1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 #define DEBUG_TYPE "amdgpu-promote-alloca" 25 26 using namespace llvm; 27 28 namespace { 29 30 // FIXME: This can create globals so should be a module pass. 31 class AMDGPUPromoteAlloca : public FunctionPass { 32 private: 33 const TargetMachine *TM; 34 Module *Mod; 35 const DataLayout *DL; 36 MDNode *MaxWorkGroupSizeRange; 37 38 // FIXME: This should be per-kernel. 39 uint32_t LocalMemLimit; 40 uint32_t CurrentLocalMemUsage; 41 42 bool IsAMDGCN; 43 bool IsAMDHSA; 44 45 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 46 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 47 48 /// BaseAlloca is the alloca root the search started from. 49 /// Val may be that alloca or a recursive user of it. 50 bool collectUsesWithPtrTypes(Value *BaseAlloca, 51 Value *Val, 52 std::vector<Value*> &WorkList) const; 53 54 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 55 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 56 /// Returns true if both operands are derived from the same alloca. Val should 57 /// be the same value as one of the input operands of UseInst. 58 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 59 Instruction *UseInst, 60 int OpIdx0, int OpIdx1) const; 61 62 public: 63 static char ID; 64 65 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 66 FunctionPass(ID), 67 TM(TM_), 68 Mod(nullptr), 69 DL(nullptr), 70 MaxWorkGroupSizeRange(nullptr), 71 LocalMemLimit(0), 72 CurrentLocalMemUsage(0), 73 IsAMDGCN(false), 74 IsAMDHSA(false) { } 75 76 bool doInitialization(Module &M) override; 77 bool runOnFunction(Function &F) override; 78 79 const char *getPassName() const override { 80 return "AMDGPU Promote Alloca"; 81 } 82 83 void handleAlloca(AllocaInst &I); 84 85 void getAnalysisUsage(AnalysisUsage &AU) const override { 86 AU.setPreservesCFG(); 87 FunctionPass::getAnalysisUsage(AU); 88 } 89 }; 90 91 } // End anonymous namespace 92 93 char AMDGPUPromoteAlloca::ID = 0; 94 95 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 96 "AMDGPU promote alloca to vector or LDS", false, false) 97 98 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 99 100 101 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 102 if (!TM) 103 return false; 104 105 Mod = &M; 106 DL = &Mod->getDataLayout(); 107 108 // The maximum workitem id. 109 // 110 // FIXME: Should get as subtarget property. Usually runtime enforced max is 111 // 256. 112 MDBuilder MDB(Mod->getContext()); 113 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 114 115 const Triple &TT = TM->getTargetTriple(); 116 117 IsAMDGCN = TT.getArch() == Triple::amdgcn; 118 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 119 120 return false; 121 } 122 123 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 124 if (!TM || skipFunction(F)) 125 return false; 126 127 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 128 if (!ST.isPromoteAllocaEnabled()) 129 return false; 130 131 FunctionType *FTy = F.getFunctionType(); 132 133 // If the function has any arguments in the local address space, then it's 134 // possible these arguments require the entire local memory space, so 135 // we cannot use local memory in the pass. 136 for (Type *ParamTy : FTy->params()) { 137 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 138 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 139 LocalMemLimit = 0; 140 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 141 "local memory disabled.\n"); 142 return false; 143 } 144 } 145 146 LocalMemLimit = ST.getLocalMemorySize(); 147 if (LocalMemLimit == 0) 148 return false; 149 150 const DataLayout &DL = Mod->getDataLayout(); 151 152 // Check how much local memory is being used by global objects 153 CurrentLocalMemUsage = 0; 154 for (GlobalVariable &GV : Mod->globals()) { 155 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 156 continue; 157 158 for (const User *U : GV.users()) { 159 const Instruction *Use = dyn_cast<Instruction>(U); 160 if (!Use) 161 continue; 162 163 if (Use->getParent()->getParent() == &F) { 164 unsigned Align = GV.getAlignment(); 165 if (Align == 0) 166 Align = DL.getABITypeAlignment(GV.getValueType()); 167 168 // FIXME: Try to account for padding here. The padding is currently 169 // determined from the inverse order of uses in the function. I'm not 170 // sure if the use list order is in any way connected to this, so the 171 // total reported size is likely incorrect. 172 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 173 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 174 CurrentLocalMemUsage += AllocSize; 175 break; 176 } 177 } 178 } 179 180 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage); 181 182 // Restrict local memory usage so that we don't drastically reduce occupancy, 183 // unless it is already significantly reduced. 184 185 // TODO: Have some sort of hint or other heuristics to guess occupancy based 186 // on other factors.. 187 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 188 if (OccupancyHint == 0) 189 OccupancyHint = 7; 190 191 // Clamp to max value. 