1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass eliminates allocas by either converting them into vectors or
10 // by migrating them to local address space.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPU.h"
15 #include "AMDGPUSubtarget.h"
16 #include "Utils/AMDGPUBaseInfo.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/Pass.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/MathExtras.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Target/TargetMachine.h"
53 #include <algorithm>
54 #include <cassert>
55 #include <cstdint>
56 #include <map>
57 #include <tuple>
58 #include <utility>
59 #include <vector>
60 
61 #define DEBUG_TYPE "amdgpu-promote-alloca"
62 
63 using namespace llvm;
64 
65 namespace {
66 
67 static cl::opt<bool> DisablePromoteAllocaToVector(
68   "disable-promote-alloca-to-vector",
69   cl::desc("Disable promote alloca to vector"),
70   cl::init(false));
71 
72 static cl::opt<bool> DisablePromoteAllocaToLDS(
73   "disable-promote-alloca-to-lds",
74   cl::desc("Disable promote alloca to LDS"),
75   cl::init(false));
76 
77 // FIXME: This can create globals so should be a module pass.
78 class AMDGPUPromoteAlloca : public FunctionPass {
79 private:
80   const TargetMachine *TM;
81   Module *Mod = nullptr;
82   const DataLayout *DL = nullptr;
83 
84   // FIXME: This should be per-kernel.
85   uint32_t LocalMemLimit = 0;
86   uint32_t CurrentLocalMemUsage = 0;
87 
88   bool IsAMDGCN = false;
89   bool IsAMDHSA = false;
90 
91   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
92   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
93 
94   /// BaseAlloca is the alloca root the search started from.
95   /// Val may be that alloca or a recursive user of it.
96   bool collectUsesWithPtrTypes(Value *BaseAlloca,
97                                Value *Val,
98                                std::vector<Value*> &WorkList) const;
99 
100   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
101   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
102   /// Returns true if both operands are derived from the same alloca. Val should
103   /// be the same value as one of the input operands of UseInst.
104   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
105                                        Instruction *UseInst,
106                                        int OpIdx0, int OpIdx1) const;
107 
108   /// Check whether we have enough local memory for promotion.
109   bool hasSufficientLocalMem(const Function &F);
110 
111 public:
112   static char ID;
113 
114   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
115 
116   bool doInitialization(Module &M) override;
117   bool runOnFunction(Function &F) override;
118 
119   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
120 
121   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
122 
123   void getAnalysisUsage(AnalysisUsage &AU) const override {
124     AU.setPreservesCFG();
125     FunctionPass::getAnalysisUsage(AU);
126   }
127 };
128 
129 } // end anonymous namespace
130 
131 char AMDGPUPromoteAlloca::ID = 0;
132 
133 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
134                 "AMDGPU promote alloca to vector or LDS", false, false)
135 
136 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
137 
138 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
139   Mod = &M;
140   DL = &Mod->getDataLayout();
141 
142   return false;
143 }
144 
145 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
146   if (skipFunction(F))
147     return false;
148 
149   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
150     TM = &TPC->getTM<TargetMachine>();
151   else
152     return false;
153 
154   const Triple &TT = TM->getTargetTriple();
155   IsAMDGCN = TT.getArch() == Triple::amdgcn;
156   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
157 
158   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
159   if (!ST.isPromoteAllocaEnabled())
160     return false;
161 
162   bool SufficientLDS = hasSufficientLocalMem(F);
163   bool Changed = false;
164   BasicBlock &EntryBB = *F.begin();
165   for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) {
166     AllocaInst *AI = dyn_cast<AllocaInst>(I);
167 
168     ++I;
169     if (AI)
170       Changed |= handleAlloca(*AI, SufficientLDS);
171   }
172 
173   return Changed;
174 }
175 
176 std::pair<Value *, Value *>
177 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
178   const Function &F = *Builder.GetInsertBlock()->getParent();
179   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
180 
181   if (!IsAMDHSA) {
182     Function *LocalSizeYFn
183       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
184     Function *LocalSizeZFn
185       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
186 
187     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
188     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
189 
190     ST.makeLIDRangeMetadata(LocalSizeY);
191     ST.makeLIDRangeMetadata(LocalSizeZ);
192 
193     return std::make_pair(LocalSizeY, LocalSizeZ);
194   }
195 
196   // We must read the size out of the dispatch pointer.
