1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "Utils/AMDGPUBaseInfo.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <map> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 #define DEBUG_TYPE "amdgpu-promote-alloca" 63 64 using namespace llvm; 65 66 namespace { 67 68 static cl::opt<bool> DisablePromoteAllocaToVector( 69 "disable-promote-alloca-to-vector", 70 cl::desc("Disable promote alloca to vector"), 71 cl::init(false)); 72 73 // FIXME: This can create globals so should be a module pass. 74 class AMDGPUPromoteAlloca : public FunctionPass { 75 private: 76 const TargetMachine *TM; 77 Module *Mod = nullptr; 78 const DataLayout *DL = nullptr; 79 80 // FIXME: This should be per-kernel. 81 uint32_t LocalMemLimit = 0; 82 uint32_t CurrentLocalMemUsage = 0; 83 84 bool IsAMDGCN = false; 85 bool IsAMDHSA = false; 86 87 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 88 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 89 90 /// BaseAlloca is the alloca root the search started from. 91 /// Val may be that alloca or a recursive user of it. 92 bool collectUsesWithPtrTypes(Value *BaseAlloca, 93 Value *Val, 94 std::vector<Value*> &WorkList) const; 95 96 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 97 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 98 /// Returns true if both operands are derived from the same alloca. Val should 99 /// be the same value as one of the input operands of UseInst. 100 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 101 Instruction *UseInst, 102 int OpIdx0, int OpIdx1) const; 103 104 /// Check whether we have enough local memory for promotion. 105 bool hasSufficientLocalMem(const Function &F); 106 107 public: 108 static char ID; 109 110 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 111 112 bool doInitialization(Module &M) override; 113 bool runOnFunction(Function &F) override; 114 115 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 116 117 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 118 119 void getAnalysisUsage(AnalysisUsage &AU) const override { 120 AU.setPreservesCFG(); 121 FunctionPass::getAnalysisUsage(AU); 122 } 123 }; 124 125 } // end anonymous namespace 126 127 char AMDGPUPromoteAlloca::ID = 0; 128 129 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 130 "AMDGPU promote alloca to vector or LDS", false, false) 131 132 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 133 134 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 135 Mod = &M; 136 DL = &Mod->getDataLayout(); 137 138 return false; 139 } 140 141 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 142 if (skipFunction(F)) 143 return false; 144 145 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 146 TM = &TPC->getTM<TargetMachine>(); 147 else 148 return false; 149 150 const Triple &TT = TM->getTargetTriple(); 151 IsAMDGCN = TT.getArch() == Triple::amdgcn; 152 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 153 154 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 155 if (!ST.isPromoteAllocaEnabled()) 156 return false; 157 158 bool SufficientLDS = hasSufficientLocalMem(F); 159 bool Changed = false; 160 BasicBlock &EntryBB = *F.begin(); 161 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 162 AllocaInst *AI = dyn_cast<AllocaInst>(I); 163 164 ++I; 165 if (AI) 166 Changed |= handleAlloca(*AI, SufficientLDS); 167 } 168 169 return Changed; 170 } 171 172 std::pair<Value *, Value *> 173 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 174 const Function &F = *Builder.GetInsertBlock()->getParent(); 175 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 176 177 if (!IsAMDHSA) { 178 Function *LocalSizeYFn 179 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 180 Function *LocalSizeZFn 181 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 182 183 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 184 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 185 186 ST.makeLIDRangeMetadata(LocalSizeY); 187 ST.makeLIDRangeMetadata(LocalSizeZ); 188 189 return std::make_pair(LocalSizeY, LocalSizeZ); 190 } 191 192 // We must read the size out of the dispatch pointer. 193 assert(IsAMDGCN); 194 195 // We are indexing into this struct, and want to extract the workgroup_size_* 196 // fields. 