1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates allocas by either converting them into vectors or 10 // by migrating them to local address space. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUSubtarget.h" 16 #include "Utils/AMDGPUBaseInfo.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsAMDGPU.h" 41 #include "llvm/IR/IntrinsicsR600.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <map> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 #define DEBUG_TYPE "amdgpu-promote-alloca" 64 65 using namespace llvm; 66 67 namespace { 68 69 static cl::opt<bool> DisablePromoteAllocaToVector( 70 "disable-promote-alloca-to-vector", 71 cl::desc("Disable promote alloca to vector"), 72 cl::init(false)); 73 74 static cl::opt<bool> DisablePromoteAllocaToLDS( 75 "disable-promote-alloca-to-lds", 76 cl::desc("Disable promote alloca to LDS"), 77 cl::init(false)); 78 79 // FIXME: This can create globals so should be a module pass. 80 class AMDGPUPromoteAlloca : public FunctionPass { 81 private: 82 const TargetMachine *TM; 83 Module *Mod = nullptr; 84 const DataLayout *DL = nullptr; 85 86 // FIXME: This should be per-kernel. 87 uint32_t LocalMemLimit = 0; 88 uint32_t CurrentLocalMemUsage = 0; 89 90 bool IsAMDGCN = false; 91 bool IsAMDHSA = false; 92 93 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 94 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 95 96 /// BaseAlloca is the alloca root the search started from. 97 /// Val may be that alloca or a recursive user of it. 98 bool collectUsesWithPtrTypes(Value *BaseAlloca, 99 Value *Val, 100 std::vector<Value*> &WorkList) const; 101 102 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 103 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 104 /// Returns true if both operands are derived from the same alloca. Val should 105 /// be the same value as one of the input operands of UseInst. 106 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 107 Instruction *UseInst, 108 int OpIdx0, int OpIdx1) const; 109 110 /// Check whether we have enough local memory for promotion. 111 bool hasSufficientLocalMem(const Function &F); 112 113 public: 114 static char ID; 115 116 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 117 118 bool doInitialization(Module &M) override; 119 bool runOnFunction(Function &F) override; 120 121 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 122 123 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 124 125 void getAnalysisUsage(AnalysisUsage &AU) const override { 126 AU.setPreservesCFG(); 127 FunctionPass::getAnalysisUsage(AU); 128 } 129 }; 130 131 class AMDGPUPromoteAllocaToVector : public FunctionPass { 132 public: 133 static char ID; 134 135 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 136 137 bool runOnFunction(Function &F) override; 138 139 StringRef getPassName() const override { 140 return "AMDGPU Promote Alloca to vector"; 141 } 142 143 bool handleAlloca(AllocaInst &I); 144 145 void getAnalysisUsage(AnalysisUsage &AU) const override { 146 AU.setPreservesCFG(); 147 FunctionPass::getAnalysisUsage(AU); 148 } 149 }; 150 151 } // end anonymous namespace 152 153 char AMDGPUPromoteAlloca::ID = 0; 154 char AMDGPUPromoteAllocaToVector::ID = 0; 155 156 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 157 "AMDGPU promote alloca to vector or LDS", false, false) 158 159 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 160 "AMDGPU promote alloca to vector", false, false) 161 162 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 163 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 164 165 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 166 Mod = &M; 167 DL = &Mod->getDataLayout(); 168 169 return false; 170 } 171 172 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 173 if (skipFunction(F)) 174 return false; 175 176 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 177 TM = &TPC->getTM<TargetMachine>(); 178 else 179 return false; 180 181 const Triple &TT = TM->getTargetTriple(); 182 IsAMDGCN = TT.getArch() == Triple::amdgcn; 183 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 184 185 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 186 if (!ST.isPromoteAllocaEnabled()) 187 return false; 188 189 bool SufficientLDS = hasSufficientLocalMem(F); 190 bool Changed = false; 191 BasicBlock &EntryBB = *F.begin(); 192 193 SmallVector<AllocaInst *, 16> Allocas; 194 for (Instruction &I : EntryBB) { 195 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 196 Allocas.push_back(AI); 197 } 198 199 for (AllocaInst *AI : Allocas) { 200 if (handleAlloca(*AI, SufficientLDS)) 201 Changed = true; 202 } 203 204 return Changed; 205 } 206 207 std::pair<Value *, Value *> 208 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 209 const Function &F = *Builder.GetInsertBlock()->getParent(); 210 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 211 212 if (!IsAMDHSA) { 213 Function *LocalSizeYFn 214 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 215 Function *LocalSizeZFn 216 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 217 218 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 219 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 220 221 ST.makeLIDRangeMetadata(LocalSizeY); 222 ST.makeLIDRangeMetadata(LocalSizeZ); 223 224 return std::make_pair(LocalSizeY, LocalSizeZ); 225 } 226 227 // We must read the size out of the dispatch pointer. 228 assert(IsAMDGCN); 229 230 // We are indexing into this struct, and want to extract the workgroup_size_* 231 // fields. 232 // 233 // typedef struct hsa_kernel_dispatch_packet_s { 234 // uint16_t header; 235 // uint16_t setup; 236 // uint16_t workgroup_size_x ; 237 // uint16_t workgroup_size_y; 238 // uint16_t workgroup_size_z; 239 // uint16_t reserved0; 240 // uint32_t grid_size_x ; 241 // uint32_t grid_size_y ; 242 // uint32_t grid_size_z; 243 // 244 // uint32_t private_segment_size; 245 // uint32_t group_segment_size; 246 // uint64_t kernel_object; 247 // 248 // #ifdef HSA_LARGE_MODEL 249 // void *kernarg_address; 250 // #elif defined HSA_LITTLE_ENDIAN 251 // void *kernarg_address; 252 // uint32_t reserved1; 253 // #else 254 // uint32_t reserved1; 255 // void *kernarg_address; 256 // #endif 257 // uint64_t reserved2; 258 // hsa_signal_t completion_signal; // uint64_t wrapper 259 // } hsa_kernel_dispatch_packet_t 260 // 261 Function *DispatchPtrFn 262 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 263 264 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 265 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 266 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 267 268 // Size of the dispatch packet struct. 269 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 270 271 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 272 Value *CastDispatchPtr = Builder.CreateBitCast( 273 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 274 275 // We could do a single 64-bit load here, but it's likely that the basic 276 // 32-bit and extract sequence is already present, and it is probably easier 277 // to CSE this. The loads should be mergable later anyway. 278 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 279 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 280 281 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 282 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 283 284 MDNode *MD = MDNode::get(Mod->getContext(), None); 285 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 286 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 287 ST.makeLIDRangeMetadata(LoadZU); 288 289 // Extract y component. Upper half of LoadZU should be zero already. 290 Value *Y = Builder.CreateLShr(LoadXY, 16); 291 292 return std::make_pair(Y, LoadZU); 293 } 294 295 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 296 const AMDGPUSubtarget &ST = 297 AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent()); 298 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 299 300 switch (N) { 301 case 0: 302 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 303 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 304 break; 305 case 1: 306 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 307 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 308 break; 309 310 case 2: 311 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 312 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 313 break; 314 default: 315 llvm_unreachable("invalid dimension"); 316 } 317 318 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 319 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 320 ST.makeLIDRangeMetadata(CI); 321 322 return CI; 323 } 324 325 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 326 return FixedVectorType::get(ArrayTy->getElementType(), 327 ArrayTy->getNumElements()); 328 } 329 330 static Value *stripBitcasts(Value *V) { 331 while (Instruction *I = dyn_cast<Instruction>(V)) { 332 if (I->getOpcode() != Instruction::BitCast) 333 break; 334 V = I->getOperand(0); 335 } 336 return V; 337 } 338 339 static Value * 340 calculateVectorIndex(Value *Ptr, 341 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 342 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); 343 if (!GEP) 344 return nullptr; 345 346 auto I = GEPIdx.find(GEP); 347 return I == GEPIdx.end() ? nullptr : I->second; 348 } 349 350 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 351 // FIXME we only support simple cases 352 if (GEP->getNumOperands() != 3) 353 return nullptr; 354 355 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 356 if (!I0 || !I0->isZero()) 357 return nullptr; 358 359 return GEP->getOperand(2); 360 } 361 362 // Not an instruction handled below to turn into a vector. 