197   assert(IsAMDGCN);
198 
199   // We are indexing into this struct, and want to extract the workgroup_size_*
200   // fields.
201   //
202   //   typedef struct hsa_kernel_dispatch_packet_s {
203   //     uint16_t header;
204   //     uint16_t setup;
205   //     uint16_t workgroup_size_x ;
206   //     uint16_t workgroup_size_y;
207   //     uint16_t workgroup_size_z;
208   //     uint16_t reserved0;
209   //     uint32_t grid_size_x ;
210   //     uint32_t grid_size_y ;
211   //     uint32_t grid_size_z;
212   //
213   //     uint32_t private_segment_size;
214   //     uint32_t group_segment_size;
215   //     uint64_t kernel_object;
216   //
217   // #ifdef HSA_LARGE_MODEL
218   //     void *kernarg_address;
219   // #elif defined HSA_LITTLE_ENDIAN
220   //     void *kernarg_address;
221   //     uint32_t reserved1;
222   // #else
223   //     uint32_t reserved1;
224   //     void *kernarg_address;
225   // #endif
226   //     uint64_t reserved2;
227   //     hsa_signal_t completion_signal; // uint64_t wrapper
228   //   } hsa_kernel_dispatch_packet_t
229   //
230   Function *DispatchPtrFn
231     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
232 
233   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
234   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
235   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
236 
237   // Size of the dispatch packet struct.
238   DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
239 
240   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
241   Value *CastDispatchPtr = Builder.CreateBitCast(
242     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
243 
244   // We could do a single 64-bit load here, but it's likely that the basic
245   // 32-bit and extract sequence is already present, and it is probably easier
246   // to CSE this. The loads should be mergable later anyway.
247   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1);
248   LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, 4);
249 
250   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2);
251   LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, 4);
252 
253   MDNode *MD = MDNode::get(Mod->getContext(), None);
254   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
255   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
256   ST.makeLIDRangeMetadata(LoadZU);
257 
258   // Extract y component. Upper half of LoadZU should be zero already.
259   Value *Y = Builder.CreateLShr(LoadXY, 16);
260 
261   return std::make_pair(Y, LoadZU);
262 }
263 
264 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
265   const AMDGPUSubtarget &ST =
266       AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent());
267   Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
268 
269   switch (N) {
270   case 0:
271     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
272       : Intrinsic::r600_read_tidig_x;
273     break;
274   case 1:
275     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
276       : Intrinsic::r600_read_tidig_y;
277     break;
278 
279   case 2:
280     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
281       : Intrinsic::r600_read_tidig_z;
282     break;
283   default:
284     llvm_unreachable("invalid dimension");
285   }
286 
287   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
288   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
289   ST.makeLIDRangeMetadata(CI);
290 
291   return CI;
292 }
293 
294 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
295   return VectorType::get(ArrayTy->getElementType(),
296                          ArrayTy->getNumElements());
297 }
298 
299 static Value *
300 calculateVectorIndex(Value *Ptr,
301                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
302   GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
303 
304   auto I = GEPIdx.find(GEP);
305   return I == GEPIdx.end() ? nullptr : I->second;
306 }
307 
308 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
309   // FIXME we only support simple cases
310   if (GEP->getNumOperands() != 3)
311     return nullptr;
312 
313   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
314   if (!I0 || !I0->isZero())
315     return nullptr;
316 
317   return GEP->getOperand(2);
318 }
319 
320 // Not an instruction handled below to turn into a vector.
321 //
322 // TODO: Check isTriviallyVectorizable for calls and handle other
323 // instructions.
324 static bool canVectorizeInst(Instruction *Inst, User *User) {
325   switch (Inst->getOpcode()) {
326   case Instruction::Load: {
327     // Currently only handle the case where the Pointer Operand is a GEP.
328     // Also we could not vectorize volatile or atomic loads.
329     LoadInst *LI = cast<LoadInst>(Inst);
330     if (isa<AllocaInst>(User) &&
331         LI->getPointerOperandType() == User->getType() &&
332         isa<VectorType>(LI->getType()))
333       return true;
334     return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple();
335   }
336   case Instruction::BitCast:
337     return true;
338   case Instruction::Store: {
339     // Must be the stored pointer operand, not a stored value, plus
340     // since it should be canonical form, the User should be a GEP.