192 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 193 194 // Check the hint but ignore it if it's obviously wrong from the existing LDS 195 // usage. 196 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 197 198 199 // Round up to the next tier of usage. 200 unsigned MaxSizeWithWaveCount 201 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy); 202 203 // Program is possibly broken by using more local mem than available. 204 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 205 return false; 206 207 LocalMemLimit = MaxSizeWithWaveCount; 208 209 DEBUG( 210 dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" 211 << " Rounding size to " << MaxSizeWithWaveCount 212 << " with a maximum occupancy of " << MaxOccupancy << '\n' 213 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 214 << " available for promotion\n" 215 ); 216 217 BasicBlock &EntryBB = *F.begin(); 218 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 219 AllocaInst *AI = dyn_cast<AllocaInst>(I); 220 221 ++I; 222 if (AI) 223 handleAlloca(*AI); 224 } 225 226 return true; 227 } 228 229 std::pair<Value *, Value *> 230 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 231 if (!IsAMDHSA) { 232 Function *LocalSizeYFn 233 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 234 Function *LocalSizeZFn 235 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 236 237 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 238 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 239 240 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 241 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 242 243 return std::make_pair(LocalSizeY, LocalSizeZ); 244 } 245 246 // We must read the size out of the dispatch pointer. 247 assert(IsAMDGCN); 248 249 // We are indexing into this struct, and want to extract the workgroup_size_* 250 // fields. 251 // 252 // typedef struct hsa_kernel_dispatch_packet_s { 253 // uint16_t header; 254 // uint16_t setup; 255 // uint16_t workgroup_size_x ; 256 // uint16_t workgroup_size_y; 257 // uint16_t workgroup_size_z; 258 // uint16_t reserved0; 259 // uint32_t grid_size_x ; 260 // uint32_t grid_size_y ; 261 // uint32_t grid_size_z; 262 // 263 // uint32_t private_segment_size; 264 // uint32_t group_segment_size; 265 // uint64_t kernel_object; 266 // 267 // #ifdef HSA_LARGE_MODEL 268 // void *kernarg_address; 269 // #elif defined HSA_LITTLE_ENDIAN 270 // void *kernarg_address; 271 // uint32_t reserved1; 272 // #else 273 // uint32_t reserved1; 274 // void *kernarg_address; 275 // #endif 276 // uint64_t reserved2; 277 // hsa_signal_t completion_signal; // uint64_t wrapper 278 // } hsa_kernel_dispatch_packet_t 279 // 280 Function *DispatchPtrFn 281 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 282 283 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 284 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); 285 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 286 287 // Size of the dispatch packet struct. 288 DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); 289 290 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 291 Value *CastDispatchPtr = Builder.CreateBitCast( 292 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 293 294 // We could do a single 64-bit load here, but it's likely that the basic 295 // 32-bit and extract sequence is already present, and it is probably easier 296 // to CSE this. The loads should be mergable later anyway. 297 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 298 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 299 300 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 301 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 302 303 MDNode *MD = llvm::MDNode::get(Mod->getContext(), None); 304 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 305 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 306 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 307 308 // Extract y component. Upper half of LoadZU should be zero already. 309 Value *Y = Builder.CreateLShr(LoadXY, 16); 310 311 return std::make_pair(Y, LoadZU); 312 } 313 314 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 315 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 316 317 switch (N) { 318 case 0: 319 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 320 : Intrinsic::r600_read_tidig_x; 321 break; 322 case 1: 323 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 324 : Intrinsic::r600_read_tidig_y; 325 break; 326 327 case 2: 328 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 329 : Intrinsic::r600_read_tidig_z; 330 break; 331 default: 332 llvm_unreachable("invalid dimension"); 333 } 334 335 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 336 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 337 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 338 339 return CI; 340 } 341 342 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 343 return VectorType::get(ArrayTy->getArrayElementType(), 344 ArrayTy->getArrayNumElements()); 345 } 346 347 static Value * 348 calculateVectorIndex(Value *Ptr, 349 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 350 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 351 352 auto I = GEPIdx.find(GEP); 353 return I == GEPIdx.end() ? nullptr : I->second; 354 } 355 356 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 357 // FIXME we only support simple cases 358 if (GEP->getNumOperands() != 3) 359 return nullptr; 360 361 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 362 if (!I0 || !I0->isZero()) 363 return nullptr; 364 365 return GEP->getOperand(2); 366 } 367 368 // Not an instruction handled below to turn into a vector. 