1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates allocas by either converting them into vectors or 10 // by migrating them to local address space. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "GCNSubtarget.h" 16 #include "llvm/Analysis/CaptureTracking.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/CodeGen/TargetPassConfig.h" 19 #include "llvm/IR/IRBuilder.h" 20 #include "llvm/IR/IntrinsicsAMDGPU.h" 21 #include "llvm/IR/IntrinsicsR600.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "amdgpu-promote-alloca" 26 27 using namespace llvm; 28 29 namespace { 30 31 static cl::opt<bool> DisablePromoteAllocaToVector( 32 "disable-promote-alloca-to-vector", 33 cl::desc("Disable promote alloca to vector"), 34 cl::init(false)); 35 36 static cl::opt<bool> DisablePromoteAllocaToLDS( 37 "disable-promote-alloca-to-lds", 38 cl::desc("Disable promote alloca to LDS"), 39 cl::init(false)); 40 41 static cl::opt<unsigned> PromoteAllocaToVectorLimit( 42 "amdgpu-promote-alloca-to-vector-limit", 43 cl::desc("Maximum byte size to consider promote alloca to vector"), 44 cl::init(0)); 45 46 // FIXME: This can create globals so should be a module pass. 47 class AMDGPUPromoteAlloca : public FunctionPass { 48 public: 49 static char ID; 50 51 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 52 53 bool runOnFunction(Function &F) override; 54 55 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 56 57 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 58 59 void getAnalysisUsage(AnalysisUsage &AU) const override { 60 AU.setPreservesCFG(); 61 FunctionPass::getAnalysisUsage(AU); 62 } 63 }; 64 65 class AMDGPUPromoteAllocaImpl { 66 private: 67 const TargetMachine &TM; 68 Module *Mod = nullptr; 69 const DataLayout *DL = nullptr; 70 71 // FIXME: This should be per-kernel. 72 uint32_t LocalMemLimit = 0; 73 uint32_t CurrentLocalMemUsage = 0; 74 unsigned MaxVGPRs; 75 76 bool IsAMDGCN = false; 77 bool IsAMDHSA = false; 78 79 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 80 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 81 82 /// BaseAlloca is the alloca root the search started from. 83 /// Val may be that alloca or a recursive user of it. 84 bool collectUsesWithPtrTypes(Value *BaseAlloca, 85 Value *Val, 86 std::vector<Value*> &WorkList) const; 87 88 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 89 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 90 /// Returns true if both operands are derived from the same alloca. Val should 91 /// be the same value as one of the input operands of UseInst. 92 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 93 Instruction *UseInst, 94 int OpIdx0, int OpIdx1) const; 95 96 /// Check whether we have enough local memory for promotion. 97 bool hasSufficientLocalMem(const Function &F); 98 99 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 100 101 public: 102 AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} 103 bool run(Function &F); 104 }; 105 106 class AMDGPUPromoteAllocaToVector : public FunctionPass { 107 public: 108 static char ID; 109 110 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 111 112 bool runOnFunction(Function &F) override; 113 114 StringRef getPassName() const override { 115 return "AMDGPU Promote Alloca to vector"; 116 } 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override { 119 AU.setPreservesCFG(); 120 FunctionPass::getAnalysisUsage(AU); 121 } 122 }; 123 124 } // end anonymous namespace 125 126 char AMDGPUPromoteAlloca::ID = 0; 127 char AMDGPUPromoteAllocaToVector::ID = 0; 128 129 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 130 "AMDGPU promote alloca to vector or LDS", false, false) 131 // Move LDS uses from functions to kernels before promote alloca for accurate 132 // estimation of LDS available 133 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS) 134 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 135 "AMDGPU promote alloca to vector or LDS", false, false) 136 137 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 138 "AMDGPU promote alloca to vector", false, false) 139 140 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 141 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 142 143 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 144 if (skipFunction(F)) 145 return false; 146 147 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 148 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); 149 } 150 return false; 151 } 152 153 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 154 FunctionAnalysisManager &AM) { 155 