341     // Also we could not vectorize volatile or atomic stores.
342     StoreInst *SI = cast<StoreInst>(Inst);
343     if (isa<AllocaInst>(User) &&
344         SI->getPointerOperandType() == User->getType() &&
345         isa<VectorType>(SI->getValueOperand()->getType()))
346       return true;
347     return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple();
348   }
349   default:
350     return false;
351   }
352 }
353 
354 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
355 
356   if (DisablePromoteAllocaToVector) {
357     LLVM_DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
358     return false;
359   }
360 
361   Type *AT = Alloca->getAllocatedType();
362   SequentialType *AllocaTy = dyn_cast<SequentialType>(AT);
363 
364   LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n");
365 
366   // FIXME: There is no reason why we can't support larger arrays, we
367   // are just being conservative for now.
368   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
369   // could also be promoted but we don't currently handle this case
370   if (!AllocaTy ||
371       AllocaTy->getNumElements() > 16 ||
372       AllocaTy->getNumElements() < 2 ||
373       !VectorType::isValidElementType(AllocaTy->getElementType())) {
374     LLVM_DEBUG(dbgs() << "  Cannot convert type to vector\n");
375     return false;
376   }
377 
378   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
379   std::vector<Value*> WorkList;
380   for (User *AllocaUser : Alloca->users()) {
381     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
382     if (!GEP) {
383       if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
384         return false;
385 
386       WorkList.push_back(AllocaUser);
387       continue;
388     }
389 
390     Value *Index = GEPToVectorIndex(GEP);
391 
392     // If we can't compute a vector index from this GEP, then we can't
393     // promote this alloca to vector.
394     if (!Index) {
395       LLVM_DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP
396                         << '\n');
397       return false;
398     }
399 
400     GEPVectorIdx[GEP] = Index;
401     for (User *GEPUser : AllocaUser->users()) {
402       if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
403         return false;
404 
405       WorkList.push_back(GEPUser);
406     }
407   }
408 
409   VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy);
410   if (!VectorTy)
411     VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy));
412 
413   LLVM_DEBUG(dbgs() << "  Converting alloca to vector " << *AllocaTy << " -> "
414                     << *VectorTy << '\n');
415 
416   for (Value *V : WorkList) {
417     Instruction *Inst = cast<Instruction>(V);
418     IRBuilder<> Builder(Inst);
419     switch (Inst->getOpcode()) {
420     case Instruction::Load: {
421       if (Inst->getType() == AT)
422         break;
423 
424       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
425       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
426       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
427 
428       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
429       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
430       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
431       Inst->replaceAllUsesWith(ExtractElement);
432       Inst->eraseFromParent();
433       break;
434     }
435     case Instruction::Store: {
436       StoreInst *SI = cast<StoreInst>(Inst);
437       if (SI->getValueOperand()->getType() == AT)
438         break;
439 
440       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
441       Value *Ptr = SI->getPointerOperand();
442       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
443       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
444       Value *VecValue = Builder.CreateLoad(VectorTy, BitCast);
445       Value *NewVecValue = Builder.CreateInsertElement(VecValue,
446                                                        SI->getValueOperand(),
447                                                        Index);
448       Builder.CreateStore(NewVecValue, BitCast);
449       Inst->eraseFromParent();
450       break;
451     }
452     case Instruction::BitCast:
453     case Instruction::AddrSpaceCast:
454       break;
455 
456     default:
457       llvm_unreachable("Inconsistency in instructions promotable to vector");
458     }
459   }
460   return true;
461 }
462 
463 static bool isCallPromotable(CallInst *CI) {
464   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
465   if (!II)
466     return false;
467 
468   switch (II->getIntrinsicID()) {
469   case Intrinsic::memcpy:
470   case Intrinsic::memmove:
471   case Intrinsic::memset:
472   case Intrinsic::lifetime_start:
473   case Intrinsic::lifetime_end:
474   case Intrinsic::invariant_start:
475   case Intrinsic::invariant_end:
476   case Intrinsic::launder_invariant_group:
477   case Intrinsic::strip_invariant_group:
478   case Intrinsic::objectsize:
479     return true;
480   default:
481     return false;
482   }
483 }
484 
485 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
486                                                           Value *Val,
487                                                           Instruction *Inst,
488                                                           int OpIdx0,
489                                                           int OpIdx1) const {
490   // Figure out which operand is the one we might not be promoting.
