1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates allocas by either converting them into vectors or 10 // by migrating them to local address space. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUSubtarget.h" 16 #include "Utils/AMDGPUBaseInfo.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/IR/Value.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/ErrorHandling.h" 50 #include "llvm/Support/MathExtras.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include "llvm/Target/TargetMachine.h" 53 #include <algorithm> 54 #include <cassert> 55 #include <cstdint> 56 #include <map> 57 #include <tuple> 58 #include <utility> 59 #include <vector> 60 61 #define DEBUG_TYPE "amdgpu-promote-alloca" 62 63 using namespace llvm; 64 65 namespace { 66 67 static cl::opt<bool> DisablePromoteAllocaToVector( 68 "disable-promote-alloca-to-vector", 69 cl::desc("Disable promote alloca to vector"), 70 cl::init(false)); 71 72 static cl::opt<bool> DisablePromoteAllocaToLDS( 73 "disable-promote-alloca-to-lds", 74 cl::desc("Disable promote alloca to LDS"), 75 cl::init(false)); 76 77 // FIXME: This can create globals so should be a module pass. 78 class AMDGPUPromoteAlloca : public FunctionPass { 79 private: 80 const TargetMachine *TM; 81 Module *Mod = nullptr; 82 const DataLayout *DL = nullptr; 83 84 // FIXME: This should be per-kernel. 85 uint32_t LocalMemLimit = 0; 86 uint32_t CurrentLocalMemUsage = 0; 87 88 bool IsAMDGCN = false; 89 bool IsAMDHSA = false; 90 91 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 92 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 93 94 /// BaseAlloca is the alloca root the search started from. 95 /// Val may be that alloca or a recursive user of it. 96 bool collectUsesWithPtrTypes(Value *BaseAlloca, 97 Value *Val, 98 std::vector<Value*> &WorkList) const; 99 100 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 101 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 102 /// Returns true if both operands are derived from the same alloca. Val should 103 /// be the same value as one of the input operands of UseInst. 104 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 105 Instruction *UseInst, 106 int OpIdx0, int OpIdx1) const; 107 108 /// Check whether we have enough local memory for promotion. 109 bool hasSufficientLocalMem(const Function &F); 110 111 public: 112 static char ID; 113 114 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 115 116 bool doInitialization(Module &M) override; 117 bool runOnFunction(Function &F) override; 118 119 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 120 121 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 122 123 void getAnalysisUsage(AnalysisUsage &AU) const override { 124 AU.setPreservesCFG(); 125 FunctionPass::getAnalysisUsage(AU); 126 } 127 }; 128 129 } // end anonymous namespace 130 131 char AMDGPUPromoteAlloca::ID = 0; 132 133 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 134 "AMDGPU promote alloca to vector or LDS", false, false) 135 136 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 137 138 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 139 Mod = &M; 140 DL = &Mod->getDataLayout(); 141 142 return false; 143 } 144 145 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 146 if (skipFunction(F)) 147 return false; 148 149 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 150 TM = &TPC->getTM<TargetMachine>(); 151 else 152 return false; 153 154 const Triple &TT = TM->getTargetTriple(); 155 IsAMDGCN = TT.getArch() == Triple::amdgcn; 156 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 157 158 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 159 if (!ST.isPromoteAllocaEnabled()) 160 return false; 161 162 bool SufficientLDS = hasSufficientLocalMem(F); 163 bool Changed = false; 164 BasicBlock &EntryBB = *F.begin(); 165 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 166 AllocaInst *AI = dyn_cast<AllocaInst>(I); 167 168 ++I; 169 if (AI) 170 Changed |= handleAlloca(*AI, SufficientLDS); 171 } 172 173 return Changed; 174 } 175 176 std::pair<Value *, Value *> 177 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 178 const Function &F = *Builder.GetInsertBlock()->getParent(); 179 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 180 181 if (!IsAMDHSA) { 182 Function *LocalSizeYFn 183 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 184 Function *LocalSizeZFn 185 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 186 187 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 188 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 189 190 ST.makeLIDRangeMetadata(LocalSizeY); 191 ST.makeLIDRangeMetadata(LocalSizeZ); 192 193 return std::make_pair(LocalSizeY, LocalSizeZ); 194 } 195 196 // We must read the size out of the dispatch pointer. 