1 //===-- AMDGPUReplaceLDSUseWithPointer.cpp --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass replaces all the uses of LDS within non-kernel functions by
10 // corresponding pointer counter-parts.
11 //
12 // The main motivation behind this pass is - to *avoid* subsequent LDS lowering
13 // pass from directly packing LDS (assume large LDS) into a struct type which
14 // would otherwise cause allocating huge memory for struct instance within every
15 // kernel.
16 //
17 // Brief sketch of the algorithm implemented in this pass is as below:
18 //
19 //   1. Collect all the LDS defined in the module which qualify for pointer
20 //      replacement, say it is, LDSGlobals set.
21 //
22 //   2. Collect all the reachable callees for each kernel defined in the module,
23 //      say it is, KernelToCallees map.
24 //
25 //   3. FOR (each global GV from LDSGlobals set) DO
26 //        LDSUsedNonKernels = Collect all non-kernel functions which use GV.
27 //        FOR (each kernel K in KernelToCallees map) DO
28 //           ReachableCallees = KernelToCallees[K]
29 //           ReachableAndLDSUsedCallees =
30 //              SetIntersect(LDSUsedNonKernels, ReachableCallees)
31 //           IF (ReachableAndLDSUsedCallees is not empty) THEN
32 //             Pointer = Create a pointer to point-to GV if not created.
33 //             Initialize Pointer to point-to GV within kernel K.
34 //           ENDIF
35 //        ENDFOR
36 //        Replace all uses of GV within non kernel functions by Pointer.
37 //      ENFOR
38 //
39 // LLVM IR example:
40 //
41 //    Input IR:
42 //
43 //    @lds = internal addrspace(3) global [4 x i32] undef, align 16
44 //
45 //    define internal void @f0() {
46 //    entry:
47 //      %gep = getelementptr inbounds [4 x i32], [4 x i32] addrspace(3)* @lds,
48 //             i32 0, i32 0
49 //      ret void
50 //    }
51 //
52 //    define protected amdgpu_kernel void @k0() {
53 //    entry:
54 //      call void @f0()
55 //      ret void
56 //    }
57 //
58 //    Output IR:
59 //
60 //    @lds = internal addrspace(3) global [4 x i32] undef, align 16
61 //    @lds.ptr = internal unnamed_addr addrspace(3) global i16 undef, align 2
62 //
63 //    define internal void @f0() {
64 //    entry:
65 //      %0 = load i16, i16 addrspace(3)* @lds.ptr, align 2
66 //      %1 = getelementptr i8, i8 addrspace(3)* null, i16 %0
67 //      %2 = bitcast i8 addrspace(3)* %1 to [4 x i32] addrspace(3)*
68 //      %gep = getelementptr inbounds [4 x i32], [4 x i32] addrspace(3)* %2,
69 //             i32 0, i32 0
70 //      ret void
71 //    }
72 //
73 //    define protected amdgpu_kernel void @k0() {
74 //    entry:
75 //      store i16 ptrtoint ([4 x i32] addrspace(3)* @lds to i16),
76 //            i16 addrspace(3)* @lds.ptr, align 2
77 //      call void @f0()
78 //      ret void
79 //    }
80 //
81 //===----------------------------------------------------------------------===//
82 
83 #include "AMDGPU.h"
84 #include "GCNSubtarget.h"
85 #include "Utils/AMDGPUBaseInfo.h"
86 #include "Utils/AMDGPULDSUtils.h"
87 #include "llvm/ADT/DenseMap.h"
88 #include "llvm/ADT/STLExtras.h"
89 #include "llvm/ADT/SetOperations.h"
90 #include "llvm/Analysis/CallGraph.h"
91 #include "llvm/CodeGen/TargetPassConfig.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DerivedTypes.h"
94 #include "llvm/IR/IRBuilder.h"
95 #include "llvm/IR/InlineAsm.h"
96 #include "llvm/IR/Instructions.h"
97 #include "llvm/IR/IntrinsicsAMDGPU.h"
98 #include "llvm/IR/ReplaceConstant.h"
99 #include "llvm/InitializePasses.h"
100 #include "llvm/Pass.h"
101 #include "llvm/Support/Debug.h"
102 #include "llvm/Target/TargetMachine.h"
103 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
104 #include "llvm/Transforms/Utils/ModuleUtils.h"
105 #include <algorithm>
106 #include <vector>
107 
108 #define DEBUG_TYPE "amdgpu-replace-lds-use-with-pointer"
109 
110 using namespace llvm;
111 
112 namespace {
113 
114 namespace AMDGPU {
115 /// Collect all the instructions where user \p U belongs to. \p U could be
116 /// instruction itself or it could be a constant expression which is used within
117 /// an instruction. If \p CollectKernelInsts is true, collect instructions only
118 /// from kernels, otherwise collect instructions only from non-kernel functions.