197 // 198 // typedef struct hsa_kernel_dispatch_packet_s { 199 // uint16_t header; 200 // uint16_t setup; 201 // uint16_t workgroup_size_x ; 202 // uint16_t workgroup_size_y; 203 // uint16_t workgroup_size_z; 204 // uint16_t reserved0; 205 // uint32_t grid_size_x ; 206 // uint32_t grid_size_y ; 207 // uint32_t grid_size_z; 208 // 209 // uint32_t private_segment_size; 210 // uint32_t group_segment_size; 211 // uint64_t kernel_object; 212 // 213 // #ifdef HSA_LARGE_MODEL 214 // void *kernarg_address; 215 // #elif defined HSA_LITTLE_ENDIAN 216 // void *kernarg_address; 217 // uint32_t reserved1; 218 // #else 219 // uint32_t reserved1; 220 // void *kernarg_address; 221 // #endif 222 // uint64_t reserved2; 223 // hsa_signal_t completion_signal; // uint64_t wrapper 224 // } hsa_kernel_dispatch_packet_t 225 // 226 Function *DispatchPtrFn 227 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 228 229 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 230 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 231 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 232 233 // Size of the dispatch packet struct. 234 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 235 236 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 237 Value *CastDispatchPtr = Builder.CreateBitCast( 238 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 239 240 // We could do a single 64-bit load here, but it's likely that the basic 241 // 32-bit and extract sequence is already present, and it is probably easier 242 // to CSE this. The loads should be mergable later anyway. 243 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 244 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 245 246 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 247 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 248 249 MDNode *MD = MDNode::get(Mod->getContext(), None); 250 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 251 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 252 ST.makeLIDRangeMetadata(LoadZU); 253 254 // Extract y component. Upper half of LoadZU should be zero already. 255 Value *Y = Builder.CreateLShr(LoadXY, 16); 256 257 return std::make_pair(Y, LoadZU); 258 } 259 260 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 261 const AMDGPUSubtarget &ST = 262 AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent()); 263 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 264 265 switch (N) { 266 case 0: 267 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 268 : Intrinsic::r600_read_tidig_x; 269 break; 270 case 1: 271 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 272 : Intrinsic::r600_read_tidig_y; 273 break; 274 275 case 2: 276 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 277 : Intrinsic::r600_read_tidig_z; 278 break; 279 default: 280 llvm_unreachable("invalid dimension"); 281 } 282 283 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 284 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 285 ST.makeLIDRangeMetadata(CI); 286 287 return CI; 288 } 289 290 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 291 return VectorType::get(ArrayTy->getElementType(), 292 ArrayTy->getNumElements()); 293 } 294 295 static Value * 296 calculateVectorIndex(Value *Ptr, 297 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 298 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 299 300 auto I = GEPIdx.find(GEP); 301 return I == GEPIdx.end() ? nullptr : I->second; 302 } 303 304 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 305 // FIXME we only support simple cases 306 if (GEP->getNumOperands() != 3) 307 return nullptr; 308 309 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 310 if (!I0 || !I0->isZero()) 311 return nullptr; 312 313 return GEP->getOperand(2); 314 } 315 316 // Not an instruction handled below to turn into a vector. 317 // 318 // TODO: Check isTriviallyVectorizable for calls and handle other 319 // instructions. 320 static bool canVectorizeInst(Instruction *Inst, User *User) { 321 switch (Inst->getOpcode()) { 322 case Instruction::Load: { 323 // Currently only handle the case where the Pointer Operand is a GEP. 324 // Also we could not vectorize volatile or atomic loads. 325 LoadInst *LI = cast<LoadInst>(Inst); 326 return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple(); 327 } 328 case Instruction::BitCast: 329 return true; 330 case Instruction::Store: { 331 // Must be the stored pointer operand, not a stored value, plus 332 // since it should be canonical form, the User should be a GEP. 333 // Also we could not vectorize volatile or atomic stores. 