491   Value *OtherOp = Inst->getOperand(OpIdx0);
492   if (Val == OtherOp)
493     OtherOp = Inst->getOperand(OpIdx1);
494 
495   if (isa<ConstantPointerNull>(OtherOp))
496     return true;
497 
498   Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
499   if (!isa<AllocaInst>(OtherObj))
500     return false;
501 
502   // TODO: We should be able to replace undefs with the right pointer type.
503 
504   // TODO: If we know the other base object is another promotable
505   // alloca, not necessarily this alloca, we can do this. The
506   // important part is both must have the same address space at
507   // the end.
508   if (OtherObj != BaseAlloca) {
509     LLVM_DEBUG(
510         dbgs() << "Found a binary instruction with another alloca object\n");
511     return false;
512   }
513 
514   return true;
515 }
516 
517 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
518   Value *BaseAlloca,
519   Value *Val,
520   std::vector<Value*> &WorkList) const {
521 
522   for (User *User : Val->users()) {
523     if (is_contained(WorkList, User))
524       continue;
525 
526     if (CallInst *CI = dyn_cast<CallInst>(User)) {
527       if (!isCallPromotable(CI))
528         return false;
529 
530       WorkList.push_back(User);
531       continue;
532     }
533 
534     Instruction *UseInst = cast<Instruction>(User);
535     if (UseInst->getOpcode() == Instruction::PtrToInt)
536       return false;
537 
538     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
539       if (LI->isVolatile())
540         return false;
541 
542       continue;
543     }
544 
545     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
546       if (SI->isVolatile())
547         return false;
548 
549       // Reject if the stored value is not the pointer operand.
550       if (SI->getPointerOperand() != Val)
551         return false;
552     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
553       if (RMW->isVolatile())
554         return false;
555     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
556       if (CAS->isVolatile())
557         return false;
558     }
559 
560     // Only promote a select if we know that the other select operand
561     // is from another pointer that will also be promoted.
562     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
563       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
564         return false;
565 
566       // May need to rewrite constant operands.
567       WorkList.push_back(ICmp);
568     }
569 
570     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
571       // Give up if the pointer may be captured.
572       if (PointerMayBeCaptured(UseInst, true, true))
573         return false;
574       // Don't collect the users of this.
575       WorkList.push_back(User);
576       continue;
577     }
578 
579     if (!User->getType()->isPointerTy())
580       continue;
581 
582     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
583       // Be conservative if an address could be computed outside the bounds of
584       // the alloca.
585       if (!GEP->isInBounds())
586         return false;
587     }
588 
589     // Only promote a select if we know that the other select operand is from
590     // another pointer that will also be promoted.
591     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
592       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
593         return false;
594     }
595 
596     // Repeat for phis.
597     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
598       // TODO: Handle more complex cases. We should be able to replace loops
599       // over arrays.
600       switch (Phi->getNumIncomingValues()) {
601       case 1:
602         break;
603       case 2:
604         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
605           return false;
606         break;
607       default:
608         return false;
609       }
610     }
611 
612     WorkList.push_back(User);
613     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
614       return false;
615   }
616 
617   return true;
618 }
619 
620 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {
621 
622   FunctionType *FTy = F.getFunctionType();
623   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F);
624 
625   // If the function has any arguments in the local address space, then it's
626   // possible these arguments require the entire local memory space, so
627   // we cannot use local memory in the pass.
628   for (Type *ParamTy : FTy->params()) {
629     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
630     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
631       LocalMemLimit = 0;
632       LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to "
633                            "local memory disabled.\n");
634       return false;
635     }
636   }
637 
638   LocalMemLimit = ST.getLocalMemorySize();
639   if (LocalMemLimit == 0)
640     return false;
641 
642   const DataLayout &DL = Mod->getDataLayout();
643 
644   // Check how much local memory is being used by global objects
645   CurrentLocalMemUsage = 0;
646   for (GlobalVariable &GV : Mod->globals()) {
647     if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
648       continue;
649 
650     for (const User *U : GV.users()) {
651       const Instruction *Use = dyn_cast<Instruction>(U);
652       if (!Use)
653         continue;
654 
655       if (Use->getParent()->getParent() == &F) {
656         unsigned Align = GV.getAlignment();
657         if (Align == 0)
658           Align = DL.getABITypeAlignment(GV.getValueType());
659 
660         // FIXME: Try to account for padding here. The padding is currently
661         // determined from the inverse order of uses in the function. I'm not
662         // sure if the use list order is in any way connected to this, so the
663         // total reported size is likely incorrect.