363 // 364 // TODO: Check isTriviallyVectorizable for calls and handle other 365 // instructions. 366 static bool canVectorizeInst(Instruction *Inst, User *User, 367 const DataLayout &DL) { 368 switch (Inst->getOpcode()) { 369 case Instruction::Load: { 370 // Currently only handle the case where the Pointer Operand is a GEP. 371 // Also we could not vectorize volatile or atomic loads. 372 LoadInst *LI = cast<LoadInst>(Inst); 373 if (isa<AllocaInst>(User) && 374 LI->getPointerOperandType() == User->getType() && 375 isa<VectorType>(LI->getType())) 376 return true; 377 378 Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 379 if (!PtrInst) 380 return false; 381 382 return (PtrInst->getOpcode() == Instruction::GetElementPtr || 383 PtrInst->getOpcode() == Instruction::BitCast) && 384 LI->isSimple(); 385 } 386 case Instruction::BitCast: 387 return true; 388 case Instruction::Store: { 389 // Must be the stored pointer operand, not a stored value, plus 390 // since it should be canonical form, the User should be a GEP. 391 // Also we could not vectorize volatile or atomic stores. 392 StoreInst *SI = cast<StoreInst>(Inst); 393 if (isa<AllocaInst>(User) && 394 SI->getPointerOperandType() == User->getType() && 395 isa<VectorType>(SI->getValueOperand()->getType())) 396 return true; 397 398 Instruction *UserInst = dyn_cast<Instruction>(User); 399 if (!UserInst) 400 return false; 401 402 return (SI->getPointerOperand() == User) && 403 (UserInst->getOpcode() == Instruction::GetElementPtr || 404 UserInst->getOpcode() == Instruction::BitCast) && 405 SI->isSimple(); 406 } 407 default: 408 return false; 409 } 410 } 411 412 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL) { 413 414 if (DisablePromoteAllocaToVector) { 415 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 416 return false; 417 } 418 419 Type *AllocaTy = Alloca->getAllocatedType(); 420 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 421 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 422 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 423 ArrayTy->getNumElements() > 0) 424 VectorTy = arrayTypeToVecType(ArrayTy); 425 } 426 427 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 428 429 // FIXME: There is no reason why we can't support larger arrays, we 430 // are just being conservative for now. 431 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 432 // could also be promoted but we don't currently handle this case 433 if (!VectorTy || VectorTy->getNumElements() > 16 || 434 VectorTy->getNumElements() < 2) { 435 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 436 return false; 437 } 438 439 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 440 std::vector<Value *> WorkList; 441 SmallVector<User *, 8> Users(Alloca->users()); 442 SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 443 Type *VecEltTy = VectorTy->getElementType(); 444 while (!Users.empty()) { 445 User *AllocaUser = Users.pop_back_val(); 446 User *UseUser = UseUsers.pop_back_val(); 447 Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 448 449 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 450 if (!GEP) { 451 if (!canVectorizeInst(Inst, UseUser, DL)) 452 return false; 453 454 if (Inst->getOpcode() == Instruction::BitCast) { 455 Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 456 Type *ToTy = Inst->getType()->getPointerElementType(); 457 if (FromTy->isAggregateType() || ToTy->isAggregateType() || 458 DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 459 continue; 460 461 for (User *CastUser : Inst->users()) { 462 if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 463 continue; 464 Users.push_back(CastUser); 465 UseUsers.push_back(Inst); 466 } 467 468 continue; 469 } 470 471 WorkList.push_back(AllocaUser); 472 continue; 473 } 474 475 Value *Index = GEPToVectorIndex(GEP); 476 477 // If we can't compute a vector index from this GEP, then we can't 478 // promote this alloca to vector. 