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); 156 if (Changed) { 157 PreservedAnalyses PA; 158 PA.preserveSet<CFGAnalyses>(); 159 return PA; 160 } 161 return PreservedAnalyses::all(); 162 } 163 164 bool AMDGPUPromoteAllocaImpl::run(Function &F) { 165 Mod = F.getParent(); 166 DL = &Mod->getDataLayout(); 167 168 const Triple &TT = TM.getTargetTriple(); 169 IsAMDGCN = TT.getArch() == Triple::amdgcn; 170 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 171 172 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 173 if (!ST.isPromoteAllocaEnabled()) 174 return false; 175 176 if (IsAMDGCN) { 177 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 178 MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 179 } else { 180 MaxVGPRs = 128; 181 } 182 183 bool SufficientLDS = hasSufficientLocalMem(F); 184 bool Changed = false; 185 BasicBlock &EntryBB = *F.begin(); 186 187 SmallVector<AllocaInst *, 16> Allocas; 188 for (Instruction &I : EntryBB) { 189 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 190 Allocas.push_back(AI); 191 } 192 193 for (AllocaInst *AI : Allocas) { 194 if (handleAlloca(*AI, SufficientLDS)) 195 Changed = true; 196 } 197 198 return Changed; 199 } 200 201 std::pair<Value *, Value *> 202 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 203 Function &F = *Builder.GetInsertBlock()->getParent(); 204 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 205 206 if (!IsAMDHSA) { 207 Function *LocalSizeYFn 208 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 209 Function *LocalSizeZFn 210 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 211 212 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 213 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 214 215 ST.makeLIDRangeMetadata(LocalSizeY); 216 ST.makeLIDRangeMetadata(LocalSizeZ); 217 218 return std::make_pair(LocalSizeY, LocalSizeZ); 219 } 220 221 // We must read the size out of the dispatch pointer. 222 assert(IsAMDGCN); 223 224 // We are indexing into this struct, and want to extract the workgroup_size_* 225 // fields. 226 // 227 // typedef struct hsa_kernel_dispatch_packet_s { 228 // uint16_t header; 229 // uint16_t setup; 230 // uint16_t workgroup_size_x ; 231 // uint16_t workgroup_size_y; 232 // uint16_t workgroup_size_z; 233 // uint16_t reserved0; 234 // uint32_t grid_size_x ; 235 // uint32_t grid_size_y ; 236 // uint32_t grid_size_z; 237 // 238 // uint32_t private_segment_size; 239 // uint32_t group_segment_size; 240 // uint64_t kernel_object; 241 // 242 // #ifdef HSA_LARGE_MODEL 243 // void *kernarg_address; 244 // #elif defined HSA_LITTLE_ENDIAN 245 // void *kernarg_address; 246 // uint32_t reserved1; 247 // #else 248 // uint32_t reserved1; 249 // void *kernarg_address; 250 // #endif 251 // uint64_t reserved2; 252 // hsa_signal_t completion_signal; // uint64_t wrapper 253 // } hsa_kernel_dispatch_packet_t 254 // 255 Function *DispatchPtrFn 256 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 257 258 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 259 DispatchPtr->addRetAttr(Attribute::NoAlias); 260 DispatchPtr->addRetAttr(Attribute::NonNull); 261 F.removeFnAttr("amdgpu-no-dispatch-ptr"); 262 263 // Size of the dispatch packet struct. 264 DispatchPtr->addDereferenceableRetAttr(64); 265 266 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 267 Value *CastDispatchPtr = Builder.CreateBitCast( 268 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 269 270 // We could do a single 64-bit load here, but it's likely that the basic 271 // 32-bit and extract sequence is already present, and it is probably easier 272 // to CSE this. The loads should be mergable later anyway. 273 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 274 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 275 276 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 277 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 278 279 MDNode *MD = MDNode::get(Mod->getContext(), None); 280 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 281 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 282 ST.makeLIDRangeMetadata(LoadZU); 283 284 // Extract y component. Upper half of LoadZU should be zero already. 