1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 #define DEBUG_TYPE "amdgpu-promote-alloca" 25 26 using namespace llvm; 27 28 namespace { 29 30 // FIXME: This can create globals so should be a module pass. 31 class AMDGPUPromoteAlloca : public FunctionPass { 32 private: 33 const TargetMachine *TM; 34 Module *Mod; 35 MDNode *MaxWorkGroupSizeRange; 36 37 // FIXME: This should be per-kernel. 38 int LocalMemAvailable; 39 40 bool IsAMDGCN; 41 bool IsAMDHSA; 42 43 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 44 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 45 46 public: 47 static char ID; 48 49 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 50 FunctionPass(ID), 51 TM(TM_), 52 Mod(nullptr), 53 MaxWorkGroupSizeRange(nullptr), 54 LocalMemAvailable(0), 55 IsAMDGCN(false), 56 IsAMDHSA(false) { } 57 58 bool doInitialization(Module &M) override; 59 bool runOnFunction(Function &F) override; 60 61 const char *getPassName() const override { 62 return "AMDGPU Promote Alloca"; 63 } 64 65 void handleAlloca(AllocaInst &I); 66 }; 67 68 } // End anonymous namespace 69 70 char AMDGPUPromoteAlloca::ID = 0; 71 72 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 73 "AMDGPU promote alloca to vector or LDS", false, false) 74 75 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 76 77 78 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 79 if (!TM) 80 return false; 81 82 Mod = &M; 83 84 // The maximum workitem id. 85 // 86 // FIXME: Should get as subtarget property. Usually runtime enforced max is 87 // 256. 88 MDBuilder MDB(Mod->getContext()); 89 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 90 91 const Triple &TT = TM->getTargetTriple(); 92 93 IsAMDGCN = TT.getArch() == Triple::amdgcn; 94 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 95 96 return false; 97 } 98 99 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 100 if (!TM || skipFunction(F)) 101 return false; 102 103 FunctionType *FTy = F.getFunctionType(); 104 105 // If the function has any arguments in the local address space, then it's 106 // possible these arguments require the entire local memory space, so 107 // we cannot use local memory in the pass. 108 for (Type *ParamTy : FTy->params()) { 109 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 110 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 111 LocalMemAvailable = 0; 112 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 113 "local memory disabled.\n"); 114 return false; 115 } 116 } 117 118 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 119 LocalMemAvailable = ST.getLocalMemorySize(); 120 if (LocalMemAvailable == 0) 121 return false; 122 123 // Check how much local memory is being used by global objects 124 for (GlobalVariable &GV : Mod->globals()) { 125 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 126 continue; 127 128 for (User *U : GV.users()) { 129 Instruction *Use = dyn_cast<Instruction>(U); 130 if (!Use) 131 continue; 132 133 if (Use->getParent()->getParent() == &F) { 134 LocalMemAvailable -= 135 Mod->getDataLayout().getTypeAllocSize(GV.getValueType()); 136 break; 137 } 138 } 139 } 140 141 LocalMemAvailable = std::max(0, LocalMemAvailable); 142 DEBUG(dbgs() << LocalMemAvailable << " bytes free in local memory.\n"); 143 144 BasicBlock &EntryBB = *F.begin(); 145 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 146 AllocaInst *AI = dyn_cast<AllocaInst>(I); 147 148 ++I; 149 if (AI) 150 handleAlloca(*AI); 151 } 152 153 return true; 154 } 155 156 std::pair<Value *, Value *> 157 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 158 if (!IsAMDHSA) { 159 Function *LocalSizeYFn 160 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 161 Function *LocalSizeZFn 162 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 163 164 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 165 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 166 167 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 168 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 169 170 return std::make_pair(LocalSizeY, LocalSizeZ); 171 } 172 173 // We must read the size out of the dispatch pointer. 174 assert(IsAMDGCN); 175 176 // We are indexing into this struct, and want to extract the workgroup_size_* 177 // fields. 178 // 179 // typedef struct hsa_kernel_dispatch_packet_s { 180 // uint16_t header; 181 // uint16_t setup; 182 // uint16_t workgroup_size_x ; 183 // uint16_t workgroup_size_y; 184 // uint16_t workgroup_size_z; 185 // uint16_t reserved0; 186 // uint32_t grid_size_x ; 187 // uint32_t grid_size_y ; 188 // uint32_t grid_size_z; 189 // 190 // uint32_t private_segment_size; 191 // uint32_t group_segment_size; 192 // uint64_t kernel_object; 193 // 194 // #ifdef HSA_LARGE_MODEL 195 // void *kernarg_address; 196 // #elif defined HSA_LITTLE_ENDIAN 197 // void *kernarg_address; 198 // uint32_t reserved1; 199 // #else 200 // uint32_t reserved1; 201 // void *kernarg_address; 202 // #endif 203 // uint64_t reserved2; 204 // hsa_signal_t completion_signal; // uint64_t wrapper 205 // } hsa_kernel_dispatch_packet_t 206 // 207 Function *DispatchPtrFn 208 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 209 210 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 211 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); 212 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 213 214 // Size of the dispatch packet struct. 