479 if (!Index) { 480 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 481 << '\n'); 482 return false; 483 } 484 485 GEPVectorIdx[GEP] = Index; 486 Users.append(GEP->user_begin(), GEP->user_end()); 487 UseUsers.append(GEP->getNumUses(), GEP); 488 } 489 490 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 491 << *VectorTy << '\n'); 492 493 for (Value *V : WorkList) { 494 Instruction *Inst = cast<Instruction>(V); 495 IRBuilder<> Builder(Inst); 496 switch (Inst->getOpcode()) { 497 case Instruction::Load: { 498 if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 499 break; 500 501 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 502 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 503 if (!Index) 504 break; 505 506 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 507 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 508 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 509 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 510 if (Inst->getType() != VecEltTy) 511 ExtractElement = Builder.CreateBitCast(ExtractElement, Inst->getType()); 512 Inst->replaceAllUsesWith(ExtractElement); 513 Inst->eraseFromParent(); 514 break; 515 } 516 case Instruction::Store: { 517 StoreInst *SI = cast<StoreInst>(Inst); 518 if (SI->getValueOperand()->getType() == AllocaTy || 519 SI->getValueOperand()->getType()->isVectorTy()) 520 break; 521 522 Value *Ptr = SI->getPointerOperand(); 523 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 524 if (!Index) 525 break; 526 527 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 528 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 529 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 530 Value *Elt = SI->getValueOperand(); 531 if (Elt->getType() != VecEltTy) 532 Elt = Builder.CreateBitCast(Elt, VecEltTy); 533 Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 534 Builder.CreateStore(NewVecValue, BitCast); 535 Inst->eraseFromParent(); 536 break; 537 } 538 539 default: 540 llvm_unreachable("Inconsistency in instructions promotable to vector"); 541 } 542 } 543 return true; 544 } 545 546 static bool isCallPromotable(CallInst *CI) { 547 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 548 if (!II) 549 return false; 550 551 switch (II->getIntrinsicID()) { 552 case Intrinsic::memcpy: 553 case Intrinsic::memmove: 554 case Intrinsic::memset: 555 case Intrinsic::lifetime_start: 556 case Intrinsic::lifetime_end: 557 case Intrinsic::invariant_start: 558 case Intrinsic::invariant_end: 559 case Intrinsic::launder_invariant_group: 560 case Intrinsic::strip_invariant_group: 561 case Intrinsic::objectsize: 562 return true; 563 default: 564 return false; 565 } 566 } 567 568 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 569 Value *Val, 570 Instruction *Inst, 571 int OpIdx0, 572 int OpIdx1) const { 573 // Figure out which operand is the one we might not be promoting. 574 Value *OtherOp = Inst->getOperand(OpIdx0); 575 if (Val == OtherOp) 576 OtherOp = Inst->getOperand(OpIdx1); 577 578 if (isa<ConstantPointerNull>(OtherOp)) 579 return true; 580 581 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 582 if (!isa<AllocaInst>(OtherObj)) 583 return false; 584 585 // TODO: We should be able to replace undefs with the right pointer type. 586 587 // TODO: If we know the other base object is another promotable 588 // alloca, not necessarily this alloca, we can do this. The 589 // important part is both must have the same address space at 590 // the end. 591 if (OtherObj != BaseAlloca) { 592 LLVM_DEBUG( 593 dbgs() << "Found a binary instruction with another alloca object\n"); 594 return false; 595 } 596 597 return true; 598 } 599 600 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 601 Value *BaseAlloca, 602 Value *Val, 603 std::vector<Value*> &WorkList) const { 604 605 for (User *User : Val->users()) { 606 if (is_contained(WorkList, User)) 607 continue; 608 609 if (CallInst *CI = dyn_cast<CallInst>(User)) { 610 if (!isCallPromotable(CI)) 611 return false; 612 613 WorkList.push_back(User); 614 continue; 615 } 616 617 Instruction *UseInst = cast<Instruction>(User); 618 if (UseInst->getOpcode() == Instruction::PtrToInt) 619 return false; 620 621 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 622 if (LI->isVolatile()) 623 return false; 624 625 continue; 626 } 627 628 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 629 if (SI->isVolatile()) 630 return false; 631 632 // Reject if the stored value is not the pointer operand. 