369 // 370 // TODO: Check isTriviallyVectorizable for calls and handle other 371 // instructions. 372 static bool canVectorizeInst(Instruction *Inst, User *User) { 373 switch (Inst->getOpcode()) { 374 case Instruction::Load: 375 case Instruction::BitCast: 376 case Instruction::AddrSpaceCast: 377 return true; 378 case Instruction::Store: { 379 // Must be the stored pointer operand, not a stored value. 380 StoreInst *SI = cast<StoreInst>(Inst); 381 return SI->getPointerOperand() == User; 382 } 383 default: 384 return false; 385 } 386 } 387 388 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 389 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 390 391 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 392 393 // FIXME: There is no reason why we can't support larger arrays, we 394 // are just being conservative for now. 395 if (!AllocaTy || 396 AllocaTy->getElementType()->isVectorTy() || 397 AllocaTy->getNumElements() > 4 || 398 AllocaTy->getNumElements() < 2) { 399 DEBUG(dbgs() << " Cannot convert type to vector\n"); 400 return false; 401 } 402 403 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 404 std::vector<Value*> WorkList; 405 for (User *AllocaUser : Alloca->users()) { 406 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 407 if (!GEP) { 408 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 409 return false; 410 411 WorkList.push_back(AllocaUser); 412 continue; 413 } 414 415 Value *Index = GEPToVectorIndex(GEP); 416 417 // If we can't compute a vector index from this GEP, then we can't 418 // promote this alloca to vector. 419 if (!Index) { 420 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 421 return false; 422 } 423 424 GEPVectorIdx[GEP] = Index; 425 for (User *GEPUser : AllocaUser->users()) { 426 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 427 return false; 428 429 WorkList.push_back(GEPUser); 430 } 431 } 432 433 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 434 435 DEBUG(dbgs() << " Converting alloca to vector " 436 << *AllocaTy << " -> " << *VectorTy << '\n'); 437 438 for (Value *V : WorkList) { 439 Instruction *Inst = cast<Instruction>(V); 440 IRBuilder<> Builder(Inst); 441 switch (Inst->getOpcode()) { 442 case Instruction::Load: { 443 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 444 Value *Ptr = Inst->getOperand(0); 445 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 446 447 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 448 Value *VecValue = Builder.CreateLoad(BitCast); 449 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 450 Inst->replaceAllUsesWith(ExtractElement); 451 Inst->eraseFromParent(); 452 break; 453 } 454 case Instruction::Store: { 455 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 456 457 Value *Ptr = Inst->getOperand(1); 458 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 459 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 460 Value *VecValue = Builder.CreateLoad(BitCast); 461 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 462 Inst->getOperand(0), 463 Index); 464 Builder.CreateStore(NewVecValue, BitCast); 465 Inst->eraseFromParent(); 466 break; 467 } 468 case Instruction::BitCast: 469 case Instruction::AddrSpaceCast: 470 break; 471 472 default: 473 llvm_unreachable("Inconsistency in instructions promotable to vector"); 474 } 475 } 476 return true; 477 } 478 479 static bool isCallPromotable(CallInst *CI) { 480 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 481 if (!II) 482 return false; 483 484 switch (II->getIntrinsicID()) { 485 case Intrinsic::memcpy: 486 case Intrinsic::memmove: 487 case Intrinsic::memset: 488 case Intrinsic::lifetime_start: 489 case Intrinsic::lifetime_end: 490 case Intrinsic::invariant_start: 491 case Intrinsic::invariant_end: 492 case Intrinsic::invariant_group_barrier: 493 case Intrinsic::objectsize: 494 return true; 495 default: 496 return false; 497 } 498 } 499 500 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 501 Value *Val, 502 Instruction *Inst, 503 int OpIdx0, 504 int OpIdx1) const { 505 // Figure out which operand is the one we might not be promoting. 