334 StoreInst *SI = cast<StoreInst>(Inst); 335 return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple(); 336 } 337 default: 338 return false; 339 } 340 } 341 342 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 343 344 if (DisablePromoteAllocaToVector) { 345 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 346 return false; 347 } 348 349 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 350 351 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 352 353 // FIXME: There is no reason why we can't support larger arrays, we 354 // are just being conservative for now. 355 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 356 // could also be promoted but we don't currently handle this case 357 if (!AllocaTy || 358 AllocaTy->getNumElements() > 16 || 359 AllocaTy->getNumElements() < 2 || 360 !VectorType::isValidElementType(AllocaTy->getElementType())) { 361 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 362 return false; 363 } 364 365 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 366 std::vector<Value*> WorkList; 367 for (User *AllocaUser : Alloca->users()) { 368 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 369 if (!GEP) { 370 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 371 return false; 372 373 WorkList.push_back(AllocaUser); 374 continue; 375 } 376 377 Value *Index = GEPToVectorIndex(GEP); 378 379 // If we can't compute a vector index from this GEP, then we can't 380 // promote this alloca to vector. 381 if (!Index) { 382 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 383 << '\n'); 384 return false; 385 } 386 387 GEPVectorIdx[GEP] = Index; 388 for (User *GEPUser : AllocaUser->users()) { 389 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 390 return false; 391 392 WorkList.push_back(GEPUser); 393 } 394 } 395 396 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 397 398 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 399 << *VectorTy << '\n'); 400 401 for (Value *V : WorkList) { 402 Instruction *Inst = cast<Instruction>(V); 403 IRBuilder<> Builder(Inst); 404 switch (Inst->getOpcode()) { 405 case Instruction::Load: { 406 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 407 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 408 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 409 410 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 411 Value *VecValue = Builder.CreateLoad(BitCast); 412 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 413 Inst->replaceAllUsesWith(ExtractElement); 414 Inst->eraseFromParent(); 415 break; 416 } 417 case Instruction::Store: { 418 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 419 420 StoreInst *SI = cast<StoreInst>(Inst); 421 Value *Ptr = SI->getPointerOperand(); 422 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 423 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 424 Value *VecValue = Builder.CreateLoad(BitCast); 425 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 426 SI->getValueOperand(), 427 Index); 428 Builder.CreateStore(NewVecValue, BitCast); 429 Inst->eraseFromParent(); 430 break; 431 } 432 case Instruction::BitCast: 433 case Instruction::AddrSpaceCast: 434 break; 435 436 default: 437 llvm_unreachable("Inconsistency in instructions promotable to vector"); 438 } 439 } 440 return true; 441 } 442 443 static bool isCallPromotable(CallInst *CI) { 444 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 445 if (!II) 446 return false; 447 448 switch (II->getIntrinsicID()) { 449 case Intrinsic::memcpy: 450 case Intrinsic::memmove: 451 case Intrinsic::memset: 452 case Intrinsic::lifetime_start: 453 case Intrinsic::lifetime_end: 454 case Intrinsic::invariant_start: 455 case Intrinsic::invariant_end: 456 case Intrinsic::launder_invariant_group: 457 case Intrinsic::strip_invariant_group: 458 case Intrinsic::objectsize: 459 return true; 460 default: 461 return false; 462 } 463 } 464 465 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 466 Value *Val, 467 Instruction *Inst, 468 int OpIdx0, 469 int OpIdx1) const { 470 // Figure out which operand is the one we might not be promoting. 