633 if (SI->getPointerOperand() != Val) 634 return false; 635 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 636 if (RMW->isVolatile()) 637 return false; 638 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 639 if (CAS->isVolatile()) 640 return false; 641 } 642 643 // Only promote a select if we know that the other select operand 644 // is from another pointer that will also be promoted. 645 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 646 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 647 return false; 648 649 // May need to rewrite constant operands. 650 WorkList.push_back(ICmp); 651 } 652 653 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 654 // Give up if the pointer may be captured. 655 if (PointerMayBeCaptured(UseInst, true, true)) 656 return false; 657 // Don't collect the users of this. 658 WorkList.push_back(User); 659 continue; 660 } 661 662 if (!User->getType()->isPointerTy()) 663 continue; 664 665 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 666 // Be conservative if an address could be computed outside the bounds of 667 // the alloca. 668 if (!GEP->isInBounds()) 669 return false; 670 } 671 672 // Only promote a select if we know that the other select operand is from 673 // another pointer that will also be promoted. 674 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 675 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 676 return false; 677 } 678 679 // Repeat for phis. 680 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 681 // TODO: Handle more complex cases. We should be able to replace loops 682 // over arrays. 683 switch (Phi->getNumIncomingValues()) { 684 case 1: 685 break; 686 case 2: 687 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 688 return false; 689 break; 690 default: 691 return false; 692 } 693 } 694 695 WorkList.push_back(User); 696 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 697 return false; 698 } 699 700 return true; 701 } 702 703 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { 704 705 FunctionType *FTy = F.getFunctionType(); 706 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 707 708 // If the function has any arguments in the local address space, then it's 709 // possible these arguments require the entire local memory space, so 710 // we cannot use local memory in the pass. 711 for (Type *ParamTy : FTy->params()) { 712 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 713 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 714 LocalMemLimit = 0; 715 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 716 "local memory disabled.\n"); 717 return false; 718 } 719 } 720 721 LocalMemLimit = ST.getLocalMemorySize(); 722 if (LocalMemLimit == 0) 723 return false; 724 725 const DataLayout &DL = Mod->getDataLayout(); 726 727 // Check how much local memory is being used by global objects 728 CurrentLocalMemUsage = 0; 729 for (GlobalVariable &GV : Mod->globals()) { 730 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 731 continue; 732 733 for (const User *U : GV.users()) { 734 const Instruction *Use = dyn_cast<Instruction>(U); 735 if (!Use) 736 continue; 737 738 if (Use->getParent()->getParent() == &F) { 739 unsigned Align = GV.getAlignment(); 740 if (Align == 0) 741 Align = DL.getABITypeAlignment(GV.getValueType()); 742 743 // FIXME: Try to account for padding here. The padding is currently 744 // determined from the inverse order of uses in the function. I'm not 745 // sure if the use list order is in any way connected to this, so the 746 // total reported size is likely incorrect. 747 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 748 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 749 CurrentLocalMemUsage += AllocSize; 750 break; 751 } 752 } 753 } 754 755 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 756 F); 757 758 // Restrict local memory usage so that we don't drastically reduce occupancy, 759 // unless it is already significantly reduced. 760 761 // TODO: Have some sort of hint or other heuristics to guess occupancy based 762 // on other factors.. 763 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 764 if (OccupancyHint == 0) 765 OccupancyHint = 7; 766 767 // Clamp to max value. 768 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 769 770 // Check the hint but ignore it if it's obviously wrong from the existing LDS 771 // usage. 772 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 773 774 775 // Round up to the next tier of usage. 776 unsigned MaxSizeWithWaveCount 777 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 778 779 // Program is possibly broken by using more local mem than available. 