1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/InstVisitor.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 #define DEBUG_TYPE "amdgpu-promote-alloca" 25 26 using namespace llvm; 27 28 namespace { 29 30 // FIXME: This can create globals so should be a module pass. 31 class AMDGPUPromoteAlloca : public FunctionPass, 32 public InstVisitor<AMDGPUPromoteAlloca> { 33 private: 34 const TargetMachine *TM; 35 Module *Mod; 36 MDNode *MaxWorkGroupSizeRange; 37 38 // FIXME: This should be per-kernel. 39 int LocalMemAvailable; 40 41 bool IsAMDGCN; 42 bool IsAMDHSA; 43 44 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 45 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 46 47 public: 48 static char ID; 49 50 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 51 FunctionPass(ID), 52 TM(TM_), 53 Mod(nullptr), 54 MaxWorkGroupSizeRange(nullptr), 55 LocalMemAvailable(0), 56 IsAMDGCN(false), 57 IsAMDHSA(false) { } 58 59 bool doInitialization(Module &M) override; 60 bool runOnFunction(Function &F) override; 61 62 const char *getPassName() const override { 63 return "AMDGPU Promote Alloca"; 64 } 65 66 void visitAlloca(AllocaInst &I); 67 }; 68 69 } // End anonymous namespace 70 71 char AMDGPUPromoteAlloca::ID = 0; 72 73 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 74 "AMDGPU promote alloca to vector or LDS", false, false) 75 76 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 77 78 79 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 80 if (!TM) 81 return false; 82 83 Mod = &M; 84 85 // The maximum workitem id. 86 // 87 // FIXME: Should get as subtarget property. Usually runtime enforced max is 88 // 256. 89 MDBuilder MDB(Mod->getContext()); 90 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 91 92 const Triple &TT = TM->getTargetTriple(); 93 94 IsAMDGCN = TT.getArch() == Triple::amdgcn; 95 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 96 97 return false; 98 } 99 100 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 101 if (!TM || F.hasFnAttribute(Attribute::OptimizeNone)) 102 return false; 103 104 FunctionType *FTy = F.getFunctionType(); 105 106 // If the function has any arguments in the local address space, then it's 107 // possible these arguments require the entire local memory space, so 108 // we cannot use local memory in the pass. 109 for (Type *ParamTy : FTy->params()) { 110 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 111 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 112 LocalMemAvailable = 0; 113 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 114 "local memory disabled.\n"); 115 return false; 116 } 117 } 118 119 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 120 LocalMemAvailable = ST.getLocalMemorySize(); 121 if (LocalMemAvailable == 0) 122 return false; 123 124 // Check how much local memory is being used by global objects 125 for (GlobalVariable &GV : Mod->globals()) { 126 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 127 continue; 128 129 for (Use &U : GV.uses()) { 130 Instruction *Use = dyn_cast<Instruction>(U); 131 if (!Use) 132 continue; 133 134 if (Use->getParent()->getParent() == &F) 135 LocalMemAvailable -= 136 Mod->getDataLayout().getTypeAllocSize(GV.getValueType()); 137 } 138 } 139 140 LocalMemAvailable = std::max(0, LocalMemAvailable); 141 DEBUG(dbgs() << LocalMemAvailable << " bytes free in local memory.\n"); 142 143 visit(F); 144 145 return true; 146 } 147 148 std::pair<Value *, Value *> 149 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 150 if (!IsAMDHSA) { 151 Function *LocalSizeYFn 152 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 153 Function *LocalSizeZFn 154 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 155 156 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 157 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 158 159 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 160 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 161 162 return std::make_pair(LocalSizeY, LocalSizeZ); 163 } 164 165 // We must read the size out of the dispatch pointer. 166 assert(IsAMDGCN); 167 168 // We are indexing into this struct, and want to extract the workgroup_size_* 169 // fields. 