285 Value *Y = Builder.CreateLShr(LoadXY, 16); 286 287 return std::make_pair(Y, LoadZU); 288 } 289 290 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 291 unsigned N) { 292 Function *F = Builder.GetInsertBlock()->getParent(); 293 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 294 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 295 StringRef AttrName; 296 297 switch (N) { 298 case 0: 299 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 300 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 301 AttrName = "amdgpu-no-workitem-id-x"; 302 break; 303 case 1: 304 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 305 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 306 AttrName = "amdgpu-no-workitem-id-y"; 307 break; 308 309 case 2: 310 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 311 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 312 AttrName = "amdgpu-no-workitem-id-z"; 313 break; 314 default: 315 llvm_unreachable("invalid dimension"); 316 } 317 318 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 319 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 320 ST.makeLIDRangeMetadata(CI); 321 F->removeFnAttr(AttrName); 322 323 return CI; 324 } 325 326 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 327 return FixedVectorType::get(ArrayTy->getElementType(), 328 ArrayTy->getNumElements()); 329 } 330 331 static Value *stripBitcasts(Value *V) { 332 while (Instruction *I = dyn_cast<Instruction>(V)) { 333 if (I->getOpcode() != Instruction::BitCast) 334 break; 335 V = I->getOperand(0); 336 } 337 return V; 338 } 339 340 static Value * 341 calculateVectorIndex(Value *Ptr, 342 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 343 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); 344 if (!GEP) 345 return nullptr; 346 347 auto I = GEPIdx.find(GEP); 348 return I == GEPIdx.end() ? nullptr : I->second; 349 } 350 351 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 352 // FIXME we only support simple cases 353 if (GEP->getNumOperands() != 3) 354 return nullptr; 355 356 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 357 if (!I0 || !I0->isZero()) 358 return nullptr; 359 360 return GEP->getOperand(2); 361 } 362 363 // Not an instruction handled below to turn into a vector. 364 // 365 // TODO: Check isTriviallyVectorizable for calls and handle other 366 // instructions. 367 static bool canVectorizeInst(Instruction *Inst, User *User, 368 const DataLayout &DL) { 369 switch (Inst->getOpcode()) { 370 case Instruction::Load: { 371 // Currently only handle the case where the Pointer Operand is a GEP. 372 // Also we could not vectorize volatile or atomic loads. 373 LoadInst *LI = cast<LoadInst>(Inst); 374 if (isa<AllocaInst>(User) && 375 LI->getPointerOperandType() == User->getType() && 376 isa<VectorType>(LI->getType())) 377 return true; 378 379 Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 380 if (!PtrInst) 381 return false; 382 383 return (PtrInst->getOpcode() == Instruction::GetElementPtr || 384 PtrInst->getOpcode() == Instruction::BitCast) && 385 LI->isSimple(); 386 } 387 case Instruction::BitCast: 388 return true; 389 case Instruction::Store: { 390 // Must be the stored pointer operand, not a stored value, plus 391 // since it should be canonical form, the User should be a GEP. 392 // Also we could not vectorize volatile or atomic stores. 393 StoreInst *SI = cast<StoreInst>(Inst); 394 if (isa<AllocaInst>(User) && 395 SI->getPointerOperandType() == User->getType() && 396 isa<VectorType>(SI->getValueOperand()->getType())) 397 return true; 398 399 Instruction *UserInst = dyn_cast<Instruction>(User); 400 if (!UserInst) 401 return false; 402 403 return (SI->getPointerOperand() == User) && 404 (UserInst->getOpcode() == Instruction::GetElementPtr || 405 UserInst->getOpcode() == Instruction::BitCast) && 406 SI->isSimple(); 407 } 408 default: 409 return false; 410 } 411 } 412 413 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, 414 unsigned MaxVGPRs) { 415 416 if (DisablePromoteAllocaToVector) { 417 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 418 return false; 419 } 420 421 Type *AllocaTy = Alloca->getAllocatedType(); 422 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 423 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 424 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 425 ArrayTy->getNumElements() > 0) 426 VectorTy = arrayTypeToVecType(ArrayTy); 427 } 428 429 // Use up to 1/4 of available register budget for vectorization. 