506 Value *OtherOp = Inst->getOperand(OpIdx0); 507 if (Val == OtherOp) 508 OtherOp = Inst->getOperand(OpIdx1); 509 510 if (isa<ConstantPointerNull>(OtherOp)) 511 return true; 512 513 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 514 if (!isa<AllocaInst>(OtherObj)) 515 return false; 516 517 // TODO: We should be able to replace undefs with the right pointer type. 518 519 // TODO: If we know the other base object is another promotable 520 // alloca, not necessarily this alloca, we can do this. The 521 // important part is both must have the same address space at 522 // the end. 523 if (OtherObj != BaseAlloca) { 524 DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); 525 return false; 526 } 527 528 return true; 529 } 530 531 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 532 Value *BaseAlloca, 533 Value *Val, 534 std::vector<Value*> &WorkList) const { 535 536 for (User *User : Val->users()) { 537 if (is_contained(WorkList, User)) 538 continue; 539 540 if (CallInst *CI = dyn_cast<CallInst>(User)) { 541 if (!isCallPromotable(CI)) 542 return false; 543 544 WorkList.push_back(User); 545 continue; 546 } 547 548 Instruction *UseInst = cast<Instruction>(User); 549 if (UseInst->getOpcode() == Instruction::PtrToInt) 550 return false; 551 552 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 553 if (LI->isVolatile()) 554 return false; 555 556 continue; 557 } 558 559 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 560 if (SI->isVolatile()) 561 return false; 562 563 // Reject if the stored value is not the pointer operand. 564 if (SI->getPointerOperand() != Val) 565 return false; 566 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 567 if (RMW->isVolatile()) 568 return false; 569 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 570 if (CAS->isVolatile()) 571 return false; 572 } 573 574 // Only promote a select if we know that the other select operand 575 // is from another pointer that will also be promoted. 576 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 577 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 578 return false; 579 580 // May need to rewrite constant operands. 581 WorkList.push_back(ICmp); 582 } 583 584 if (!User->getType()->isPointerTy()) 585 continue; 586 587 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 588 // Be conservative if an address could be computed outside the bounds of 589 // the alloca. 590 if (!GEP->isInBounds()) 591 return false; 592 } 593 594 // Only promote a select if we know that the other select operand is from 595 // another pointer that will also be promoted. 596 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 597 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 598 return false; 599 } 600 601 // Repeat for phis. 602 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 603 // TODO: Handle more complex cases. We should be able to replace loops 604 // over arrays. 605 switch (Phi->getNumIncomingValues()) { 606 case 1: 607 break; 608 case 2: 609 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 610 return false; 611 break; 612 default: 613 return false; 614 } 615 } 616 617 WorkList.push_back(User); 618 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 619 return false; 620 } 621 622 return true; 623 } 624 625 // FIXME: Should try to pick the most likely to be profitable allocas first. 626 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { 627 // Array allocations are probably not worth handling, since an allocation of 628 // the array type is the canonical form. 629 if (!I.isStaticAlloca() || I.isArrayAllocation()) 630 return; 631 632 IRBuilder<> Builder(&I); 633 634 // First try to replace the alloca with a vector 635 Type *AllocaTy = I.getAllocatedType(); 636 637 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 638 639 if (tryPromoteAllocaToVector(&I)) { 640 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 641 return; 642 } 643 644 const Function &ContainingFunction = *I.getParent()->getParent(); 645 646 // Don't promote the alloca to LDS for shader calling conventions as the work 647 // item ID intrinsics are not supported for these calling conventions. 648 // Furthermore not all LDS is available for some of the stages. 649 if (AMDGPU::isShader(ContainingFunction.getCallingConv())) 650 return; 651 652 const AMDGPUSubtarget &ST = 653 TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction); 654 // FIXME: We should also try to get this value from the reqd_work_group_size 655 // function attribute if it is available. 656 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 657 658 const DataLayout &DL = Mod->getDataLayout(); 659 660 unsigned Align = I.getAlignment(); 661 if (Align == 0) 662 Align = DL.getABITypeAlignment(I.getAllocatedType()); 663 664 // FIXME: This computed padding is likely wrong since it depends on inverse 665 // usage order. 666 // 667 // FIXME: It is also possible that if we're allowed to use all of the memory 668 // could could end up using more than the maximum due to alignment padding. 