215 DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); 216 217 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 218 Value *CastDispatchPtr = Builder.CreateBitCast( 219 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 220 221 // We could do a single 64-bit load here, but it's likely that the basic 222 // 32-bit and extract sequence is already present, and it is probably easier 223 // to CSE this. The loads should be mergable later anyway. 224 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 225 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 226 227 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 228 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 229 230 MDNode *MD = llvm::MDNode::get(Mod->getContext(), None); 231 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 232 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 233 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 234 235 // Extract y component. Upper half of LoadZU should be zero already. 236 Value *Y = Builder.CreateLShr(LoadXY, 16); 237 238 return std::make_pair(Y, LoadZU); 239 } 240 241 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 242 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 243 244 switch (N) { 245 case 0: 246 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 247 : Intrinsic::r600_read_tidig_x; 248 break; 249 case 1: 250 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 251 : Intrinsic::r600_read_tidig_y; 252 break; 253 254 case 2: 255 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 256 : Intrinsic::r600_read_tidig_z; 257 break; 258 default: 259 llvm_unreachable("invalid dimension"); 260 } 261 262 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 263 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 264 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 265 266 return CI; 267 } 268 269 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 270 return VectorType::get(ArrayTy->getArrayElementType(), 271 ArrayTy->getArrayNumElements()); 272 } 273 274 static Value * 275 calculateVectorIndex(Value *Ptr, 276 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 277 if (isa<AllocaInst>(Ptr)) 278 return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext())); 279 280 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 281 282 auto I = GEPIdx.find(GEP); 283 return I == GEPIdx.end() ? nullptr : I->second; 284 } 285 286 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 287 // FIXME we only support simple cases 288 if (GEP->getNumOperands() != 3) 289 return NULL; 290 291 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 292 if (!I0 || !I0->isZero()) 293 return NULL; 294 295 return GEP->getOperand(2); 296 } 297 298 // Not an instruction handled below to turn into a vector. 299 // 300 // TODO: Check isTriviallyVectorizable for calls and handle other 301 // instructions. 302 static bool canVectorizeInst(Instruction *Inst, User *User) { 303 switch (Inst->getOpcode()) { 304 case Instruction::Load: 305 case Instruction::BitCast: 306 case Instruction::AddrSpaceCast: 307 return true; 308 case Instruction::Store: { 309 // Must be the stored pointer operand, not a stored value. 310 StoreInst *SI = cast<StoreInst>(Inst); 311 return SI->getPointerOperand() == User; 312 } 313 default: 314 return false; 315 } 316 } 317 318 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 319 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 320 321 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 322 323 // FIXME: There is no reason why we can't support larger arrays, we 324 // are just being conservative for now. 325 if (!AllocaTy || 326 AllocaTy->getElementType()->isVectorTy() || 327 AllocaTy->getNumElements() > 4) { 328 DEBUG(dbgs() << " Cannot convert type to vector\n"); 329 return false; 330 } 331 332 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 333 std::vector<Value*> WorkList; 334 for (User *AllocaUser : Alloca->users()) { 335 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 336 if (!GEP) { 337 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 338 return false; 339 340 WorkList.push_back(AllocaUser); 341 continue; 342 } 343 344 Value *Index = GEPToVectorIndex(GEP); 345 346 // If we can't compute a vector index from this GEP, then we can't 347 // promote this alloca to vector. 