170 // 171 // typedef struct hsa_kernel_dispatch_packet_s { 172 // uint16_t header; 173 // uint16_t setup; 174 // uint16_t workgroup_size_x ; 175 // uint16_t workgroup_size_y; 176 // uint16_t workgroup_size_z; 177 // uint16_t reserved0; 178 // uint32_t grid_size_x ; 179 // uint32_t grid_size_y ; 180 // uint32_t grid_size_z; 181 // 182 // uint32_t private_segment_size; 183 // uint32_t group_segment_size; 184 // uint64_t kernel_object; 185 // 186 // #ifdef HSA_LARGE_MODEL 187 // void *kernarg_address; 188 // #elif defined HSA_LITTLE_ENDIAN 189 // void *kernarg_address; 190 // uint32_t reserved1; 191 // #else 192 // uint32_t reserved1; 193 // void *kernarg_address; 194 // #endif 195 // uint64_t reserved2; 196 // hsa_signal_t completion_signal; // uint64_t wrapper 197 // } hsa_kernel_dispatch_packet_t 198 // 199 Function *DispatchPtrFn 200 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 201 202 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 203 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); 204 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 205 206 // Size of the dispatch packet struct. 207 DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); 208 209 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 210 Value *CastDispatchPtr = Builder.CreateBitCast( 211 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 212 213 // We could do a single 64-bit load here, but it's likely that the basic 214 // 32-bit and extract sequence is already present, and it is probably easier 215 // to CSE this. The loads should be mergable later anyway. 216 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 217 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 218 219 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 220 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 221 222 MDNode *MD = llvm::MDNode::get(Mod->getContext(), None); 223 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 224 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 225 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 226 227 // Extract y component. Upper half of LoadZU should be zero already. 228 Value *Y = Builder.CreateLShr(LoadXY, 16); 229 230 return std::make_pair(Y, LoadZU); 231 } 232 233 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 234 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 235 236 switch (N) { 237 case 0: 238 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 239 : Intrinsic::r600_read_tidig_x; 240 break; 241 case 1: 242 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 243 : Intrinsic::r600_read_tidig_y; 244 break; 245 246 case 2: 247 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 248 : Intrinsic::r600_read_tidig_z; 249 break; 250 default: 251 llvm_unreachable("invalid dimension"); 252 } 253 254 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 255 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 256 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 257 258 return CI; 259 } 260 261 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 262 return VectorType::get(ArrayTy->getArrayElementType(), 263 ArrayTy->getArrayNumElements()); 264 } 265 266 static Value * 267 calculateVectorIndex(Value *Ptr, 268 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 269 if (isa<AllocaInst>(Ptr)) 270 return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext())); 271 272 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 273 274 auto I = GEPIdx.find(GEP); 275 return I == GEPIdx.end() ? nullptr : I->second; 276 } 277 278 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 279 // FIXME we only support simple cases 280 if (GEP->getNumOperands() != 3) 281 return NULL; 282 283 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 284 if (!I0 || !I0->isZero()) 285 return NULL; 286 287 return GEP->getOperand(2); 288 } 289 290 // Not an instruction handled below to turn into a vector. 291 // 292 // TODO: Check isTriviallyVectorizable for calls and handle other 293 // instructions. 294 static bool canVectorizeInst(Instruction *Inst, User *User) { 295 switch (Inst->getOpcode()) { 296 case Instruction::Load: 297 case Instruction::BitCast: 298 case Instruction::AddrSpaceCast: 299 return true; 300 case Instruction::Store: { 301 // Must be the stored pointer operand, not a stored value. 302 StoreInst *SI = cast<StoreInst>(Inst); 303 return SI->getPointerOperand() == User; 304 } 305 default: 306 return false; 307 } 308 } 309 310 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 311 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 312 313 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 314 315 // FIXME: There is no reason why we can't support larger arrays, we 316 // are just being conservative for now. 317 if (!AllocaTy || 318 AllocaTy->getElementType()->isVectorTy() || 319 AllocaTy->getNumElements() > 4) { 320 DEBUG(dbgs() << " Cannot convert type to vector\n"); 321 return false; 322 } 323 324 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 325 std::vector<Value*> WorkList; 326 for (User *AllocaUser : Alloca->users()) { 327 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 328 if (!GEP) { 329 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 330 return false; 331 332 WorkList.push_back(AllocaUser); 333 continue; 334 } 335 336 Value *Index = GEPToVectorIndex(GEP); 337 338 // If we can't compute a vector index from this GEP, then we can't 339 // promote this alloca to vector. 