471 Value *OtherOp = Inst->getOperand(OpIdx0); 472 if (Val == OtherOp) 473 OtherOp = Inst->getOperand(OpIdx1); 474 475 if (isa<ConstantPointerNull>(OtherOp)) 476 return true; 477 478 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 479 if (!isa<AllocaInst>(OtherObj)) 480 return false; 481 482 // TODO: We should be able to replace undefs with the right pointer type. 483 484 // TODO: If we know the other base object is another promotable 485 // alloca, not necessarily this alloca, we can do this. The 486 // important part is both must have the same address space at 487 // the end. 488 if (OtherObj != BaseAlloca) { 489 LLVM_DEBUG( 490 dbgs() << "Found a binary instruction with another alloca object\n"); 491 return false; 492 } 493 494 return true; 495 } 496 497 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 498 Value *BaseAlloca, 499 Value *Val, 500 std::vector<Value*> &WorkList) const { 501 502 for (User *User : Val->users()) { 503 if (is_contained(WorkList, User)) 504 continue; 505 506 if (CallInst *CI = dyn_cast<CallInst>(User)) { 507 if (!isCallPromotable(CI)) 508 return false; 509 510 WorkList.push_back(User); 511 continue; 512 } 513 514 Instruction *UseInst = cast<Instruction>(User); 515 if (UseInst->getOpcode() == Instruction::PtrToInt) 516 return false; 517 518 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 519 if (LI->isVolatile()) 520 return false; 521 522 continue; 523 } 524 525 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 526 if (SI->isVolatile()) 527 return false; 528 529 // Reject if the stored value is not the pointer operand. 530 if (SI->getPointerOperand() != Val) 531 return false; 532 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 533 if (RMW->isVolatile()) 534 return false; 535 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 536 if (CAS->isVolatile()) 537 return false; 538 } 539 540 // Only promote a select if we know that the other select operand 541 // is from another pointer that will also be promoted. 542 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 543 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 544 return false; 545 546 // May need to rewrite constant operands. 547 WorkList.push_back(ICmp); 548 } 549 550 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 551 // Give up if the pointer may be captured. 552 if (PointerMayBeCaptured(UseInst, true, true)) 553 return false; 554 // Don't collect the users of this. 555 WorkList.push_back(User); 556 continue; 557 } 558 559 if (!User->getType()->isPointerTy()) 560 continue; 561 562 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 563 // Be conservative if an address could be computed outside the bounds of 564 // the alloca. 565 if (!GEP->isInBounds()) 566 return false; 567 } 568 569 // Only promote a select if we know that the other select operand is from 570 // another pointer that will also be promoted. 571 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 572 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 573 return false; 574 } 575 576 // Repeat for phis. 577 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 578 // TODO: Handle more complex cases. We should be able to replace loops 579 // over arrays. 580 switch (Phi->getNumIncomingValues()) { 581 case 1: 582 break; 583 case 2: 584 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 585 return false; 586 break; 587 default: 588 return false; 589 } 590 } 591 592 WorkList.push_back(User); 593 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 594 return false; 595 } 596 597 return true; 598 } 599 600 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { 601 602 FunctionType *FTy = F.getFunctionType(); 603 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 604 605 // If the function has any arguments in the local address space, then it's 606 // possible these arguments require the entire local memory space, so 607 // we cannot use local memory in the pass. 608 for (Type *ParamTy : FTy->params()) { 609 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 610 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 611 LocalMemLimit = 0; 612 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 613 "local memory disabled.\n"); 614 return false; 615 } 616 } 617 618 LocalMemLimit = ST.getLocalMemorySize(); 619 if (LocalMemLimit == 0) 620 return false; 621 622 const DataLayout &DL = Mod->getDataLayout(); 623 624 // Check how much local memory is being used by global objects 625 CurrentLocalMemUsage = 0; 626 for (GlobalVariable &GV : Mod->globals()) { 627 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 628 continue; 629 630 for (const User *U : GV.users()) { 631 const Instruction *Use = dyn_cast<Instruction>(U); 632 if (!Use) 633 continue; 634 635 if (Use->getParent()->getParent() == &F) { 636 unsigned Align = GV.getAlignment(); 637 if (Align == 0) 638 Align = DL.getABITypeAlignment(GV.getValueType()); 639 640 // FIXME: Try to account for padding here. The padding is currently 641 // determined from the inverse order of uses in the function. I'm not 642 // sure if the use list order is in any way connected to this, so the 643 // total reported size is likely incorrect. 