348 if (!Index) { 349 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 350 return false; 351 } 352 353 GEPVectorIdx[GEP] = Index; 354 for (User *GEPUser : AllocaUser->users()) { 355 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 356 return false; 357 358 WorkList.push_back(GEPUser); 359 } 360 } 361 362 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 363 364 DEBUG(dbgs() << " Converting alloca to vector " 365 << *AllocaTy << " -> " << *VectorTy << '\n'); 366 367 for (Value *V : WorkList) { 368 Instruction *Inst = cast<Instruction>(V); 369 IRBuilder<> Builder(Inst); 370 switch (Inst->getOpcode()) { 371 case Instruction::Load: { 372 Value *Ptr = Inst->getOperand(0); 373 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 374 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); 375 Value *VecValue = Builder.CreateLoad(BitCast); 376 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 377 Inst->replaceAllUsesWith(ExtractElement); 378 Inst->eraseFromParent(); 379 break; 380 } 381 case Instruction::Store: { 382 Value *Ptr = Inst->getOperand(1); 383 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 384 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); 385 Value *VecValue = Builder.CreateLoad(BitCast); 386 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 387 Inst->getOperand(0), 388 Index); 389 Builder.CreateStore(NewVecValue, BitCast); 390 Inst->eraseFromParent(); 391 break; 392 } 393 case Instruction::BitCast: 394 case Instruction::AddrSpaceCast: 395 break; 396 397 default: 398 Inst->dump(); 399 llvm_unreachable("Inconsistency in instructions promotable to vector"); 400 } 401 } 402 return true; 403 } 404 405 static bool isCallPromotable(CallInst *CI) { 406 // TODO: We might be able to handle some cases where the callee is a 407 // constantexpr bitcast of a function. 408 if (!CI->getCalledFunction()) 409 return false; 410 411 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 412 if (!II) 413 return false; 414 415 switch (II->getIntrinsicID()) { 416 case Intrinsic::memcpy: 417 case Intrinsic::memmove: 418 case Intrinsic::memset: 419 case Intrinsic::lifetime_start: 420 case Intrinsic::lifetime_end: 421 case Intrinsic::invariant_start: 422 case Intrinsic::invariant_end: 423 case Intrinsic::invariant_group_barrier: 424 case Intrinsic::objectsize: 425 return true; 426 default: 427 return false; 428 } 429 } 430 431 static bool collectUsesWithPtrTypes(Value *Val, std::vector<Value*> &WorkList) { 432 for (User *User : Val->users()) { 433 if (std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end()) 434 continue; 435 436 if (CallInst *CI = dyn_cast<CallInst>(User)) { 437 if (!isCallPromotable(CI)) 438 return false; 439 440 WorkList.push_back(User); 441 continue; 442 } 443 444 Instruction *UseInst = dyn_cast<Instruction>(User); 445 if (UseInst && UseInst->getOpcode() == Instruction::PtrToInt) 446 return false; 447 448 if (StoreInst *SI = dyn_cast_or_null<StoreInst>(UseInst)) { 449 if (SI->isVolatile()) 450 return false; 451 452 // Reject if the stored value is not the pointer operand. 453 if (SI->getPointerOperand() != Val) 454 return false; 455 } else if (LoadInst *LI = dyn_cast_or_null<LoadInst>(UseInst)) { 456 if (LI->isVolatile()) 457 return false; 458 } else if (AtomicRMWInst *RMW = dyn_cast_or_null<AtomicRMWInst>(UseInst)) { 459 if (RMW->isVolatile()) 460 return false; 461 } else if (AtomicCmpXchgInst *CAS 462 = dyn_cast_or_null<AtomicCmpXchgInst>(UseInst)) { 463 if (CAS->isVolatile()) 464 return false; 465 } 466 467 if (!User->getType()->isPointerTy()) 468 continue; 469 470 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 471 // Be conservative if an address could be computed outside the bounds of 472 // the alloca. 473 if (!GEP->isInBounds()) 474 return false; 475 } 476 477 WorkList.push_back(User); 478 if (!collectUsesWithPtrTypes(User, WorkList)) 479 return false; 480 } 481 482 return true; 483 } 484 485 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { 486 // Array allocations are probably not worth handling, since an allocation of 487 // the array type is the canonical form. 488 if (!I.isStaticAlloca() || I.isArrayAllocation()) 489 return; 490 491 IRBuilder<> Builder(&I); 492 493 // First try to replace the alloca with a vector 494 Type *AllocaTy = I.getAllocatedType(); 495 496 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 497 498 if (tryPromoteAllocaToVector(&I)) 499 return; 500 501 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 502 503 const Function &ContainingFunction = *I.getParent()->getParent(); 504 505 // FIXME: We should also try to get this value from the reqd_work_group_size 506 // function attribute if it is available. 507 unsigned WorkGroupSize = AMDGPU::getMaximumWorkGroupSize(ContainingFunction); 508 509 int AllocaSize = 510 WorkGroupSize * Mod->getDataLayout().getTypeAllocSize(AllocaTy); 511 512 if (AllocaSize > LocalMemAvailable) { 513 DEBUG(dbgs() << " Not enough local memory to promote alloca.