780 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 781 return false; 782 783 LocalMemLimit = MaxSizeWithWaveCount; 784 785 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 786 << " bytes of LDS\n" 787 << " Rounding size to " << MaxSizeWithWaveCount 788 << " with a maximum occupancy of " << MaxOccupancy << '\n' 789 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 790 << " available for promotion\n"); 791 792 return true; 793 } 794 795 // FIXME: Should try to pick the most likely to be profitable allocas first. 796 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { 797 // Array allocations are probably not worth handling, since an allocation of 798 // the array type is the canonical form. 799 if (!I.isStaticAlloca() || I.isArrayAllocation()) 800 return false; 801 802 const DataLayout &DL = Mod->getDataLayout(); 803 IRBuilder<> Builder(&I); 804 805 // First try to replace the alloca with a vector 806 Type *AllocaTy = I.getAllocatedType(); 807 808 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 809 810 if (tryPromoteAllocaToVector(&I, DL)) 811 return true; // Promoted to vector. 812 813 if (DisablePromoteAllocaToLDS) 814 return false; 815 816 const Function &ContainingFunction = *I.getParent()->getParent(); 817 CallingConv::ID CC = ContainingFunction.getCallingConv(); 818 819 // Don't promote the alloca to LDS for shader calling conventions as the work 820 // item ID intrinsics are not supported for these calling conventions. 821 // Furthermore not all LDS is available for some of the stages. 822 switch (CC) { 823 case CallingConv::AMDGPU_KERNEL: 824 case CallingConv::SPIR_KERNEL: 825 break; 826 default: 827 LLVM_DEBUG( 828 dbgs() 829 << " promote alloca to LDS not supported with calling convention.\n"); 830 return false; 831 } 832 833 // Not likely to have sufficient local memory for promotion. 834 if (!SufficientLDS) 835 return false; 836 837 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction); 838 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 839 840 unsigned Align = I.getAlignment(); 841 if (Align == 0) 842 Align = DL.getABITypeAlignment(I.getAllocatedType()); 843 844 // FIXME: This computed padding is likely wrong since it depends on inverse 845 // usage order. 846 // 847 // FIXME: It is also possible that if we're allowed to use all of the memory 848 // could could end up using more than the maximum due to alignment padding. 849 850 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 851 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 852 NewSize += AllocSize; 853 854 if (NewSize > LocalMemLimit) { 855 LLVM_DEBUG(dbgs() << " " << AllocSize 856 << " bytes of local memory not available to promote\n"); 857 return false; 858 } 859 860 CurrentLocalMemUsage = NewSize; 861 862 std::vector<Value*> WorkList; 863 864 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 865 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 866 return false; 867 } 868 869 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 870 871 Function *F = I.getParent()->getParent(); 872 873 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 874 GlobalVariable *GV = new GlobalVariable( 875 *Mod, GVTy, false, GlobalValue::InternalLinkage, 876 UndefValue::get(GVTy), 877 Twine(F->getName()) + Twine('.') + I.getName(), 878 nullptr, 879 GlobalVariable::NotThreadLocal, 880 AMDGPUAS::LOCAL_ADDRESS); 881 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 882 GV->setAlignment(MaybeAlign(I.getAlignment())); 883 884 Value *TCntY, *TCntZ; 885 886 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 887 Value *TIdX = getWorkitemID(Builder, 0); 888 Value *TIdY = getWorkitemID(Builder, 1); 889 Value *TIdZ = getWorkitemID(Builder, 2); 890 891 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 892 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 893 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 894 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 895 TID = Builder.CreateAdd(TID, TIdZ); 896 897 Value *Indices[] = { 898 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 899 TID 900 }; 901 902 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 903 I.mutateType(Offset->getType()); 904 I.replaceAllUsesWith(Offset); 905 I.eraseFromParent(); 906 907 for (Value *V : WorkList) { 908 CallInst *Call = dyn_cast<CallInst>(V); 909 if (!Call) { 910 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 911 Value *Src0 = CI->getOperand(0); 912 Type *EltTy = Src0->getType()->getPointerElementType(); 913 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 914 915 if (isa<ConstantPointerNull>(CI->getOperand(0))) 916 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 917 918 if (isa<ConstantPointerNull>(CI->getOperand(1))) 919 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 920 921 continue; 922 } 923 924 // The operand's value should be corrected on its own and we don't want to 925 // touch the users. 