119 DenseMap<Function *, SmallPtrSet<Instruction *, 8>>
120 getFunctionToInstsMap(User *U, bool CollectKernelInsts);
121 
122 SmallPtrSet<Function *, 8> collectNonKernelAccessorsOfLDS(GlobalVariable *GV);
123 
124 } // namespace AMDGPU
125 
126 class ReplaceLDSUseImpl {
127   Module &M;
128   LLVMContext &Ctx;
129   const DataLayout &DL;
130   Constant *LDSMemBaseAddr;
131 
132   DenseMap<GlobalVariable *, GlobalVariable *> LDSToPointer;
133   DenseMap<GlobalVariable *, SmallPtrSet<Function *, 8>> LDSToNonKernels;
134   DenseMap<Function *, SmallPtrSet<Function *, 8>> KernelToCallees;
135   DenseMap<Function *, SmallPtrSet<GlobalVariable *, 8>> KernelToLDSPointers;
136   DenseMap<Function *, BasicBlock *> KernelToInitBB;
137   DenseMap<Function *, DenseMap<GlobalVariable *, Value *>>
138       FunctionToLDSToReplaceInst;
139 
140   // Collect LDS which requires their uses to be replaced by pointer.
141   std::vector<GlobalVariable *> collectLDSRequiringPointerReplace() {
142     // Collect LDS which requires module lowering.
143     std::vector<GlobalVariable *> LDSGlobals =
144         llvm::AMDGPU::findVariablesToLower(M);
145 
146     // Remove LDS which don't qualify for replacement.
147     llvm::erase_if(LDSGlobals, [&](GlobalVariable *GV) {
148       return shouldIgnorePointerReplacement(GV);
149     });
150 
151     return LDSGlobals;
152   }
153 
154   // Returns true if uses of given LDS global within non-kernel functions should
155   // be keep as it is without pointer replacement.
156   bool shouldIgnorePointerReplacement(GlobalVariable *GV) {
157     // LDS whose size is very small and doesn't exceed pointer size is not worth
158     // replacing.
159     if (DL.getTypeAllocSize(GV->getValueType()) <= 2)
160       return true;
161 
162     // LDS which is not used from non-kernel function scope or it is used from
163     // global scope does not qualify for replacement.
164     LDSToNonKernels[GV] = AMDGPU::collectNonKernelAccessorsOfLDS(GV);
165     return LDSToNonKernels[GV].empty();
166 
167     // FIXME: When GV is used within all (or within most of the kernels), then
168     // it does not make sense to create a pointer for it.
169   }
170 
171   // Insert new global LDS pointer which points to LDS.
172   GlobalVariable *createLDSPointer(GlobalVariable *GV) {
173     // LDS pointer which points to LDS is already created? Return it.
174     auto PointerEntry = LDSToPointer.insert(std::make_pair(GV, nullptr));
175     if (!PointerEntry.second)
176       return PointerEntry.first->second;
177 
178     // We need to create new LDS pointer which points to LDS.
179     //
180     // Each CU owns at max 64K of LDS memory, so LDS address ranges from 0 to
181     // 2^16 - 1. Hence 16 bit pointer is enough to hold the LDS address.