664         uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
665         CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
666         CurrentLocalMemUsage += AllocSize;
667         break;
668       }
669     }
670   }
671 
672   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
673                                                           F);
674 
675   // Restrict local memory usage so that we don't drastically reduce occupancy,
676   // unless it is already significantly reduced.
677 
678   // TODO: Have some sort of hint or other heuristics to guess occupancy based
679   // on other factors..
680   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
681   if (OccupancyHint == 0)
682     OccupancyHint = 7;
683 
684   // Clamp to max value.
685   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
686 
687   // Check the hint but ignore it if it's obviously wrong from the existing LDS
688   // usage.
689   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
690 
691 
692   // Round up to the next tier of usage.
693   unsigned MaxSizeWithWaveCount
694     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
695 
696   // Program is possibly broken by using more local mem than available.
697   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
698     return false;
699 
700   LocalMemLimit = MaxSizeWithWaveCount;
701 
702   LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage
703                     << " bytes of LDS\n"
704                     << "  Rounding size to " << MaxSizeWithWaveCount
705                     << " with a maximum occupancy of " << MaxOccupancy << '\n'
706                     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
707                     << " available for promotion\n");
708 
709   return true;
710 }
711 
712 // FIXME: Should try to pick the most likely to be profitable allocas first.
713 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
714   // Array allocations are probably not worth handling, since an allocation of
715   // the array type is the canonical form.
716   if (!I.isStaticAlloca() || I.isArrayAllocation())
717     return false;
718 
719   IRBuilder<> Builder(&I);
720 
721   // First try to replace the alloca with a vector
722   Type *AllocaTy = I.getAllocatedType();
723 
724   LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n');
725 
726   if (tryPromoteAllocaToVector(&I))
727     return true; // Promoted to vector.
728 
729   if (DisablePromoteAllocaToLDS)
730     return false;
731 
732   const Function &ContainingFunction = *I.getParent()->getParent();
733   CallingConv::ID CC = ContainingFunction.getCallingConv();
734 
735   // Don't promote the alloca to LDS for shader calling conventions as the work
736   // item ID intrinsics are not supported for these calling conventions.
737   // Furthermore not all LDS is available for some of the stages.
738   switch (CC) {
739   case CallingConv::AMDGPU_KERNEL:
740   case CallingConv::SPIR_KERNEL:
741     break;
742   default:
743     LLVM_DEBUG(
744         dbgs()
745         << " promote alloca to LDS not supported with calling convention.\n");
746     return false;
747   }
748 
749   // Not likely to have sufficient local memory for promotion.
750   if (!SufficientLDS)
751     return false;
752 
753   const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction);
754   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
755 
756   const DataLayout &DL = Mod->getDataLayout();
757 
758   unsigned Align = I.getAlignment();
759   if (Align == 0)
760     Align = DL.getABITypeAlignment(I.getAllocatedType());
761 
762   // FIXME: This computed padding is likely wrong since it depends on inverse
763   // usage order.
764   //
765   // FIXME: It is also possible that if we're allowed to use all of the memory
766   // could could end up using more than the maximum due to alignment padding.