340 if (!Index) { 341 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 342 return false; 343 } 344 345 GEPVectorIdx[GEP] = Index; 346 for (User *GEPUser : AllocaUser->users()) { 347 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 348 return false; 349 350 WorkList.push_back(GEPUser); 351 } 352 } 353 354 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 355 356 DEBUG(dbgs() << " Converting alloca to vector " 357 << *AllocaTy << " -> " << *VectorTy << '\n'); 358 359 for (Value *V : WorkList) { 360 Instruction *Inst = cast<Instruction>(V); 361 IRBuilder<> Builder(Inst); 362 switch (Inst->getOpcode()) { 363 case Instruction::Load: { 364 Value *Ptr = Inst->getOperand(0); 365 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 366 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); 367 Value *VecValue = Builder.CreateLoad(BitCast); 368 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 369 Inst->replaceAllUsesWith(ExtractElement); 370 Inst->eraseFromParent(); 371 break; 372 } 373 case Instruction::Store: { 374 Value *Ptr = Inst->getOperand(1); 375 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 376 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); 377 Value *VecValue = Builder.CreateLoad(BitCast); 378 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 379 Inst->getOperand(0), 380 Index); 381 Builder.CreateStore(NewVecValue, BitCast); 382 Inst->eraseFromParent(); 383 break; 384 } 385 case Instruction::BitCast: 386 case Instruction::AddrSpaceCast: 387 break; 388 389 default: 390 Inst->dump(); 391 llvm_unreachable("Inconsistency in instructions promotable to vector"); 392 } 393 } 394 return true; 395 } 396 397 static bool isCallPromotable(CallInst *CI) { 398 // TODO: We might be able to handle some cases where the callee is a 399 // constantexpr bitcast of a function. 400 if (!CI->getCalledFunction()) 401 return false; 402 403 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 404 if (!II) 405 return false; 406 407 switch (II->getIntrinsicID()) { 408 case Intrinsic::memcpy: 409 case Intrinsic::memmove: 410 case Intrinsic::memset: 411 case Intrinsic::lifetime_start: 412 case Intrinsic::lifetime_end: 413 case Intrinsic::invariant_start: 414 case Intrinsic::invariant_end: 415 case Intrinsic::invariant_group_barrier: 416 case Intrinsic::objectsize: 417 return true; 418 default: 419 return false; 420 } 421 } 422 423 static bool collectUsesWithPtrTypes(Value *Val, std::vector<Value*> &WorkList) { 424 for (User *User : Val->users()) { 425 if (std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end()) 426 continue; 427 428 if (CallInst *CI = dyn_cast<CallInst>(User)) { 429 if (!isCallPromotable(CI)) 430 return false; 431 432 WorkList.push_back(User); 433 continue; 434 } 435 436 // FIXME: Correctly handle ptrtoint instructions. 437 Instruction *UseInst = dyn_cast<Instruction>(User); 438 if (UseInst && UseInst->getOpcode() == Instruction::PtrToInt) 439 return false; 440 441 if (StoreInst *SI = dyn_cast_or_null<StoreInst>(UseInst)) { 442 // Reject if the stored value is not the pointer operand. 443 if (SI->getPointerOperand() != Val) 444 return false; 445 } 446 447 if (!User->getType()->isPointerTy()) 448 continue; 449 450 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 451 // Be conservative if an address could be computed outside the bounds of 452 // the alloca. 453 if (!GEP->isInBounds()) 454 return false; 455 } 456 457 WorkList.push_back(User); 458 if (!collectUsesWithPtrTypes(User, WorkList)) 459 return false; 460 } 461 462 return true; 463 } 464 465 void AMDGPUPromoteAlloca::visitAlloca(AllocaInst &I) { 466 if (!I.isStaticAlloca()) 467 return; 468 469 IRBuilder<> Builder(&I); 470 471 // First try to replace the alloca with a vector 472 Type *AllocaTy = I.getAllocatedType(); 473 474 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 475 476 if (tryPromoteAllocaToVector(&I)) 477 return; 478 479 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 480 481 // FIXME: This is the maximum work group size. We should try to get 482 // value from the reqd_work_group_size function attribute if it is 483 // available. 484 unsigned WorkGroupSize = 256; 485 int AllocaSize = 486 WorkGroupSize * Mod->getDataLayout().getTypeAllocSize(AllocaTy); 487 488 if (AllocaSize > LocalMemAvailable) { 489 DEBUG(dbgs() << " Not enough local memory to promote alloca.