430 unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 431 : (MaxVGPRs * 32); 432 433 if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { 434 LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " 435 << MaxVGPRs << " registers available\n"); 436 return false; 437 } 438 439 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 440 441 // FIXME: There is no reason why we can't support larger arrays, we 442 // are just being conservative for now. 443 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 444 // could also be promoted but we don't currently handle this case 445 if (!VectorTy || VectorTy->getNumElements() > 16 || 446 VectorTy->getNumElements() < 2) { 447 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 448 return false; 449 } 450 451 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 452 std::vector<Value *> WorkList; 453 SmallVector<User *, 8> Users(Alloca->users()); 454 SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 455 Type *VecEltTy = VectorTy->getElementType(); 456 while (!Users.empty()) { 457 User *AllocaUser = Users.pop_back_val(); 458 User *UseUser = UseUsers.pop_back_val(); 459 Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 460 461 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 462 if (!GEP) { 463 if (!canVectorizeInst(Inst, UseUser, DL)) 464 return false; 465 466 if (Inst->getOpcode() == Instruction::BitCast) { 467 Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 468 Type *ToTy = Inst->getType()->getPointerElementType(); 469 if (FromTy->isAggregateType() || ToTy->isAggregateType() || 470 DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 471 continue; 472 473 for (User *CastUser : Inst->users()) { 474 if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 475 continue; 476 Users.push_back(CastUser); 477 UseUsers.push_back(Inst); 478 } 479 480 continue; 481 } 482 483 WorkList.push_back(AllocaUser); 484 continue; 485 } 486 487 Value *Index = GEPToVectorIndex(GEP); 488 489 // If we can't compute a vector index from this GEP, then we can't 490 // promote this alloca to vector. 491 if (!Index) { 492 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 493 << '\n'); 494 return false; 495 } 496 497 GEPVectorIdx[GEP] = Index; 498 Users.append(GEP->user_begin(), GEP->user_end()); 499 UseUsers.append(GEP->getNumUses(), GEP); 500 } 501 502 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 503 << *VectorTy << '\n'); 504 505 for (Value *V : WorkList) { 506 Instruction *Inst = cast<Instruction>(V); 507 IRBuilder<> Builder(Inst); 508 switch (Inst->getOpcode()) { 509 case Instruction::Load: { 510 if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 511 break; 512 513 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 514 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 515 if (!Index) 516 break; 517 518 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 519 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 520 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 521 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 522 if (Inst->getType() != VecEltTy) 523 ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); 524 Inst->replaceAllUsesWith(ExtractElement); 525 Inst->eraseFromParent(); 526 break; 527 } 528 case Instruction::Store: { 529 StoreInst *SI = cast<StoreInst>(Inst); 530 if (SI->getValueOperand()->getType() == AllocaTy || 531 SI->getValueOperand()->getType()->isVectorTy()) 532 break; 533 534 Value *Ptr = SI->getPointerOperand(); 535 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 536 if (!Index) 537 break; 538 539 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 540 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 541 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 542 Value *Elt = SI->getValueOperand(); 543 if (Elt->getType() != VecEltTy) 544 Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); 545 Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 546 Builder.CreateStore(NewVecValue, BitCast); 547 Inst->eraseFromParent(); 548 break; 549 } 550 551 default: 552 llvm_unreachable("Inconsistency in instructions promotable to vector"); 553 } 554 } 555 return true; 556 } 557 558 static bool isCallPromotable(CallInst *CI) { 559 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 560 if (!II) 561 return false; 562 563 switch (II->getIntrinsicID()) { 564 case Intrinsic::memcpy: 565 case Intrinsic::memmove: 566 case Intrinsic::memset: 567 case Intrinsic::lifetime_start: 568 case Intrinsic::lifetime_end: 569 case Intrinsic::invariant_start: 570 case Intrinsic::invariant_end: 571 case Intrinsic::launder_invariant_group: 572 case Intrinsic::strip_invariant_group: 573 case Intrinsic::objectsize: 574 return true; 575 default: 576 return false; 577 } 578 } 579 580 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 581 Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 582 int OpIdx1) const { 583 // Figure out which operand is the one we might not be promoting. 