669 670 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 671 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 672 NewSize += AllocSize; 673 674 if (NewSize > LocalMemLimit) { 675 DEBUG(dbgs() << " " << AllocSize 676 << " bytes of local memory not available to promote\n"); 677 return; 678 } 679 680 CurrentLocalMemUsage = NewSize; 681 682 std::vector<Value*> WorkList; 683 684 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 685 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 686 return; 687 } 688 689 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 690 691 Function *F = I.getParent()->getParent(); 692 693 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 694 GlobalVariable *GV = new GlobalVariable( 695 *Mod, GVTy, false, GlobalValue::InternalLinkage, 696 UndefValue::get(GVTy), 697 Twine(F->getName()) + Twine('.') + I.getName(), 698 nullptr, 699 GlobalVariable::NotThreadLocal, 700 AMDGPUAS::LOCAL_ADDRESS); 701 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 702 GV->setAlignment(I.getAlignment()); 703 704 Value *TCntY, *TCntZ; 705 706 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 707 Value *TIdX = getWorkitemID(Builder, 0); 708 Value *TIdY = getWorkitemID(Builder, 1); 709 Value *TIdZ = getWorkitemID(Builder, 2); 710 711 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 712 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 713 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 714 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 715 TID = Builder.CreateAdd(TID, TIdZ); 716 717 Value *Indices[] = { 718 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 719 TID 720 }; 721 722 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 723 I.mutateType(Offset->getType()); 724 I.replaceAllUsesWith(Offset); 725 I.eraseFromParent(); 726 727 for (Value *V : WorkList) { 728 CallInst *Call = dyn_cast<CallInst>(V); 729 if (!Call) { 730 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 731 Value *Src0 = CI->getOperand(0); 732 Type *EltTy = Src0->getType()->getPointerElementType(); 733 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 734 735 if (isa<ConstantPointerNull>(CI->getOperand(0))) 736 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 737 738 if (isa<ConstantPointerNull>(CI->getOperand(1))) 739 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 740 741 continue; 742 } 743 744 // The operand's value should be corrected on its own. 745 if (isa<AddrSpaceCastInst>(V)) 746 continue; 747 748 Type *EltTy = V->getType()->getPointerElementType(); 749 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 750 751 // FIXME: It doesn't really make sense to try to do this for all 752 // instructions. 753 V->mutateType(NewTy); 754 755 // Adjust the types of any constant operands. 756 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 757 if (isa<ConstantPointerNull>(SI->getOperand(1))) 758 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 759 760 if (isa<ConstantPointerNull>(SI->getOperand(2))) 761 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 762 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 763 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 764 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 765 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 766 } 767 } 768 769 continue; 770 } 771 772 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 773 Builder.SetInsertPoint(Intr); 774 switch (Intr->getIntrinsicID()) { 775 case Intrinsic::lifetime_start: 776 case Intrinsic::lifetime_end: 777 // These intrinsics are for address space 0 only 778 Intr->eraseFromParent(); 779 continue; 780 case Intrinsic::memcpy: { 781 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 782 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 783 MemCpy->getLength(), MemCpy->getAlignment(), 784 MemCpy->isVolatile()); 785 Intr->eraseFromParent(); 786 continue; 787 } 788 case Intrinsic::memmove: { 789 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 790 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 791 MemMove->getLength(), MemMove->getAlignment(), 792 MemMove->isVolatile()); 793 Intr->eraseFromParent(); 794 continue; 795 } 796 case Intrinsic::memset: { 797 MemSetInst *MemSet = cast<MemSetInst>(Intr); 798 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 799 MemSet->getLength(), MemSet->getAlignment(), 800 MemSet->isVolatile()); 801 Intr->eraseFromParent(); 802 continue; 803 } 804 case Intrinsic::invariant_start: 805 case Intrinsic::invariant_end: 806 case Intrinsic::invariant_group_barrier: 807 Intr->eraseFromParent(); 808 // FIXME: I think the invariant marker should still theoretically apply, 809 // but the intrinsics need to be changed to accept pointers with any 810 // address space. 811 continue; 812 case Intrinsic::objectsize: { 813 Value *Src = Intr->getOperand(0); 814 Type *SrcTy = Src->getType()->getPointerElementType(); 815 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 816 Intrinsic::objectsize, 817 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 818 ); 819 820 CallInst *NewCall 821 = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) }); 822 Intr->replaceAllUsesWith(NewCall); 823 Intr->eraseFromParent(); 824 continue; 825 } 826 default: 827 Intr->dump(); 828 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 829 } 830 } 831 } 832 833 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 834 return new AMDGPUPromoteAlloca(TM); 835 } 836