStructurize) { 821 addPass(createStructurizeCFGPass(true)); // true -> SkipUniformRegions 822 } 823 addPass(createSinkingPass()); 824 addPass(createAMDGPUAnnotateUniformValues()); 825 if (!LateCFGStructurize) { 826 addPass(createSIAnnotateControlFlowPass()); 827 } 828 829 return false; 830 } 831 832 void GCNPassConfig::addMachineSSAOptimization() { 833 TargetPassConfig::addMachineSSAOptimization(); 834 835 // We want to fold operands after PeepholeOptimizer has run (or as part of 836 // it), because it will eliminate extra copies making it easier to fold the 837 // real source operand. We want to eliminate dead instructions after, so that 838 // we see fewer uses of the copies. We then need to clean up the dead 839 // instructions leftover after the operands are folded as well. 840 // 841 // XXX - Can we get away without running DeadMachineInstructionElim again? 842 addPass(&SIFoldOperandsID); 843 if (EnableDPPCombine) 844 addPass(&GCNDPPCombineID); 845 addPass(&DeadMachineInstructionElimID); 846 addPass(&SILoadStoreOptimizerID); 847 if (EnableSDWAPeephole) { 848 addPass(&SIPeepholeSDWAID); 849 addPass(&EarlyMachineLICMID); 850 addPass(&MachineCSEID); 851 addPass(&SIFoldOperandsID); 852 addPass(&DeadMachineInstructionElimID); 853 } 854 addPass(createSIShrinkInstructionsPass()); 855 } 856 857 bool GCNPassConfig::addILPOpts() { 858 if (EnableEarlyIfConversion) 859 addPass(&EarlyIfConverterID); 860 861 TargetPassConfig::addILPOpts(); 862 return false; 863 } 864 865 bool GCNPassConfig::addInstSelector() { 866 AMDGPUPassConfig::addInstSelector(); 867 addPass(&SIFixSGPRCopiesID); 868 addPass(createSILowerI1CopiesPass()); 869 addPass(createSIFixupVectorISelPass()); 870 addPass(createSIAddIMGInitPass()); 871 return false; 872 } 873 874 bool GCNPassConfig::addIRTranslator() { 875 addPass(new IRTranslator()); 876 return false; 877 } 878 879 bool GCNPassConfig::addLegalizeMachineIR() { 880 addPass(new Legalizer()); 881 return false; 882 } 883 884 bool GCNPassConfig::addRegBankSelect() { 885 addPass(new RegBankSelect()); 886 return false; 887 } 888 889 bool GCNPassConfig::addGlobalInstructionSelect() { 890 addPass(new InstructionSelect()); 891 return false; 892 } 893 894 void GCNPassConfig::addPreRegAlloc() { 895 if (LateCFGStructurize) { 896 addPass(createAMDGPUMachineCFGStructurizerPass()); 897 } 898 addPass(createSIWholeQuadModePass()); 899 } 900 901 void GCNPassConfig::addFastRegAlloc() { 902 // FIXME: We have to disable the verifier here because of PHIElimination + 903 // TwoAddressInstructions disabling it. 904 905 // This must be run immediately after phi elimination and before 906 // TwoAddressInstructions, otherwise the processing of the tied operand of 907 // SI_ELSE will introduce a copy of the tied operand source after the else. 908 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 909 910 // This must be run just after RegisterCoalescing. 911 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 912 913 TargetPassConfig::addFastRegAlloc(); 914 } 915 916 void GCNPassConfig::addOptimizedRegAlloc() { 917 if (OptExecMaskPreRA) { 918 insertPass(&MachineSchedulerID, &SIOptimizeExecMaskingPreRAID); 919 insertPass(&SIOptimizeExecMaskingPreRAID, &SIFormMemoryClausesID); 920 } else { 921 insertPass(&MachineSchedulerID, &SIFormMemoryClausesID); 922 } 923 924 // This must be run immediately after phi elimination and before 925 // TwoAddressInstructions, otherwise the processing of the tied operand of 926 // SI_ELSE will introduce a copy of the tied operand source after the else. 927 insertPass(&PHIEliminationID, &SILowerControlFlowID, false); 928 929 // This must be run just after RegisterCoalescing. 