197 assert(IsAMDGCN); 198 199 // We are indexing into this struct, and want to extract the workgroup_size_* 200 // fields. 201 // 202 // typedef struct hsa_kernel_dispatch_packet_s { 203 // uint16_t header; 204 // uint16_t setup; 205 // uint16_t workgroup_size_x ; 206 // uint16_t workgroup_size_y; 207 // uint16_t workgroup_size_z; 208 // uint16_t reserved0; 209 // uint32_t grid_size_x ; 210 // uint32_t grid_size_y ; 211 // uint32_t grid_size_z; 212 // 213 // uint32_t private_segment_size; 214 // uint32_t group_segment_size; 215 // uint64_t kernel_object; 216 // 217 // #ifdef HSA_LARGE_MODEL 218 // void *kernarg_address; 219 // #elif defined HSA_LITTLE_ENDIAN 220 // void *kernarg_address; 221 // uint32_t reserved1; 222 // #else 223 // uint32_t reserved1; 224 // void *kernarg_address; 225 // #endif 226 // uint64_t reserved2; 227 // hsa_signal_t completion_signal; // uint64_t wrapper 228 // } hsa_kernel_dispatch_packet_t 229 // 230 Function *DispatchPtrFn 231 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 232 233 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 234 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 235 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 236 237 // Size of the dispatch packet struct. 238 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 239 240 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 241 Value *CastDispatchPtr = Builder.CreateBitCast( 242 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 243 244 // We could do a single 64-bit load here, but it's likely that the basic 245 // 32-bit and extract sequence is already present, and it is probably easier 246 // to CSE this. The loads should be mergable later anyway. 247 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 248 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, 4); 249 250 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 251 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, 4); 252 253 MDNode *MD = MDNode::get(Mod->getContext(), None); 254 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 255 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 256 ST.makeLIDRangeMetadata(LoadZU); 257 258 // Extract y component. Upper half of LoadZU should be zero already. 259 Value *Y = Builder.CreateLShr(LoadXY, 16); 260 261 return std::make_pair(Y, LoadZU); 262 } 263 264 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 265 const AMDGPUSubtarget &ST = 266 AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent()); 267 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 268 269 switch (N) { 270 case 0: 271 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 272 : Intrinsic::r600_read_tidig_x; 273 break; 274 case 1: 275 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 276 : Intrinsic::r600_read_tidig_y; 277 break; 278 279 case 2: 280 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 281 : Intrinsic::r600_read_tidig_z; 282 break; 283 default: 284 llvm_unreachable("invalid dimension"); 285 } 286 287 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 288 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 289 ST.makeLIDRangeMetadata(CI); 290 291 return CI; 292 } 293 294 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 295 return VectorType::get(ArrayTy->getElementType(), 296 ArrayTy->getNumElements()); 297 } 298 299 static Value * 300 calculateVectorIndex(Value *Ptr, 301 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 302 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 303 304 auto I = GEPIdx.find(GEP); 305 return I == GEPIdx.end() ? nullptr : I->second; 306 } 307 308 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 309 // FIXME we only support simple cases 310 if (GEP->getNumOperands() != 3) 311 return nullptr; 312 313 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 314 if (!I0 || !I0->isZero()) 315 return nullptr; 316 317 return GEP->getOperand(2); 318 } 319 320 // Not an instruction handled below to turn into a vector. 321 // 322 // TODO: Check isTriviallyVectorizable for calls and handle other 323 // instructions. 324 static bool canVectorizeInst(Instruction *Inst, User *User) { 325 switch (Inst->getOpcode()) { 326 case Instruction::Load: { 327 // Currently only handle the case where the Pointer Operand is a GEP. 328 // Also we could not vectorize volatile or atomic loads. 329 LoadInst *LI = cast<LoadInst>(Inst); 330 if (isa<AllocaInst>(User) && 331 LI->getPointerOperandType() == User->getType() && 332 isa<VectorType>(LI->getType())) 333 return true; 334 return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple(); 335 } 336 case Instruction::BitCast: 337 return true; 338 case Instruction::Store: { 339 // Must be the stored pointer operand, not a stored value, plus 340 // since it should be canonical form, the User should be a GEP. 341 // Also we could not vectorize volatile or atomic stores. 