\n"); 514 return; 515 } 516 517 std::vector<Value*> WorkList; 518 519 if (!collectUsesWithPtrTypes(&I, WorkList)) { 520 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 521 return; 522 } 523 524 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 525 LocalMemAvailable -= AllocaSize; 526 527 Function *F = I.getParent()->getParent(); 528 529 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 530 GlobalVariable *GV = new GlobalVariable( 531 *Mod, GVTy, false, GlobalValue::InternalLinkage, 532 UndefValue::get(GVTy), 533 Twine(F->getName()) + Twine('.') + I.getName(), 534 nullptr, 535 GlobalVariable::NotThreadLocal, 536 AMDGPUAS::LOCAL_ADDRESS); 537 GV->setUnnamedAddr(true); 538 GV->setAlignment(I.getAlignment()); 539 540 Value *TCntY, *TCntZ; 541 542 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 543 Value *TIdX = getWorkitemID(Builder, 0); 544 Value *TIdY = getWorkitemID(Builder, 1); 545 Value *TIdZ = getWorkitemID(Builder, 2); 546 547 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 548 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 549 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 550 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 551 TID = Builder.CreateAdd(TID, TIdZ); 552 553 Value *Indices[] = { 554 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 555 TID 556 }; 557 558 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 559 I.mutateType(Offset->getType()); 560 I.replaceAllUsesWith(Offset); 561 I.eraseFromParent(); 562 563 for (Value *V : WorkList) { 564 CallInst *Call = dyn_cast<CallInst>(V); 565 if (!Call) { 566 Type *EltTy = V->getType()->getPointerElementType(); 567 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 568 569 // The operand's value should be corrected on its own. 570 if (isa<AddrSpaceCastInst>(V)) 571 continue; 572 573 // FIXME: It doesn't really make sense to try to do this for all 574 // instructions. 575 V->mutateType(NewTy); 576 continue; 577 } 578 579 IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call); 580 if (!Intr) { 581 // FIXME: What is this for? It doesn't make sense to promote arbitrary 582 // function calls. If the call is to a defined function that can also be 583 // promoted, we should be able to do this once that function is also 584 // rewritten. 585 586 std::vector<Type*> ArgTypes; 587 for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands(); 588 ArgIdx != ArgEnd; ++ArgIdx) { 589 ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType()); 590 } 591 Function *F = Call->getCalledFunction(); 592 FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes, 593 F->isVarArg()); 594 Constant *C = Mod->getOrInsertFunction((F->getName() + ".local").str(), 595 NewType, F->getAttributes()); 596 Function *NewF = cast<Function>(C); 597 Call->setCalledFunction(NewF); 598 continue; 599 } 600 601 Builder.SetInsertPoint(Intr); 602 switch (Intr->getIntrinsicID()) { 603 case Intrinsic::lifetime_start: 604 case Intrinsic::lifetime_end: 605 // These intrinsics are for address space 0 only 606 Intr->eraseFromParent(); 607 continue; 608 case Intrinsic::memcpy: { 609 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 610 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 611 MemCpy->getLength(), MemCpy->getAlignment(), 612 MemCpy->isVolatile()); 613 Intr->eraseFromParent(); 614 continue; 615 } 616 case Intrinsic::memmove: { 617 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 618 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 619 MemMove->getLength(), MemMove->getAlignment(), 620 MemMove->isVolatile()); 621 Intr->eraseFromParent(); 622 continue; 623 } 624 case Intrinsic::memset: { 625 MemSetInst *MemSet = cast<MemSetInst>(Intr); 626 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 627 MemSet->getLength(), MemSet->getAlignment(), 628 MemSet->isVolatile()); 629 Intr->eraseFromParent(); 630 continue; 631 } 632 case Intrinsic::invariant_start: 633 case Intrinsic::invariant_end: 634 case Intrinsic::invariant_group_barrier: 635 Intr->eraseFromParent(); 636 // FIXME: I think the invariant marker should still theoretically apply, 637 // but the intrinsics need to be changed to accept pointers with any 638 // address space. 639 continue; 640 case Intrinsic::objectsize: { 641 Value *Src = Intr->getOperand(0); 642 Type *SrcTy = Src->getType()->getPointerElementType(); 643 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 644 Intrinsic::objectsize, 645 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 646 ); 647 648 CallInst *NewCall 649 = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) }); 650 Intr->replaceAllUsesWith(NewCall); 651 Intr->eraseFromParent(); 652 continue; 653 } 654 default: 655 Intr->dump(); 656 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 657 } 658 } 659 } 660 661 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 662 return new AMDGPUPromoteAlloca(TM); 663 } 664