767 
768   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
769   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
770   NewSize += AllocSize;
771 
772   if (NewSize > LocalMemLimit) {
773     LLVM_DEBUG(dbgs() << "  " << AllocSize
774                       << " bytes of local memory not available to promote\n");
775     return false;
776   }
777 
778   CurrentLocalMemUsage = NewSize;
779 
780   std::vector<Value*> WorkList;
781 
782   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
783     LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n");
784     return false;
785   }
786 
787   LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n");
788 
789   Function *F = I.getParent()->getParent();
790 
791   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
792   GlobalVariable *GV = new GlobalVariable(
793       *Mod, GVTy, false, GlobalValue::InternalLinkage,
794       UndefValue::get(GVTy),
795       Twine(F->getName()) + Twine('.') + I.getName(),
796       nullptr,
797       GlobalVariable::NotThreadLocal,
798       AMDGPUAS::LOCAL_ADDRESS);
799   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
800   GV->setAlignment(I.getAlignment());
801 
802   Value *TCntY, *TCntZ;
803 
804   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
805   Value *TIdX = getWorkitemID(Builder, 0);
806   Value *TIdY = getWorkitemID(Builder, 1);
807   Value *TIdZ = getWorkitemID(Builder, 2);
808 
809   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
810   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
811   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
812   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
813   TID = Builder.CreateAdd(TID, TIdZ);
814 
815   Value *Indices[] = {
816     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
817     TID
818   };
819 
820   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
821   I.mutateType(Offset->getType());
822   I.replaceAllUsesWith(Offset);
823   I.eraseFromParent();
824 
825   for (Value *V : WorkList) {
826     CallInst *Call = dyn_cast<CallInst>(V);
827     if (!Call) {
828       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
829         Value *Src0 = CI->getOperand(0);
830         Type *EltTy = Src0->getType()->getPointerElementType();
831         PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
832 
833         if (isa<ConstantPointerNull>(CI->getOperand(0)))
834           CI->setOperand(0, ConstantPointerNull::get(NewTy));
835 
836         if (isa<ConstantPointerNull>(CI->getOperand(1)))
837           CI->setOperand(1, ConstantPointerNull::get(NewTy));
838 
839         continue;
840       }
841 
842       // The operand's value should be corrected on its own and we don't want to
843       // touch the users.
844       if (isa<AddrSpaceCastInst>(V))
845         continue;
846 
847       Type *EltTy = V->getType()->getPointerElementType();
848       PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
849 
850       // FIXME: It doesn't really make sense to try to do this for all
851       // instructions.
852       V->mutateType(NewTy);
853 
854       // Adjust the types of any constant operands.
855       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
856         if (isa<ConstantPointerNull>(SI->getOperand(1)))
857           SI->setOperand(1, ConstantPointerNull::get(NewTy));
858 
859         if (isa<ConstantPointerNull>(SI->getOperand(2)))
860           SI->setOperand(2, ConstantPointerNull::get(NewTy));
861       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
862         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
863           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
864             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
865         }
866       }
867 
868       continue;
869     }
870 
871     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
872     Builder.SetInsertPoint(Intr);
873     switch (Intr->getIntrinsicID()) {
874     case Intrinsic::lifetime_start:
875     case Intrinsic::lifetime_end:
876       // These intrinsics are for address space 0 only
877       Intr->eraseFromParent();
878       continue;
879     case Intrinsic::memcpy: {
880       MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
881       Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(),
882                            MemCpy->getRawSource(), MemCpy->getSourceAlignment(),
883                            MemCpy->getLength(), MemCpy->isVolatile());
884       Intr->eraseFromParent();
885       continue;
886     }
887     case Intrinsic::memmove: {
888       MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
889       Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(),
890                             MemMove->getRawSource(), MemMove->getSourceAlignment(),
891                             MemMove->getLength(), MemMove->isVolatile());
892       Intr->eraseFromParent();
893       continue;
894     }
895     case Intrinsic::memset: {
896       MemSetInst *MemSet = cast<MemSetInst>(Intr);
897       Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
898                            MemSet->getLength(), MemSet->getDestAlignment(),
899                            MemSet->isVolatile());
900       Intr->eraseFromParent();
901       continue;
902     }
903     case Intrinsic::invariant_start:
904     case Intrinsic::invariant_end:
905     case Intrinsic::launder_invariant_group:
906     case Intrinsic::strip_invariant_group:
907       Intr->eraseFromParent();
908       // FIXME: I think the invariant marker should still theoretically apply,
909       // but the intrinsics need to be changed to accept pointers with any
910       // address space.
911       continue;
912     case Intrinsic::objectsize: {
913       Value *Src = Intr->getOperand(0);
914       Type *SrcTy = Src->getType()->getPointerElementType();
915       Function *ObjectSize = Intrinsic::getDeclaration(Mod,
916         Intrinsic::objectsize,
917         { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
918       );
919 
920       CallInst *NewCall = Builder.CreateCall(
921           ObjectSize,
922           {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)});
923       Intr->replaceAllUsesWith(NewCall);
924       Intr->eraseFromParent();
925       continue;
926     }
927     default:
928       Intr->print(errs());
929       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
930     }
931   }
932   return true;
933 }
934 
935 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
936   return new AMDGPUPromoteAlloca();
937 }
938