930 insertPass(&RegisterCoalescerID, &SIPreAllocateWWMRegsID, false); 931 932 if (EnableDCEInRA) 933 insertPass(&RenameIndependentSubregsID, &DeadMachineInstructionElimID); 934 935 TargetPassConfig::addOptimizedRegAlloc(); 936 } 937 938 bool GCNPassConfig::addPreRewrite() { 939 if (EnableRegReassign) { 940 addPass(&GCNNSAReassignID); 941 addPass(&GCNRegBankReassignID); 942 } 943 return true; 944 } 945 946 void GCNPassConfig::addPostRegAlloc() { 947 addPass(&SIFixVGPRCopiesID); 948 if (getOptLevel() > CodeGenOpt::None) 949 addPass(&SIOptimizeExecMaskingID); 950 TargetPassConfig::addPostRegAlloc(); 951 } 952 953 void GCNPassConfig::addPreSched2() { 954 } 955 956 void GCNPassConfig::addPreEmitPass() { 957 addPass(createSIMemoryLegalizerPass()); 958 addPass(createSIInsertWaitcntsPass()); 959 addPass(createSIShrinkInstructionsPass()); 960 addPass(createSIModeRegisterPass()); 961 962 // The hazard recognizer that runs as part of the post-ra scheduler does not 963 // guarantee to be able handle all hazards correctly. This is because if there 964 // are multiple scheduling regions in a basic block, the regions are scheduled 965 // bottom up, so when we begin to schedule a region we don't know what 966 // instructions were emitted directly before it. 967 // 968 // Here we add a stand-alone hazard recognizer pass which can handle all 969 // cases. 970 // 971 // FIXME: This stand-alone pass will emit indiv. S_NOP 0, as needed. It would 972 // be better for it to emit S_NOP <N> when possible. 973 addPass(&PostRAHazardRecognizerID); 974 975 addPass(&SIInsertSkipsPassID); 976 addPass(&BranchRelaxationPassID); 977 } 978 979 TargetPassConfig *GCNTargetMachine::createPassConfig(PassManagerBase &PM) { 980 return new GCNPassConfig(*this, PM); 981 } 982 983 yaml::MachineFunctionInfo *GCNTargetMachine::createDefaultFuncInfoYAML() const { 984 return new yaml::SIMachineFunctionInfo(); 985 } 986 987 yaml::MachineFunctionInfo * 988 GCNTargetMachine::convertFuncInfoToYAML(const MachineFunction &MF) const { 989 const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 990 return new yaml::SIMachineFunctionInfo(*MFI, 991 *MF.getSubtarget().getRegisterInfo()); 992 } 993 994 bool GCNTargetMachine::parseMachineFunctionInfo( 995 const yaml::MachineFunctionInfo &MFI_, PerFunctionMIParsingState &PFS, 996 SMDiagnostic &Error, SMRange &SourceRange) const { 997 const yaml::SIMachineFunctionInfo &YamlMFI = 998 reinterpret_cast<const yaml::SIMachineFunctionInfo &>(MFI_); 999 MachineFunction &MF = PFS.MF; 1000 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); 1001 1002 MFI->initializeBaseYamlFields(YamlMFI); 1003 1004 auto parseRegister = [&](const yaml::StringValue &RegName, unsigned &RegVal) { 1005 if (parseNamedRegisterReference(PFS, RegVal, RegName.Value, Error)) { 1006 SourceRange = RegName.SourceRange; 1007 return true; 1008 } 1009 1010 return false; 1011 }; 1012 1013 auto diagnoseRegisterClass = [&](const yaml::StringValue &RegName) { 1014 // Create a diagnostic for a the register string literal. 1015 const MemoryBuffer &Buffer = 1016 *PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID()); 1017 Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1018 RegName.Value.size(), SourceMgr::DK_Error, 1019 "incorrect register class for field", RegName.Value, 1020 None, None); 1021 SourceRange = RegName.SourceRange; 1022 return true; 1023 }; 1024 1025 if (parseRegister(YamlMFI.ScratchRSrcReg, MFI->ScratchRSrcReg) || 1026 parseRegister(YamlMFI.ScratchWaveOffsetReg, MFI->ScratchWaveOffsetReg) || 1027 parseRegister(YamlMFI.FrameOffsetReg, MFI->FrameOffsetReg) || 1028 parseRegister(YamlMFI.StackPtrOffsetReg, MFI->StackPtrOffsetReg)) 1029 return true; 1030 1031 if (MFI->ScratchRSrcReg != AMDGPU::PRIVATE_RSRC_REG && 1032 !AMDGPU::SReg_128RegClass.contains(MFI->ScratchRSrcReg)) { 1033 return diagnoseRegisterClass(YamlMFI.ScratchRSrcReg); 1034 } 1035 1036 if (MFI->ScratchWaveOffsetReg != AMDGPU::SCRATCH_WAVE_OFFSET_REG && 1037 !AMDGPU::SGPR_32RegClass.contains(MFI->ScratchWaveOffsetReg)) { 1038 return diagnoseRegisterClass(YamlMFI.ScratchWaveOffsetReg); 1039 } 1040 1041 if (MFI->FrameOffsetReg != AMDGPU::FP_REG && 1042 !AMDGPU::SGPR_32RegClass.contains(MFI->FrameOffsetReg)) { 1043 return diagnoseRegisterClass(YamlMFI.FrameOffsetReg); 1044 } 1045 1046 if (MFI->StackPtrOffsetReg != AMDGPU::SP_REG && 1047 !AMDGPU::SGPR_32RegClass.contains(MFI->StackPtrOffsetReg)) { 1048 return diagnoseRegisterClass(YamlMFI.StackPtrOffsetReg); 1049 } 1050 1051 return false; 1052 } 1053