644 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 645 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 646 CurrentLocalMemUsage += AllocSize; 647 break; 648 } 649 } 650 } 651 652 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 653 F); 654 655 // Restrict local memory usage so that we don't drastically reduce occupancy, 656 // unless it is already significantly reduced. 657 658 // TODO: Have some sort of hint or other heuristics to guess occupancy based 659 // on other factors.. 660 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 661 if (OccupancyHint == 0) 662 OccupancyHint = 7; 663 664 // Clamp to max value. 665 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 666 667 // Check the hint but ignore it if it's obviously wrong from the existing LDS 668 // usage. 669 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 670 671 672 // Round up to the next tier of usage. 673 unsigned MaxSizeWithWaveCount 674 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 675 676 // Program is possibly broken by using more local mem than available. 677 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 678 return false; 679 680 LocalMemLimit = MaxSizeWithWaveCount; 681 682 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 683 << " bytes of LDS\n" 684 << " Rounding size to " << MaxSizeWithWaveCount 685 << " with a maximum occupancy of " << MaxOccupancy << '\n' 686 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 687 << " available for promotion\n"); 688 689 return true; 690 } 691 692 // FIXME: Should try to pick the most likely to be profitable allocas first. 693 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { 694 // Array allocations are probably not worth handling, since an allocation of 695 // the array type is the canonical form. 696 if (!I.isStaticAlloca() || I.isArrayAllocation()) 697 return false; 698 699 IRBuilder<> Builder(&I); 700 701 // First try to replace the alloca with a vector 702 Type *AllocaTy = I.getAllocatedType(); 703 704 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 705 706 if (tryPromoteAllocaToVector(&I)) 707 return true; // Promoted to vector. 708 709 const Function &ContainingFunction = *I.getParent()->getParent(); 710 CallingConv::ID CC = ContainingFunction.getCallingConv(); 711 712 // Don't promote the alloca to LDS for shader calling conventions as the work 713 // item ID intrinsics are not supported for these calling conventions. 714 // Furthermore not all LDS is available for some of the stages. 715 switch (CC) { 716 case CallingConv::AMDGPU_KERNEL: 717 case CallingConv::SPIR_KERNEL: 718 break; 719 default: 720 LLVM_DEBUG( 721 dbgs() 722 << " promote alloca to LDS not supported with calling convention.\n"); 723 return false; 724 } 725 726 // Not likely to have sufficient local memory for promotion. 727 if (!SufficientLDS) 728 return false; 729 730 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction); 731 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 732 733 const DataLayout &DL = Mod->getDataLayout(); 734 735 unsigned Align = I.getAlignment(); 736 if (Align == 0) 737 Align = DL.getABITypeAlignment(I.getAllocatedType()); 738 739 // FIXME: This computed padding is likely wrong since it depends on inverse 740 // usage order. 741 // 742 // FIXME: It is also possible that if we're allowed to use all of the memory 743 // could could end up using more than the maximum due to alignment padding. 744 745 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 746 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 747 NewSize += AllocSize; 748 749 if (NewSize > LocalMemLimit) { 750 LLVM_DEBUG(dbgs() << " " << AllocSize 751 << " bytes of local memory not available to promote\n"); 752 return false; 753 } 754 755 CurrentLocalMemUsage = NewSize; 756 757 std::vector<Value*> WorkList; 758 759 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 760 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 761 return false; 762 } 763 764 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 765 766 Function *F = I.getParent()->getParent(); 767 768 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 769 GlobalVariable *GV = new GlobalVariable( 770 *Mod, GVTy, false, GlobalValue::InternalLinkage, 771 UndefValue::get(GVTy), 772 Twine(F->getName()) + Twine('.') + I.getName(), 773 nullptr, 774 GlobalVariable::NotThreadLocal, 775 AMDGPUAS::LOCAL_ADDRESS); 776 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 777 GV->setAlignment(I.getAlignment()); 778 779 Value *TCntY, *TCntZ; 780 781 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 