\n"); 490 return; 491 } 492 493 std::vector<Value*> WorkList; 494 495 if (!collectUsesWithPtrTypes(&I, WorkList)) { 496 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 497 return; 498 } 499 500 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 501 LocalMemAvailable -= AllocaSize; 502 503 Function *F = I.getParent()->getParent(); 504 505 Type *GVTy = ArrayType::get(I.getAllocatedType(), 256); 506 GlobalVariable *GV = new GlobalVariable( 507 *Mod, GVTy, false, GlobalValue::InternalLinkage, 508 UndefValue::get(GVTy), 509 Twine(F->getName()) + Twine('.') + I.getName(), 510 nullptr, 511 GlobalVariable::NotThreadLocal, 512 AMDGPUAS::LOCAL_ADDRESS); 513 GV->setUnnamedAddr(true); 514 GV->setAlignment(I.getAlignment()); 515 516 Value *TCntY, *TCntZ; 517 518 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 519 Value *TIdX = getWorkitemID(Builder, 0); 520 Value *TIdY = getWorkitemID(Builder, 1); 521 Value *TIdZ = getWorkitemID(Builder, 2); 522 523 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 524 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 525 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 526 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 527 TID = Builder.CreateAdd(TID, TIdZ); 528 529 Value *Indices[] = { 530 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 531 TID 532 }; 533 534 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 535 I.mutateType(Offset->getType()); 536 I.replaceAllUsesWith(Offset); 537 I.eraseFromParent(); 538 539 for (Value *V : WorkList) { 540 CallInst *Call = dyn_cast<CallInst>(V); 541 if (!Call) { 542 Type *EltTy = V->getType()->getPointerElementType(); 543 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 544 545 // The operand's value should be corrected on its own. 546 if (isa<AddrSpaceCastInst>(V)) 547 continue; 548 549 // FIXME: It doesn't really make sense to try to do this for all 550 // instructions. 551 V->mutateType(NewTy); 552 continue; 553 } 554 555 IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call); 556 if (!Intr) { 557 // FIXME: What is this for? It doesn't make sense to promote arbitrary 558 // function calls. If the call is to a defined function that can also be 559 // promoted, we should be able to do this once that function is also 560 // rewritten. 561 562 std::vector<Type*> ArgTypes; 563 for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands(); 564 ArgIdx != ArgEnd; ++ArgIdx) { 565 ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType()); 566 } 567 Function *F = Call->getCalledFunction(); 568 FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes, 569 F->isVarArg()); 570 Constant *C = Mod->getOrInsertFunction((F->getName() + ".local").str(), 571 NewType, F->getAttributes()); 572 Function *NewF = cast<Function>(C); 573 Call->setCalledFunction(NewF); 574 continue; 575 } 576 577 Builder.SetInsertPoint(Intr); 578 switch (Intr->getIntrinsicID()) { 579 case Intrinsic::lifetime_start: 580 case Intrinsic::lifetime_end: 581 // These intrinsics are for address space 0 only 582 Intr->eraseFromParent(); 583 continue; 584 case Intrinsic::memcpy: { 585 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 586 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 587 MemCpy->getLength(), MemCpy->getAlignment(), 588 MemCpy->isVolatile()); 589 Intr->eraseFromParent(); 590 continue; 591 } 592 case Intrinsic::memmove: { 593 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 594 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 595 MemMove->getLength(), MemMove->getAlignment(), 596 MemMove->isVolatile()); 597 Intr->eraseFromParent(); 598 continue; 599 } 600 case Intrinsic::memset: { 601 MemSetInst *MemSet = cast<MemSetInst>(Intr); 602 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 603 MemSet->getLength(), MemSet->getAlignment(), 604 MemSet->isVolatile()); 605 Intr->eraseFromParent(); 606 continue; 607 } 608 case Intrinsic::invariant_start: 609 case Intrinsic::invariant_end: 610 case Intrinsic::invariant_group_barrier: 611 Intr->eraseFromParent(); 612 // FIXME: I think the invariant marker should still theoretically apply, 613 // but the intrinsics need to be changed to accept pointers with any 614 // address space. 615 continue; 616 case Intrinsic::objectsize: { 617 Value *Src = Intr->getOperand(0); 618 Type *SrcTy = Src->getType()->getPointerElementType(); 619 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 620 Intrinsic::objectsize, 621 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 622 ); 623 624 CallInst *NewCall 625 = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) }); 626 Intr->replaceAllUsesWith(NewCall); 627 Intr->eraseFromParent(); 628 continue; 629 } 630 default: 631 Intr->dump(); 632 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 633 } 634 } 635 } 636 637 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 638 return new AMDGPUPromoteAlloca(TM); 639 } 640