584 Value *OtherOp = Inst->getOperand(OpIdx0); 585 if (Val == OtherOp) 586 OtherOp = Inst->getOperand(OpIdx1); 587 588 if (isa<ConstantPointerNull>(OtherOp)) 589 return true; 590 591 Value *OtherObj = getUnderlyingObject(OtherOp); 592 if (!isa<AllocaInst>(OtherObj)) 593 return false; 594 595 // TODO: We should be able to replace undefs with the right pointer type. 596 597 // TODO: If we know the other base object is another promotable 598 // alloca, not necessarily this alloca, we can do this. The 599 // important part is both must have the same address space at 600 // the end. 601 if (OtherObj != BaseAlloca) { 602 LLVM_DEBUG( 603 dbgs() << "Found a binary instruction with another alloca object\n"); 604 return false; 605 } 606 607 return true; 608 } 609 610 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 611 Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 612 613 for (User *User : Val->users()) { 614 if (is_contained(WorkList, User)) 615 continue; 616 617 if (CallInst *CI = dyn_cast<CallInst>(User)) { 618 if (!isCallPromotable(CI)) 619 return false; 620 621 WorkList.push_back(User); 622 continue; 623 } 624 625 Instruction *UseInst = cast<Instruction>(User); 626 if (UseInst->getOpcode() == Instruction::PtrToInt) 627 return false; 628 629 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 630 if (LI->isVolatile()) 631 return false; 632 633 continue; 634 } 635 636 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 637 if (SI->isVolatile()) 638 return false; 639 640 // Reject if the stored value is not the pointer operand. 641 if (SI->getPointerOperand() != Val) 642 return false; 643 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 644 if (RMW->isVolatile()) 645 return false; 646 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 647 if (CAS->isVolatile()) 648 return false; 649 } 650 651 // Only promote a select if we know that the other select operand 652 // is from another pointer that will also be promoted. 653 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 654 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 655 return false; 656 657 // May need to rewrite constant operands. 658 WorkList.push_back(ICmp); 659 } 660 661 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 662 // Give up if the pointer may be captured. 663 if (PointerMayBeCaptured(UseInst, true, true)) 664 return false; 665 // Don't collect the users of this. 666 WorkList.push_back(User); 667 continue; 668 } 669 670 // Do not promote vector/aggregate type instructions. It is hard to track 671 // their users. 672 if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 673 return false; 674 675 if (!User->getType()->isPointerTy()) 676 continue; 677 678 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 679 // Be conservative if an address could be computed outside the bounds of 680 // the alloca. 681 if (!GEP->isInBounds()) 682 return false; 683 } 684 685 // Only promote a select if we know that the other select operand is from 686 // another pointer that will also be promoted. 687 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 688 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 689 return false; 690 } 691 692 // Repeat for phis. 693 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 694 // TODO: Handle more complex cases. We should be able to replace loops 695 // over arrays. 696 switch (Phi->getNumIncomingValues()) { 697 case 1: 698 break; 699 case 2: 700 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 701 return false; 702 break; 703 default: 704 return false; 705 } 706 } 707 708 WorkList.push_back(User); 709 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 710 return false; 711 } 712 713 return true; 714 } 715 716 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 717 718 FunctionType *FTy = F.getFunctionType(); 719 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 720 721 // If the function has any arguments in the local address space, then it's 722 // possible these arguments require the entire local memory space, so 723 // we cannot use local memory in the pass. 724 for (Type *ParamTy : FTy->params()) { 725 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 726 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 727 LocalMemLimit = 0; 728 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 729 "local memory disabled.