782 Value *TIdX = getWorkitemID(Builder, 0); 783 Value *TIdY = getWorkitemID(Builder, 1); 784 Value *TIdZ = getWorkitemID(Builder, 2); 785 786 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 787 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 788 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 789 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 790 TID = Builder.CreateAdd(TID, TIdZ); 791 792 Value *Indices[] = { 793 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 794 TID 795 }; 796 797 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 798 I.mutateType(Offset->getType()); 799 I.replaceAllUsesWith(Offset); 800 I.eraseFromParent(); 801 802 for (Value *V : WorkList) { 803 CallInst *Call = dyn_cast<CallInst>(V); 804 if (!Call) { 805 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 806 Value *Src0 = CI->getOperand(0); 807 Type *EltTy = Src0->getType()->getPointerElementType(); 808 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 809 810 if (isa<ConstantPointerNull>(CI->getOperand(0))) 811 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 812 813 if (isa<ConstantPointerNull>(CI->getOperand(1))) 814 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 815 816 continue; 817 } 818 819 // The operand's value should be corrected on its own and we don't want to 820 // touch the users. 821 if (isa<AddrSpaceCastInst>(V)) 822 continue; 823 824 Type *EltTy = V->getType()->getPointerElementType(); 825 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 826 827 // FIXME: It doesn't really make sense to try to do this for all 828 // instructions. 829 V->mutateType(NewTy); 830 831 // Adjust the types of any constant operands. 832 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 833 if (isa<ConstantPointerNull>(SI->getOperand(1))) 834 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 835 836 if (isa<ConstantPointerNull>(SI->getOperand(2))) 837 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 838 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 839 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 840 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 841 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 842 } 843 } 844 845 continue; 846 } 847 848 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 849 Builder.SetInsertPoint(Intr); 850 switch (Intr->getIntrinsicID()) { 851 case Intrinsic::lifetime_start: 852 case Intrinsic::lifetime_end: 853 // These intrinsics are for address space 0 only 854 Intr->eraseFromParent(); 855 continue; 856 case Intrinsic::memcpy: { 857 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 858 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(), 859 MemCpy->getRawSource(), MemCpy->getSourceAlignment(), 860 MemCpy->getLength(), MemCpy->isVolatile()); 861 Intr->eraseFromParent(); 862 continue; 863 } 864 case Intrinsic::memmove: { 865 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 866 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(), 867 MemMove->getRawSource(), MemMove->getSourceAlignment(), 868 MemMove->getLength(), MemMove->isVolatile()); 869 Intr->eraseFromParent(); 870 continue; 871 } 872 case Intrinsic::memset: { 873 MemSetInst *MemSet = cast<MemSetInst>(Intr); 874 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 875 MemSet->getLength(), MemSet->getDestAlignment(), 876 MemSet->isVolatile()); 877 Intr->eraseFromParent(); 878 continue; 879 } 880 case Intrinsic::invariant_start: 881 case Intrinsic::invariant_end: 882 case Intrinsic::launder_invariant_group: 883 case Intrinsic::strip_invariant_group: 884 Intr->eraseFromParent(); 885 // FIXME: I think the invariant marker should still theoretically apply, 886 // but the intrinsics need to be changed to accept pointers with any 887 // address space. 888 continue; 889 case Intrinsic::objectsize: { 890 Value *Src = Intr->getOperand(0); 891 Type *SrcTy = Src->getType()->getPointerElementType(); 892 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 893 Intrinsic::objectsize, 894 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 895 ); 896 897 CallInst *NewCall = Builder.CreateCall( 898 ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)}); 899 Intr->replaceAllUsesWith(NewCall); 900 Intr->eraseFromParent(); 901 continue; 902 } 903 default: 904 Intr->print(errs()); 905 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 906 } 907 } 908 return true; 909 } 910 911 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 912 return new AMDGPUPromoteAlloca(); 913 } 914