342 StoreInst *SI = cast<StoreInst>(Inst); 343 if (isa<AllocaInst>(User) && 344 SI->getPointerOperandType() == User->getType() && 345 isa<VectorType>(SI->getValueOperand()->getType())) 346 return true; 347 return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple(); 348 } 349 default: 350 return false; 351 } 352 } 353 354 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 355 356 if (DisablePromoteAllocaToVector) { 357 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 358 return false; 359 } 360 361 Type *AT = Alloca->getAllocatedType(); 362 SequentialType *AllocaTy = dyn_cast<SequentialType>(AT); 363 364 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 365 366 // FIXME: There is no reason why we can't support larger arrays, we 367 // are just being conservative for now. 368 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 369 // could also be promoted but we don't currently handle this case 370 if (!AllocaTy || 371 AllocaTy->getNumElements() > 16 || 372 AllocaTy->getNumElements() < 2 || 373 !VectorType::isValidElementType(AllocaTy->getElementType())) { 374 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 375 return false; 376 } 377 378 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 379 std::vector<Value*> WorkList; 380 for (User *AllocaUser : Alloca->users()) { 381 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 382 if (!GEP) { 383 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 384 return false; 385 386 WorkList.push_back(AllocaUser); 387 continue; 388 } 389 390 Value *Index = GEPToVectorIndex(GEP); 391 392 // If we can't compute a vector index from this GEP, then we can't 393 // promote this alloca to vector. 394 if (!Index) { 395 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 396 << '\n'); 397 return false; 398 } 399 400 GEPVectorIdx[GEP] = Index; 401 for (User *GEPUser : AllocaUser->users()) { 402 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 403 return false; 404 405 WorkList.push_back(GEPUser); 406 } 407 } 408 409 VectorType *VectorTy = dyn_cast<VectorType>(AllocaTy); 410 if (!VectorTy) 411 VectorTy = arrayTypeToVecType(cast<ArrayType>(AllocaTy)); 412 413 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 414 << *VectorTy << '\n'); 415 416 for (Value *V : WorkList) { 417 Instruction *Inst = cast<Instruction>(V); 418 IRBuilder<> Builder(Inst); 419 switch (Inst->getOpcode()) { 420 case Instruction::Load: { 421 if (Inst->getType() == AT) 422 break; 423 424 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 425 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 426 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 427 428 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 429 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 430 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 431 Inst->replaceAllUsesWith(ExtractElement); 432 Inst->eraseFromParent(); 433 break; 434 } 435 case Instruction::Store: { 436 StoreInst *SI = cast<StoreInst>(Inst); 437 if (SI->getValueOperand()->getType() == AT) 438 break; 439 440 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 441 Value *Ptr = SI->getPointerOperand(); 442 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 443 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 444 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 445 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 446 SI->getValueOperand(), 447 Index); 448 Builder.CreateStore(NewVecValue, BitCast); 449 Inst->eraseFromParent(); 450 break; 451 } 452 case Instruction::BitCast: 453 case Instruction::AddrSpaceCast: 454 break; 455 456 default: 457 llvm_unreachable("Inconsistency in instructions promotable to vector"); 458 } 459 } 460 return true; 461 } 462 463 static bool isCallPromotable(CallInst *CI) { 464 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 465 if (!II) 466 return false; 467 468 switch (II->getIntrinsicID()) { 469 case Intrinsic::memcpy: 470 case Intrinsic::memmove: 471 case Intrinsic::memset: 472 case Intrinsic::lifetime_start: 473 case Intrinsic::lifetime_end: 474 case Intrinsic::invariant_start: 475 case Intrinsic::invariant_end: 476 case Intrinsic::launder_invariant_group: 477 case Intrinsic::strip_invariant_group: 478 case Intrinsic::objectsize: 479 return true; 480 default: 481 return false; 482 } 483 } 484 485 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 486 Value *Val, 487 Instruction *Inst, 488 int OpIdx0, 489 int OpIdx1) const { 490 // Figure out which operand is the one we might not be promoting. 