\n"); 730 return false; 731 } 732 } 733 734 LocalMemLimit = ST.getLocalMemorySize(); 735 if (LocalMemLimit == 0) 736 return false; 737 738 SmallVector<const Constant *, 16> Stack; 739 SmallPtrSet<const Constant *, 8> VisitedConstants; 740 SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 741 742 auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 743 for (const User *U : Val->users()) { 744 if (const Instruction *Use = dyn_cast<Instruction>(U)) { 745 if (Use->getParent()->getParent() == &F) 746 return true; 747 } else { 748 const Constant *C = cast<Constant>(U); 749 if (VisitedConstants.insert(C).second) 750 Stack.push_back(C); 751 } 752 } 753 754 return false; 755 }; 756 757 for (GlobalVariable &GV : Mod->globals()) { 758 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 759 continue; 760 761 if (visitUsers(&GV, &GV)) { 762 UsedLDS.insert(&GV); 763 Stack.clear(); 764 continue; 765 } 766 767 // For any ConstantExpr uses, we need to recursively search the users until 768 // we see a function. 769 while (!Stack.empty()) { 770 const Constant *C = Stack.pop_back_val(); 771 if (visitUsers(&GV, C)) { 772 UsedLDS.insert(&GV); 773 Stack.clear(); 774 break; 775 } 776 } 777 } 778 779 const DataLayout &DL = Mod->getDataLayout(); 780 SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 781 AllocatedSizes.reserve(UsedLDS.size()); 782 783 for (const GlobalVariable *GV : UsedLDS) { 784 Align Alignment = 785 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 786 uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 787 AllocatedSizes.emplace_back(AllocSize, Alignment); 788 } 789 790 // Sort to try to estimate the worst case alignment padding 791 // 792 // FIXME: We should really do something to fix the addresses to a more optimal 793 // value instead 794 llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS, 795 std::pair<uint64_t, Align> RHS) { 796 return LHS.second < RHS.second; 797 }); 798 799 // Check how much local memory is being used by global objects 800 CurrentLocalMemUsage = 0; 801 802 // FIXME: Try to account for padding here. The real padding and address is 803 // currently determined from the inverse order of uses in the function when 804 // legalizing, which could also potentially change. We try to estimate the 805 // worst case here, but we probably should fix the addresses earlier. 806 for (auto Alloc : AllocatedSizes) { 807 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 808 CurrentLocalMemUsage += Alloc.first; 809 } 810 811 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 812 F); 813 814 // Restrict local memory usage so that we don't drastically reduce occupancy, 815 // unless it is already significantly reduced. 816 817 // TODO: Have some sort of hint or other heuristics to guess occupancy based 818 // on other factors.. 819 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 820 if (OccupancyHint == 0) 821 OccupancyHint = 7; 822 823 // Clamp to max value. 824 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 825 826 // Check the hint but ignore it if it's obviously wrong from the existing LDS 827 // usage. 828 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 829 830 831 // Round up to the next tier of usage. 832 unsigned MaxSizeWithWaveCount 833 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 834 835 // Program is possibly broken by using more local mem than available. 836 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 837 return false; 838 839 LocalMemLimit = MaxSizeWithWaveCount; 840 841 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 842 << " bytes of LDS\n" 843 << " Rounding size to " << MaxSizeWithWaveCount 844 << " with a maximum occupancy of " << MaxOccupancy << '\n' 845 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 846 << " available for promotion\n"); 847 848 return true; 849 } 850 851 // FIXME: Should try to pick the most likely to be profitable allocas first. 852 bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { 853 // Array allocations are probably not worth handling, since an allocation of 854 // the array type is the canonical form. 855 if (!I.isStaticAlloca() || I.isArrayAllocation()) 856 return false; 857 858 const DataLayout &DL = Mod->getDataLayout(); 859 IRBuilder<> Builder(&I); 860 861 // First try to replace the alloca with a vector 862 Type *AllocaTy = I.getAllocatedType(); 863 864 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 865 866 if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) 867 return true; // Promoted to vector. 868 869 if (DisablePromoteAllocaToLDS) 870 return false; 871 872 const Function &ContainingFunction = *I.getParent()->getParent(); 873 CallingConv::ID CC = ContainingFunction.getCallingConv(); 874 875 // Don't promote the alloca to LDS for shader calling conventions as the work 876 // item ID intrinsics are not supported for these calling conventions. 