182     auto *I16Ty = Type::getInt16Ty(Ctx);
183     GlobalVariable *LDSPointer = new GlobalVariable(
184         M, I16Ty, false, GlobalValue::InternalLinkage, UndefValue::get(I16Ty),
185         GV->getName() + Twine(".ptr"), nullptr, GlobalVariable::NotThreadLocal,
186         AMDGPUAS::LOCAL_ADDRESS);
187 
188     LDSPointer->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
189     LDSPointer->setAlignment(llvm::AMDGPU::getAlign(DL, LDSPointer));
190 
191     // Mark that an associated LDS pointer is created for LDS.
192     LDSToPointer[GV] = LDSPointer;
193 
194     return LDSPointer;
195   }
196 
197   // Split entry basic block in such a way that only lane 0 of each wave does
198   // the LDS pointer initialization, and return newly created basic block.
199   BasicBlock *activateLaneZero(Function *K) {
200     // If the entry basic block of kernel K is already split, then return
201     // newly created basic block.
202     auto BasicBlockEntry = KernelToInitBB.insert(std::make_pair(K, nullptr));
203     if (!BasicBlockEntry.second)
204       return BasicBlockEntry.first->second;
205 
206     // Split entry basic block of kernel K.
207     auto *EI = &(*(K->getEntryBlock().getFirstInsertionPt()));
208     IRBuilder<> Builder(EI);
209 
210     Value *Mbcnt =
211         Builder.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
212                                 {Builder.getInt32(-1), Builder.getInt32(0)});
213     Value *Cond = Builder.CreateICmpEQ(Mbcnt, Builder.getInt32(0));
214     Instruction *WB = cast<Instruction>(
215         Builder.CreateIntrinsic(Intrinsic::amdgcn_wave_barrier, {}, {}));
216 
217     BasicBlock *NBB = SplitBlockAndInsertIfThen(Cond, WB, false)->getParent();
218 
219     // Mark that the entry basic block of kernel K is split.
220     KernelToInitBB[K] = NBB;
221 
222     return NBB;
223   }
224 
225   // Within given kernel, initialize given LDS pointer to point to given LDS.
226   void initializeLDSPointer(Function *K, GlobalVariable *GV,
227                             GlobalVariable *LDSPointer) {
228     // If LDS pointer is already initialized within K, then nothing to do.
229     auto PointerEntry = KernelToLDSPointers.insert(
230         std::make_pair(K, SmallPtrSet<GlobalVariable *, 8>()));
231     if (!PointerEntry.second)
232       if (PointerEntry.first->second.contains(LDSPointer))
233         return;
234 
235     // Insert instructions at EI which initialize LDS pointer to point-to LDS
236     // within kernel K.
237     //
238     // That is, convert pointer type of GV to i16, and then store this converted
239     // i16 value within LDSPointer which is of type i16*.
240     auto *EI = &(*(activateLaneZero(K)->getFirstInsertionPt()));
241     IRBuilder<> Builder(EI);
242     Builder.CreateStore(Builder.CreatePtrToInt(GV, Type::getInt16Ty(Ctx)),
243                         LDSPointer);
244 
245     // Mark that LDS pointer is initialized within kernel K.
246     KernelToLDSPointers[K].insert(LDSPointer);
247   }
248 
249   // We have created an LDS pointer for LDS, and initialized it to point-to LDS
250   // within all relevant kernels. Now replace all the uses of LDS within
251   // non-kernel functions by LDS pointer.
252   void replaceLDSUseByPointer(GlobalVariable *GV, GlobalVariable *LDSPointer) {
253     SmallVector<User *, 8> LDSUsers(GV->users());
254     for (auto *U : LDSUsers) {
255       // When `U` is a constant expression, it is possible that same constant
256       // expression exists within multiple instructions, and within multiple
257       // non-kernel functions. Collect all those non-kernel functions and all
258       // those instructions within which `U` exist.