926 if (isa<AddrSpaceCastInst>(V)) 927 continue; 928 929 Type *EltTy = V->getType()->getPointerElementType(); 930 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 931 932 // FIXME: It doesn't really make sense to try to do this for all 933 // instructions. 934 V->mutateType(NewTy); 935 936 // Adjust the types of any constant operands. 937 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 938 if (isa<ConstantPointerNull>(SI->getOperand(1))) 939 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 940 941 if (isa<ConstantPointerNull>(SI->getOperand(2))) 942 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 943 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 944 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 945 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 946 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 947 } 948 } 949 950 continue; 951 } 952 953 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 954 Builder.SetInsertPoint(Intr); 955 switch (Intr->getIntrinsicID()) { 956 case Intrinsic::lifetime_start: 957 case Intrinsic::lifetime_end: 958 // These intrinsics are for address space 0 only 959 Intr->eraseFromParent(); 960 continue; 961 case Intrinsic::memcpy: { 962 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 963 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(), 964 MemCpy->getRawSource(), MemCpy->getSourceAlign(), 965 MemCpy->getLength(), MemCpy->isVolatile()); 966 Intr->eraseFromParent(); 967 continue; 968 } 969 case Intrinsic::memmove: { 970 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 971 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(), 972 MemMove->getRawSource(), MemMove->getSourceAlign(), 973 MemMove->getLength(), MemMove->isVolatile()); 974 Intr->eraseFromParent(); 975 continue; 976 } 977 case Intrinsic::memset: { 978 MemSetInst *MemSet = cast<MemSetInst>(Intr); 979 Builder.CreateMemSet( 980 MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 981 MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 982 Intr->eraseFromParent(); 983 continue; 984 } 985 case Intrinsic::invariant_start: 986 case Intrinsic::invariant_end: 987 case Intrinsic::launder_invariant_group: 988 case Intrinsic::strip_invariant_group: 989 Intr->eraseFromParent(); 990 // FIXME: I think the invariant marker should still theoretically apply, 991 // but the intrinsics need to be changed to accept pointers with any 992 // address space. 993 continue; 994 case Intrinsic::objectsize: { 995 Value *Src = Intr->getOperand(0); 996 Type *SrcTy = Src->getType()->getPointerElementType(); 997 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 998 Intrinsic::objectsize, 999 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 1000 ); 1001 1002 CallInst *NewCall = Builder.CreateCall( 1003 ObjectSize, 1004 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 1005 Intr->replaceAllUsesWith(NewCall); 1006 Intr->eraseFromParent(); 1007 continue; 1008 } 1009 default: 1010 Intr->print(errs()); 1011 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1012 } 1013 } 1014 return true; 1015 } 1016 1017 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1018 if (skipFunction(F) || DisablePromoteAllocaToVector) 1019 return false; 1020 1021 bool Changed = false; 1022 BasicBlock &EntryBB = *F.begin(); 1023 1024 SmallVector<AllocaInst *, 16> Allocas; 1025 for (Instruction &I : EntryBB) { 1026 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1027 Allocas.push_back(AI); 1028 } 1029 1030 for (AllocaInst *AI : Allocas) { 1031 if (handleAlloca(*AI)) 1032 Changed = true; 1033 } 1034 1035 return Changed; 1036 } 1037 1038 bool AMDGPUPromoteAllocaToVector::handleAlloca(AllocaInst &I) { 1039 // Array allocations are probably not worth handling, since an allocation of 1040 // the array type is the canonical form. 1041 if (!I.isStaticAlloca() || I.isArrayAllocation()) 1042 return false; 1043 1044 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1045 1046 Module *Mod = I.getParent()->getParent()->getParent(); 1047 return tryPromoteAllocaToVector(&I, Mod->getDataLayout()); 1048 } 1049 1050 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 1051 return new AMDGPUPromoteAlloca(); 1052 } 1053 1054 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 1055 return new AMDGPUPromoteAllocaToVector(); 1056 } 1057