877 // Furthermore not all LDS is available for some of the stages. 878 switch (CC) { 879 case CallingConv::AMDGPU_KERNEL: 880 case CallingConv::SPIR_KERNEL: 881 break; 882 default: 883 LLVM_DEBUG( 884 dbgs() 885 << " promote alloca to LDS not supported with calling convention.\n"); 886 return false; 887 } 888 889 // Not likely to have sufficient local memory for promotion. 890 if (!SufficientLDS) 891 return false; 892 893 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 894 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 895 896 Align Alignment = 897 DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 898 899 // FIXME: This computed padding is likely wrong since it depends on inverse 900 // usage order. 901 // 902 // FIXME: It is also possible that if we're allowed to use all of the memory 903 // could could end up using more than the maximum due to alignment padding. 904 905 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 906 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 907 NewSize += AllocSize; 908 909 if (NewSize > LocalMemLimit) { 910 LLVM_DEBUG(dbgs() << " " << AllocSize 911 << " bytes of local memory not available to promote\n"); 912 return false; 913 } 914 915 CurrentLocalMemUsage = NewSize; 916 917 std::vector<Value*> WorkList; 918 919 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 920 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 921 return false; 922 } 923 924 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 925 926 Function *F = I.getParent()->getParent(); 927 928 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 929 GlobalVariable *GV = new GlobalVariable( 930 *Mod, GVTy, false, GlobalValue::InternalLinkage, 931 UndefValue::get(GVTy), 932 Twine(F->getName()) + Twine('.') + I.getName(), 933 nullptr, 934 GlobalVariable::NotThreadLocal, 935 AMDGPUAS::LOCAL_ADDRESS); 936 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 937 GV->setAlignment(MaybeAlign(I.getAlignment())); 938 939 Value *TCntY, *TCntZ; 940 941 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 942 Value *TIdX = getWorkitemID(Builder, 0); 943 Value *TIdY = getWorkitemID(Builder, 1); 944 Value *TIdZ = getWorkitemID(Builder, 2); 945 946 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 947 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 948 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 949 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 950 TID = Builder.CreateAdd(TID, TIdZ); 951 952 Value *Indices[] = { 953 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 954 TID 955 }; 956 957 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 958 I.mutateType(Offset->getType()); 959 I.replaceAllUsesWith(Offset); 960 I.eraseFromParent(); 961 962 SmallVector<IntrinsicInst *> DeferredIntrs; 963 964 for (Value *V : WorkList) { 965 CallInst *Call = dyn_cast<CallInst>(V); 966 if (!Call) { 967 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 968 Value *Src0 = CI->getOperand(0); 969 PointerType *NewTy = PointerType::getWithSamePointeeType( 970 cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); 971 972 if (isa<ConstantPointerNull>(CI->getOperand(0))) 973 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 974 975 if (isa<ConstantPointerNull>(CI->getOperand(1))) 976 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 977 978 continue; 979 } 980 981 // The operand's value should be corrected on its own and we don't want to 982 // touch the users. 983 if (isa<AddrSpaceCastInst>(V)) 984 continue; 985 986 PointerType *NewTy = PointerType::getWithSamePointeeType( 987 cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS); 988 989 // FIXME: It doesn't really make sense to try to do this for all 990 // instructions. 991 V->mutateType(NewTy); 992 993 // Adjust the types of any constant operands. 994 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 995 if (isa<ConstantPointerNull>(SI->getOperand(1))) 996 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 997 998 if (isa<ConstantPointerNull>(SI->getOperand(2))) 999 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 1000 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 1001 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1002 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 1003 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 1004 } 1005 } 1006 1007 continue; 1008 } 1009 1010 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 1011 Builder.SetInsertPoint(Intr); 1012 switch (Intr->getIntrinsicID()) { 1013 case Intrinsic::lifetime_start: 1014 case Intrinsic::lifetime_end: 1015 // These intrinsics are for address space 0 only 1016 Intr->eraseFromParent(); 1017 continue; 1018 case Intrinsic::memcpy: 1019 case Intrinsic::memmove: 1020 // These have 2 pointer operands. In case if second pointer also needs 1021 // to be replaced we defer processing of these intrinsics until all 1022 // other values are processed. 