259       auto FunctionToInsts =
260           AMDGPU::getFunctionToInstsMap(U, false /*=CollectKernelInsts*/);
261 
262       for (auto FI = FunctionToInsts.begin(), FE = FunctionToInsts.end();
263            FI != FE; ++FI) {
264         Function *F = FI->first;
265         auto &Insts = FI->second;
266         for (auto *I : Insts) {
267           // If `U` is a constant expression, then we need to break the
268           // associated instruction into a set of separate instructions by
269           // converting constant expressions into instructions.
270           SmallPtrSet<Instruction *, 8> UserInsts;
271 
272           if (U == I) {
273             // `U` is an instruction, conversion from constant expression to
274             // set of instructions is *not* required.
275             UserInsts.insert(I);
276           } else {
277             // `U` is a constant expression, convert it into corresponding set
278             // of instructions.
279             auto *CE = cast<ConstantExpr>(U);
280             convertConstantExprsToInstructions(I, CE, &UserInsts);
281           }
282 
283           // Go through all the user instructions, if LDS exist within them as
284           // an operand, then replace it by replace instruction.
285           for (auto *II : UserInsts) {
286             auto *ReplaceInst = getReplacementInst(F, GV, LDSPointer);
287             II->replaceUsesOfWith(GV, ReplaceInst);
288           }
289         }
290       }
291     }
292   }
293 
294   // Create a set of replacement instructions which together replace LDS within
295   // non-kernel function F by accessing LDS indirectly using LDS pointer.
296   Value *getReplacementInst(Function *F, GlobalVariable *GV,
297                             GlobalVariable *LDSPointer) {
298     // If the instruction which replaces LDS within F is already created, then
299     // return it.
300     auto LDSEntry = FunctionToLDSToReplaceInst.insert(
301         std::make_pair(F, DenseMap<GlobalVariable *, Value *>()));
302     if (!LDSEntry.second) {
303       auto ReplaceInstEntry =
304           LDSEntry.first->second.insert(std::make_pair(GV, nullptr));
305       if (!ReplaceInstEntry.second)
306         return ReplaceInstEntry.first->second;
307     }
308 
309     // Get the instruction insertion point within the beginning of the entry
310     // block of current non-kernel function.
311     auto *EI = &(*(F->getEntryBlock().getFirstInsertionPt()));
312     IRBuilder<> Builder(EI);
313 
314     // Insert required set of instructions which replace LDS within F.
315     auto *V = Builder.CreateBitCast(
316         Builder.CreateGEP(
317             Builder.getInt8Ty(), LDSMemBaseAddr,
318             Builder.CreateLoad(LDSPointer->getValueType(), LDSPointer)),
319         GV->getType());
320 
321     // Mark that the replacement instruction which replace LDS within F is
322     // created.
323     FunctionToLDSToReplaceInst[F][GV] = V;
324 
325     return V;
326   }
327 
328 public:
329   ReplaceLDSUseImpl(Module &M)
330       : M(M), Ctx(M.getContext()), DL(M.getDataLayout()) {
331     LDSMemBaseAddr = Constant::getIntegerValue(
332         PointerType::get(Type::getInt8Ty(M.getContext()),
333                          AMDGPUAS::LOCAL_ADDRESS),
334         APInt(32, 0));
335   }
336 
337   // Entry-point function which interface ReplaceLDSUseImpl with outside of the
338   // class.
339   bool replaceLDSUse();
340 
341 private:
342   // For a given LDS from collected LDS globals set, replace its non-kernel
343   // function scope uses by pointer.
344   bool replaceLDSUse(GlobalVariable *GV);
345 };
346 
347 // For given LDS from collected LDS globals set, replace its non-kernel function
348 // scope uses by pointer.
349 bool ReplaceLDSUseImpl::replaceLDSUse(GlobalVariable *GV) {
350   // Holds all those non-kernel functions within which LDS is being accessed.