491 Value *OtherOp = Inst->getOperand(OpIdx0); 492 if (Val == OtherOp) 493 OtherOp = Inst->getOperand(OpIdx1); 494 495 if (isa<ConstantPointerNull>(OtherOp)) 496 return true; 497 498 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 499 if (!isa<AllocaInst>(OtherObj)) 500 return false; 501 502 // TODO: We should be able to replace undefs with the right pointer type. 503 504 // TODO: If we know the other base object is another promotable 505 // alloca, not necessarily this alloca, we can do this. The 506 // important part is both must have the same address space at 507 // the end. 508 if (OtherObj != BaseAlloca) { 509 LLVM_DEBUG( 510 dbgs() << "Found a binary instruction with another alloca object\n"); 511 return false; 512 } 513 514 return true; 515 } 516 517 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 518 Value *BaseAlloca, 519 Value *Val, 520 std::vector<Value*> &WorkList) const { 521 522 for (User *User : Val->users()) { 523 if (is_contained(WorkList, User)) 524 continue; 525 526 if (CallInst *CI = dyn_cast<CallInst>(User)) { 527 if (!isCallPromotable(CI)) 528 return false; 529 530 WorkList.push_back(User); 531 continue; 532 } 533 534 Instruction *UseInst = cast<Instruction>(User); 535 if (UseInst->getOpcode() == Instruction::PtrToInt) 536 return false; 537 538 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 539 if (LI->isVolatile()) 540 return false; 541 542 continue; 543 } 544 545 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 546 if (SI->isVolatile()) 547 return false; 548 549 // Reject if the stored value is not the pointer operand. 550 if (SI->getPointerOperand() != Val) 551 return false; 552 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 553 if (RMW->isVolatile()) 554 return false; 555 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 556 if (CAS->isVolatile()) 557 return false; 558 } 559 560 // Only promote a select if we know that the other select operand 561 // is from another pointer that will also be promoted. 562 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 563 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 564 return false; 565 566 // May need to rewrite constant operands. 567 WorkList.push_back(ICmp); 568 } 569 570 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 571 // Give up if the pointer may be captured. 572 if (PointerMayBeCaptured(UseInst, true, true)) 573 return false; 574 // Don't collect the users of this. 575 WorkList.push_back(User); 576 continue; 577 } 578 579 if (!User->getType()->isPointerTy()) 580 continue; 581 582 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 583 // Be conservative if an address could be computed outside the bounds of 584 // the alloca. 585 if (!GEP->isInBounds()) 586 return false; 587 } 588 589 // Only promote a select if we know that the other select operand is from 590 // another pointer that will also be promoted. 591 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 592 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 593 return false; 594 } 595 596 // Repeat for phis. 597 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 598 // TODO: Handle more complex cases. We should be able to replace loops 599 // over arrays. 600 switch (Phi->getNumIncomingValues()) { 601 case 1: 602 break; 603 case 2: 604 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 605 return false; 606 break; 607 default: 608 return false; 609 } 610 } 611 612 WorkList.push_back(User); 613 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 614 return false; 615 } 616 617 return true; 618 } 619 620 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { 621 622 FunctionType *FTy = F.getFunctionType(); 623 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 624 625 // If the function has any arguments in the local address space, then it's 626 // possible these arguments require the entire local memory space, so 627 // we cannot use local memory in the pass. 628 for (Type *ParamTy : FTy->params()) { 629 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 630 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 631 LocalMemLimit = 0; 632 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 633 "local memory disabled.\n"); 634 return false; 635 } 636 } 637 638 LocalMemLimit = ST.getLocalMemorySize(); 639 if (LocalMemLimit == 0) 640 return false; 641 642 const DataLayout &DL = Mod->getDataLayout(); 643 644 // Check how much local memory is being used by global objects 645 CurrentLocalMemUsage = 0; 646 for (GlobalVariable &GV : Mod->globals()) { 647 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 648 continue; 649 650 for (const User *U : GV.users()) { 651 const Instruction *Use = dyn_cast<Instruction>(U); 652 if (!Use) 653 continue; 654 655 if (Use->getParent()->getParent() == &F) { 656 unsigned Align = GV.getAlignment(); 657 if (Align == 0) 658 Align = DL.getABITypeAlignment(GV.getValueType()); 659 660 // FIXME: Try to account for padding here. The padding is currently 661 // determined from the inverse order of uses in the function. I'm not 662 // sure if the use list order is in any way connected to this, so the 663 // total reported size is likely incorrect. 