1023 DeferredIntrs.push_back(Intr); 1024 continue; 1025 case Intrinsic::memset: { 1026 MemSetInst *MemSet = cast<MemSetInst>(Intr); 1027 Builder.CreateMemSet( 1028 MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 1029 MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 1030 Intr->eraseFromParent(); 1031 continue; 1032 } 1033 case Intrinsic::invariant_start: 1034 case Intrinsic::invariant_end: 1035 case Intrinsic::launder_invariant_group: 1036 case Intrinsic::strip_invariant_group: 1037 Intr->eraseFromParent(); 1038 // FIXME: I think the invariant marker should still theoretically apply, 1039 // but the intrinsics need to be changed to accept pointers with any 1040 // address space. 1041 continue; 1042 case Intrinsic::objectsize: { 1043 Value *Src = Intr->getOperand(0); 1044 Function *ObjectSize = Intrinsic::getDeclaration( 1045 Mod, Intrinsic::objectsize, 1046 {Intr->getType(), 1047 PointerType::getWithSamePointeeType( 1048 cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); 1049 1050 CallInst *NewCall = Builder.CreateCall( 1051 ObjectSize, 1052 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 1053 Intr->replaceAllUsesWith(NewCall); 1054 Intr->eraseFromParent(); 1055 continue; 1056 } 1057 default: 1058 Intr->print(errs()); 1059 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1060 } 1061 } 1062 1063 for (IntrinsicInst *Intr : DeferredIntrs) { 1064 Builder.SetInsertPoint(Intr); 1065 Intrinsic::ID ID = Intr->getIntrinsicID(); 1066 assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1067 1068 MemTransferInst *MI = cast<MemTransferInst>(Intr); 1069 auto *B = 1070 Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), 1071 MI->getRawSource(), MI->getSourceAlign(), 1072 MI->getLength(), MI->isVolatile()); 1073 1074 for (unsigned I = 0; I != 2; ++I) { 1075 if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1076 B->addDereferenceableParamAttr(I, Bytes); 1077 } 1078 } 1079 1080 Intr->eraseFromParent(); 1081 } 1082 1083 return true; 1084 } 1085 1086 bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { 1087 // Array allocations are probably not worth handling, since an allocation of 1088 // the array type is the canonical form. 1089 if (!I.isStaticAlloca() || I.isArrayAllocation()) 1090 return false; 1091 1092 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1093 1094 Module *Mod = I.getParent()->getParent()->getParent(); 1095 return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); 1096 } 1097 1098 bool promoteAllocasToVector(Function &F, TargetMachine &TM) { 1099 if (DisablePromoteAllocaToVector) 1100 return false; 1101 1102 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1103 if (!ST.isPromoteAllocaEnabled()) 1104 return false; 1105 1106 unsigned MaxVGPRs; 1107 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1108 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 1109 MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 1110 } else { 1111 MaxVGPRs = 128; 1112 } 1113 1114 bool Changed = false; 1115 BasicBlock &EntryBB = *F.begin(); 1116 1117 SmallVector<AllocaInst *, 16> Allocas; 1118 for (Instruction &I : EntryBB) { 1119 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1120 Allocas.push_back(AI); 1121 } 1122 1123 for (AllocaInst *AI : Allocas) { 1124 if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) 1125 Changed = true; 1126 } 1127 1128 return Changed; 1129 } 1130 1131 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1132 if (skipFunction(F)) 1133 return false; 1134 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1135 return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); 1136 } 1137 return false; 1138 } 1139 1140 PreservedAnalyses 1141 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 1142 bool Changed = promoteAllocasToVector(F, TM); 1143 if (Changed) { 1144 PreservedAnalyses PA; 1145 PA.preserveSet<CFGAnalyses>(); 1146 return PA; 1147 } 1148 return PreservedAnalyses::all(); 1149 } 1150 1151 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 1152 return new AMDGPUPromoteAlloca(); 1153 } 1154 1155 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 1156 return new AMDGPUPromoteAllocaToVector(); 1157 } 1158