351   SmallPtrSet<Function *, 8> &LDSAccessors = LDSToNonKernels[GV];
352 
353   // The LDS pointer which points to LDS and replaces all the uses of LDS.
354   GlobalVariable *LDSPointer = nullptr;
355 
356   // Traverse through each kernel K, check and if required, initialize the
357   // LDS pointer to point to LDS within K.
358   for (auto KI = KernelToCallees.begin(), KE = KernelToCallees.end(); KI != KE;
359        ++KI) {
360     Function *K = KI->first;
361     SmallPtrSet<Function *, 8> Callees = KI->second;
362 
363     // Compute reachable and LDS used callees for kernel K.
364     set_intersect(Callees, LDSAccessors);
365 
366     // None of the LDS accessing non-kernel functions are reachable from
367     // kernel K. Hence, no need to initialize LDS pointer within kernel K.
368     if (Callees.empty())
369       continue;
370 
371     // We have found reachable and LDS used callees for kernel K, and we need to
372     // initialize LDS pointer within kernel K, and we need to replace LDS use
373     // within those callees by LDS pointer.
374     //
375     // But, first check if LDS pointer is already created, if not create one.
376     LDSPointer = createLDSPointer(GV);
377 
378     // Initialize LDS pointer to point to LDS within kernel K.
379     initializeLDSPointer(K, GV, LDSPointer);
380   }
381 
382   // We have not found reachable and LDS used callees for any of the kernels,
383   // and hence we have not created LDS pointer.
384   if (!LDSPointer)
385     return false;
386 
387   // We have created an LDS pointer for LDS, and initialized it to point-to LDS
388   // within all relevant kernels. Now replace all the uses of LDS within
389   // non-kernel functions by LDS pointer.
390   replaceLDSUseByPointer(GV, LDSPointer);
391 
392   return true;
393 }
394 
395 namespace AMDGPU {
396 
397 // An helper class for collecting all reachable callees for each kernel defined
398 // within the module.
399 class CollectReachableCallees {
400   Module &M;
401   CallGraph CG;
402   SmallPtrSet<CallGraphNode *, 8> AddressTakenFunctions;
403 
404   // Collect all address taken functions within the module.
405   void collectAddressTakenFunctions() {
406     auto *ECNode = CG.getExternalCallingNode();
407 
408     for (auto GI = ECNode->begin(), GE = ECNode->end(); GI != GE; ++GI) {
409       auto *CGN = GI->second;
410       auto *F = CGN->getFunction();
411       if (!F || F->isDeclaration() || llvm::AMDGPU::isKernelCC(F))
412         continue;
413       AddressTakenFunctions.insert(CGN);
414     }
415   }
416 
417   // For given kernel, collect all its reachable non-kernel functions.
418   SmallPtrSet<Function *, 8> collectReachableCallees(Function *K) {
419     SmallPtrSet<Function *, 8> ReachableCallees;
420 
421     // Call graph node which represents this kernel.
422     auto *KCGN = CG[K];
423 
424     // Go through all call graph nodes reachable from the node representing this
425     // kernel, visit all their call sites, if the call site is direct, add
426     // corresponding callee to reachable callee set, if it is indirect, resolve
427     // the indirect call site to potential reachable callees, add them to
428     // reachable callee set, and repeat the process for the newly added
429     // potential callee nodes.
430     //
431     // FIXME: Need to handle bit-casted function pointers.
432     //
433     SmallVector<CallGraphNode *, 8> CGNStack(df_begin(KCGN), df_end(KCGN));
434     SmallPtrSet<CallGraphNode *, 8> VisitedCGNodes;
435     while (!CGNStack.empty()) {
436       auto *CGN = CGNStack.pop_back_val();
437 
438       if (!VisitedCGNodes.insert(CGN).second)
439         continue;
440 
441       // Ignore call graph node which does not have associated function or
442       // associated function is not a definition.