664 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 665 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 666 CurrentLocalMemUsage += AllocSize; 667 break; 668 } 669 } 670 } 671 672 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 673 F); 674 675 // Restrict local memory usage so that we don't drastically reduce occupancy, 676 // unless it is already significantly reduced. 677 678 // TODO: Have some sort of hint or other heuristics to guess occupancy based 679 // on other factors.. 680 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 681 if (OccupancyHint == 0) 682 OccupancyHint = 7; 683 684 // Clamp to max value. 685 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 686 687 // Check the hint but ignore it if it's obviously wrong from the existing LDS 688 // usage. 689 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 690 691 692 // Round up to the next tier of usage. 693 unsigned MaxSizeWithWaveCount 694 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 695 696 // Program is possibly broken by using more local mem than available. 697 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 698 return false; 699 700 LocalMemLimit = MaxSizeWithWaveCount; 701 702 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 703 << " bytes of LDS\n" 704 << " Rounding size to " << MaxSizeWithWaveCount 705 << " with a maximum occupancy of " << MaxOccupancy << '\n' 706 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 707 << " available for promotion\n"); 708 709 return true; 710 } 711 712 // FIXME: Should try to pick the most likely to be profitable allocas first. 713 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { 714 // Array allocations are probably not worth handling, since an allocation of 715 // the array type is the canonical form. 716 if (!I.isStaticAlloca() || I.isArrayAllocation()) 717 return false; 718 719 IRBuilder<> Builder(&I); 720 721 // First try to replace the alloca with a vector 722 Type *AllocaTy = I.getAllocatedType(); 723 724 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 725 726 if (tryPromoteAllocaToVector(&I)) 727 return true; // Promoted to vector. 728 729 if (DisablePromoteAllocaToLDS) 730 return false; 731 732 const Function &ContainingFunction = *I.getParent()->getParent(); 733 CallingConv::ID CC = ContainingFunction.getCallingConv(); 734 735 // Don't promote the alloca to LDS for shader calling conventions as the work 736 // item ID intrinsics are not supported for these calling conventions. 737 // Furthermore not all LDS is available for some of the stages. 738 switch (CC) { 739 case CallingConv::AMDGPU_KERNEL: 740 case CallingConv::SPIR_KERNEL: 741 break; 742 default: 743 LLVM_DEBUG( 744 dbgs() 745 << " promote alloca to LDS not supported with calling convention.\n"); 746 return false; 747 } 748 749 // Not likely to have sufficient local memory for promotion. 750 if (!SufficientLDS) 751 return false; 752 753 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction); 754 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 755 756 const DataLayout &DL = Mod->getDataLayout(); 757 758 unsigned Align = I.getAlignment(); 759 if (Align == 0) 760 Align = DL.getABITypeAlignment(I.getAllocatedType()); 761 762 // FIXME: This computed padding is likely wrong since it depends on inverse 763 // usage order. 764 // 765 // FIXME: It is also possible that if we're allowed to use all of the memory 766 // could could end up using more than the maximum due to alignment padding. 767 768 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 769 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 770 NewSize += AllocSize; 771 772 if (NewSize > LocalMemLimit) { 773 LLVM_DEBUG(dbgs() << " " << AllocSize 774 << " bytes of local memory not available to promote\n"); 775 return false; 776 } 777 778 CurrentLocalMemUsage = NewSize; 779 780 std::vector<Value*> WorkList; 781 782 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 783 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 784 return false; 785 } 786 787 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 788 789 Function *F = I.getParent()->getParent(); 790 791 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 792 GlobalVariable *GV = new GlobalVariable( 793 *Mod, GVTy, false, GlobalValue::InternalLinkage, 794 UndefValue::get(GVTy), 795 Twine(F->getName()) + Twine('.') + I.getName(), 796 nullptr, 797 GlobalVariable::NotThreadLocal, 798 AMDGPUAS::LOCAL_ADDRESS); 799 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 800 GV->setAlignment(I.getAlignment()); 801 802 Value *TCntY, *TCntZ; 803 804 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 805 Value *TIdX = getWorkitemID(Builder, 0); 806 Value *TIdY = getWorkitemID(Builder, 1); 807 Value *TIdZ = getWorkitemID(Builder, 2); 808 809 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 810 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 811 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 812 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 813 TID = Builder.CreateAdd(TID, TIdZ); 814 815 Value *Indices[] = { 816 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 817 TID 818 }; 819 820 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 821 I.mutateType(Offset->getType()); 822 I.replaceAllUsesWith(Offset); 823 I.eraseFromParent(); 824 825 for (Value *V : WorkList) { 826 CallInst *Call = dyn_cast<CallInst>(V); 827 if (!Call) { 828 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 829 Value *Src0 = CI->getOperand(0); 830 Type *EltTy = Src0->getType()->getPointerElementType(); 831 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 832 833 if (isa<ConstantPointerNull>(CI->getOperand(0))) 834 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 835 836 if (isa<ConstantPointerNull>(CI->getOperand(1))) 837 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 838 839 continue; 840 } 841 842 // The operand's value should be corrected on its own and we don't want to 843 // touch the users. 844 if (isa<AddrSpaceCastInst>(V)) 845 continue; 846 847 Type *EltTy = V->getType()->getPointerElementType(); 848 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 849 850 // FIXME: It doesn't really make sense to try to do this for all 851 // instructions. 852 V->mutateType(NewTy); 853 854 // Adjust the types of any constant operands. 855 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 856 if (isa<ConstantPointerNull>(SI->getOperand(1))) 857 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 858 859 if (isa<ConstantPointerNull>(SI->getOperand(2))) 860 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 861 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 862 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 863 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 864 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 865 } 866 } 867 868 continue; 869 } 870 871 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 872 Builder.SetInsertPoint(Intr); 873 switch (Intr->getIntrinsicID()) { 874 case Intrinsic::lifetime_start: 875 case Intrinsic::lifetime_end: 876 // These intrinsics are for address space 0 only 877 Intr->eraseFromParent(); 878 continue; 879 case Intrinsic::memcpy: { 880 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 881 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(), 882 MemCpy->getRawSource(), MemCpy->getSourceAlignment(), 883 MemCpy->getLength(), MemCpy->isVolatile()); 884 Intr->eraseFromParent(); 885 continue; 886 } 887 case Intrinsic::memmove: { 888 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 889 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(), 890 MemMove->getRawSource(), MemMove->getSourceAlignment(), 891 MemMove->getLength(), MemMove->isVolatile()); 892 Intr->eraseFromParent(); 893 continue; 894 } 895 case Intrinsic::memset: { 896 MemSetInst *MemSet = cast<MemSetInst>(Intr); 897 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 898 MemSet->getLength(), MemSet->getDestAlignment(), 899 MemSet->isVolatile()); 900 Intr->eraseFromParent(); 901 continue; 902 } 903 case Intrinsic::invariant_start: 904 case Intrinsic::invariant_end: 905 case Intrinsic::launder_invariant_group: 906 case Intrinsic::strip_invariant_group: 907 Intr->eraseFromParent(); 908 // FIXME: I think the invariant marker should still theoretically apply, 909 // but the intrinsics need to be changed to accept pointers with any 910 // address space. 911 continue; 912 case Intrinsic::objectsize: { 913 Value *Src = Intr->getOperand(0); 914 Type *SrcTy = Src->getType()->getPointerElementType(); 915 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 916 Intrinsic::objectsize, 917 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 918 ); 919 920 CallInst *NewCall = Builder.CreateCall( 921 ObjectSize, 922 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 923 Intr->replaceAllUsesWith(NewCall); 924 Intr->eraseFromParent(); 925 continue; 926 } 927 default: 928 Intr->print(errs()); 929 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 930 } 931 } 932 return true; 933 } 934 935 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 936 return new AMDGPUPromoteAlloca(); 937 } 938