443       if (!CGN->getFunction() || CGN->getFunction()->isDeclaration())
444         continue;
445 
446       for (auto GI = CGN->begin(), GE = CGN->end(); GI != GE; ++GI) {
447         auto *RCB = cast<CallBase>(GI->first.getValue());
448         auto *RCGN = GI->second;
449 
450         if (auto *DCallee = RCGN->getFunction()) {
451           ReachableCallees.insert(DCallee);
452         } else if (RCB->isIndirectCall()) {
453           auto *RCBFTy = RCB->getFunctionType();
454           for (auto *ACGN : AddressTakenFunctions) {
455             auto *ACallee = ACGN->getFunction();
456             if (ACallee->getFunctionType() == RCBFTy) {
457               ReachableCallees.insert(ACallee);
458               CGNStack.append(df_begin(ACGN), df_end(ACGN));
459             }
460           }
461         }
462       }
463     }
464 
465     return ReachableCallees;
466   }
467 
468 public:
469   explicit CollectReachableCallees(Module &M) : M(M), CG(CallGraph(M)) {
470     // Collect address taken functions.
471     collectAddressTakenFunctions();
472   }
473 
474   void collectReachableCallees(
475       DenseMap<Function *, SmallPtrSet<Function *, 8>> &KernelToCallees) {
476     // Collect reachable callee set for each kernel defined in the module.
477     for (Function &F : M.functions()) {
478       if (!llvm::AMDGPU::isKernelCC(&F))
479         continue;
480       Function *K = &F;
481       KernelToCallees[K] = collectReachableCallees(K);
482     }
483   }
484 };
485 
486 /// Collect reachable callees for each kernel defined in the module \p M and
487 /// return collected callees at \p KernelToCallees.
488 void collectReachableCallees(
489     Module &M,
490     DenseMap<Function *, SmallPtrSet<Function *, 8>> &KernelToCallees) {
491   CollectReachableCallees CRC{M};
492   CRC.collectReachableCallees(KernelToCallees);
493 }
494 
495 /// For the given LDS global \p GV, visit all its users and collect all
496 /// non-kernel functions within which \p GV is used and return collected list of
497 /// such non-kernel functions.
498 SmallPtrSet<Function *, 8> collectNonKernelAccessorsOfLDS(GlobalVariable *GV) {
499   SmallPtrSet<Function *, 8> LDSAccessors;
500   SmallVector<User *, 8> UserStack(GV->users());
501   SmallPtrSet<User *, 8> VisitedUsers;
502 
503   while (!UserStack.empty()) {
504     auto *U = UserStack.pop_back_val();
505 
506     // `U` is already visited? continue to next one.
507     if (!VisitedUsers.insert(U).second)
508       continue;
509 
510     // `U` is a global variable which is initialized with LDS. Ignore LDS.
511     if (isa<GlobalValue>(U))
512       return SmallPtrSet<Function *, 8>();
513 
514     // Recursively explore constant users.
515     if (isa<Constant>(U)) {
516       append_range(UserStack, U->users());
517       continue;
518     }
519 
520     // `U` should be an instruction, if it belongs to a non-kernel function F,
521     // then collect F.
522     Function *F = cast<Instruction>(U)->getFunction();
523     if (!llvm::AMDGPU::isKernelCC(F))
524       LDSAccessors.insert(F);
525   }
526 
527   return LDSAccessors;
528 }
529 
530 DenseMap<Function *, SmallPtrSet<Instruction *, 8>>
531 getFunctionToInstsMap(User *U, bool CollectKernelInsts) {
532   DenseMap<Function *, SmallPtrSet<Instruction *, 8>> FunctionToInsts;
533   SmallVector<User *, 8> UserStack;
534   SmallPtrSet<User *, 8> VisitedUsers;
535 
536   UserStack.push_back(U);
537 
538   while (!UserStack.empty()) {
539     auto *UU = UserStack.pop_back_val();
540 
541     if (!VisitedUsers.insert(UU).second)
542       continue;
543 
544     if (isa<GlobalValue>(UU))
545       continue;
546 
547     if (isa<Constant>(UU)) {
548       append_range(UserStack, UU->users());
549       continue;
550     }
551 
552     auto *I = cast<Instruction>(UU);
553     Function *F = I->getFunction();
554     if (CollectKernelInsts) {
555       if (!llvm::AMDGPU::isKernelCC(F)) {
556         continue;
557       }
558     } else {
559       if (llvm::AMDGPU::isKernelCC(F)) {
560         continue;
561       }
562     }
563 
564     FunctionToInsts.insert(std::make_pair(F, SmallPtrSet<Instruction *, 8>()));
565     FunctionToInsts[F].insert(I);
566   }
567 
568   return FunctionToInsts;
569 }
570 
571 } // namespace AMDGPU
572 
573 // Entry-point function which interface ReplaceLDSUseImpl with outside of the
574 // class.
575 bool ReplaceLDSUseImpl::replaceLDSUse() {
576   // Collect LDS which requires their uses to be replaced by pointer.
577   std::vector<GlobalVariable *> LDSGlobals =
578       collectLDSRequiringPointerReplace();
579 
580   // No LDS to pointer-replace. Nothing to do.
581   if (LDSGlobals.empty())
582     return false;
583 
584   // Collect reachable callee set for each kernel defined in the module.
585   AMDGPU::collectReachableCallees(M, KernelToCallees);
586 
587   if (KernelToCallees.empty()) {
588     // Either module does not have any kernel definitions, or none of the kernel
589     // has a call to non-kernel functions, or we could not resolve any of the
590     // call sites to proper non-kernel functions, because of the situations like
591     // inline asm calls. Nothing to replace.
592     return false;
593   }
594 
595   // For every LDS from collected LDS globals set, replace its non-kernel
596   // function scope use by pointer.
597   bool Changed = false;
598   for (auto *GV : LDSGlobals)
599     Changed |= replaceLDSUse(GV);
600 
601   return Changed;
602 }
603 
604 class AMDGPUReplaceLDSUseWithPointer : public ModulePass {
605 public:
606   static char ID;
607 
608   AMDGPUReplaceLDSUseWithPointer() : ModulePass(ID) {
609     initializeAMDGPUReplaceLDSUseWithPointerPass(
610         *PassRegistry::getPassRegistry());
611   }
612 
613   bool runOnModule(Module &M) override;
614 
615   void getAnalysisUsage(AnalysisUsage &AU) const override {
616     AU.addRequired<TargetPassConfig>();
617   }
618 };
619 
620 } // namespace
621 
622 char AMDGPUReplaceLDSUseWithPointer::ID = 0;
623 char &llvm::AMDGPUReplaceLDSUseWithPointerID =
624     AMDGPUReplaceLDSUseWithPointer::ID;
625 
626 INITIALIZE_PASS_BEGIN(
627     AMDGPUReplaceLDSUseWithPointer, DEBUG_TYPE,
628     "Replace within non-kernel function use of LDS with pointer",
629     false /*only look at the cfg*/, false /*analysis pass*/)
630 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
631 INITIALIZE_PASS_END(
632     AMDGPUReplaceLDSUseWithPointer, DEBUG_TYPE,
633     "Replace within non-kernel function use of LDS with pointer",
634     false /*only look at the cfg*/, false /*analysis pass*/)
635 
636 bool AMDGPUReplaceLDSUseWithPointer::runOnModule(Module &M) {
637   ReplaceLDSUseImpl LDSUseReplacer{M};
638   return LDSUseReplacer.replaceLDSUse();
639 }
640 
641 ModulePass *llvm::createAMDGPUReplaceLDSUseWithPointerPass() {
642   return new AMDGPUReplaceLDSUseWithPointer();
643 }
644 
645 PreservedAnalyses
646 AMDGPUReplaceLDSUseWithPointerPass::run(Module &M, ModuleAnalysisManager &AM) {
647   ReplaceLDSUseImpl LDSUseReplacer{M};
648   LDSUseReplacer.replaceLDSUse();
649   return PreservedAnalyses::all();
650 }
651