1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "Utils/AMDGPUBaseInfo.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <map> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 #define DEBUG_TYPE "amdgpu-promote-alloca" 63 64 using namespace llvm; 65 66 namespace { 67 68 static cl::opt<bool> DisablePromoteAllocaToVector( 69 "disable-promote-alloca-to-vector", 70 cl::desc("Disable promote alloca to vector"), 71 cl::init(false)); 72 73 // FIXME: This can create globals so should be a module pass. 74 class AMDGPUPromoteAlloca : public FunctionPass { 75 private: 76 const TargetMachine *TM; 77 Module *Mod = nullptr; 78 const DataLayout *DL = nullptr; 79 AMDGPUAS AS; 80 81 // FIXME: This should be per-kernel. 82 uint32_t LocalMemLimit = 0; 83 uint32_t CurrentLocalMemUsage = 0; 84 85 bool IsAMDGCN = false; 86 bool IsAMDHSA = false; 87 88 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 89 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 90 91 /// BaseAlloca is the alloca root the search started from. 92 /// Val may be that alloca or a recursive user of it. 93 bool collectUsesWithPtrTypes(Value *BaseAlloca, 94 Value *Val, 95 std::vector<Value*> &WorkList) const; 96 97 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 98 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 99 /// Returns true if both operands are derived from the same alloca. Val should 100 /// be the same value as one of the input operands of UseInst. 101 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 102 Instruction *UseInst, 103 int OpIdx0, int OpIdx1) const; 104 105 /// Check whether we have enough local memory for promotion. 106 bool hasSufficientLocalMem(const Function &F); 107 108 public: 109 static char ID; 110 111 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 112 113 bool doInitialization(Module &M) override; 114 bool runOnFunction(Function &F) override; 115 116 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 117 118 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 119 120 void getAnalysisUsage(AnalysisUsage &AU) const override { 121 AU.setPreservesCFG(); 122 FunctionPass::getAnalysisUsage(AU); 123 } 124 }; 125 126 } // end anonymous namespace 127 128 char AMDGPUPromoteAlloca::ID = 0; 129 130 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 131 "AMDGPU promote alloca to vector or LDS", false, false) 132 133 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 134 135 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 136 Mod = &M; 137 DL = &Mod->getDataLayout(); 138 139 return false; 140 } 141 142 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 143 if (skipFunction(F)) 144 return false; 145 146 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 147 TM = &TPC->getTM<TargetMachine>(); 148 else 149 return false; 150 151 const Triple &TT = TM->getTargetTriple(); 152 IsAMDGCN = TT.getArch() == Triple::amdgcn; 153 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 154 155 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 156 if (!ST.isPromoteAllocaEnabled()) 157 return false; 158 159 AS = AMDGPU::getAMDGPUAS(*F.getParent()); 160 161 bool SufficientLDS = hasSufficientLocalMem(F); 162 bool Changed = false; 163 BasicBlock &EntryBB = *F.begin(); 164 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 165 AllocaInst *AI = dyn_cast<AllocaInst>(I); 166 167 ++I; 168 if (AI) 169 Changed |= handleAlloca(*AI, SufficientLDS); 170 } 171 172 return Changed; 173 } 174 175 std::pair<Value *, Value *> 176 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 177 const Function &F = *Builder.GetInsertBlock()->getParent(); 178 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 179 180 if (!IsAMDHSA) { 181 Function *LocalSizeYFn 182 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 183 Function *LocalSizeZFn 184 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 185 186 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 187 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 188 189 ST.makeLIDRangeMetadata(LocalSizeY); 190 ST.makeLIDRangeMetadata(LocalSizeZ); 191 192 return std::make_pair(LocalSizeY, LocalSizeZ); 193 } 194 195 // We must read the size out of the dispatch pointer. 196 assert(IsAMDGCN); 197 198 // We are indexing into this struct, and want to extract the workgroup_size_* 199 // fields. 200 // 201 // typedef struct hsa_kernel_dispatch_packet_s { 202 // uint16_t header; 203 // uint16_t setup; 204 // uint16_t workgroup_size_x ; 205 // uint16_t workgroup_size_y; 206 // uint16_t workgroup_size_z; 207 // uint16_t reserved0; 208 // uint32_t grid_size_x ; 209 // uint32_t grid_size_y ; 210 // uint32_t grid_size_z; 211 // 212 // uint32_t private_segment_size; 213 // uint32_t group_segment_size; 214 // uint64_t kernel_object; 215 // 216 // #ifdef HSA_LARGE_MODEL 217 // void *kernarg_address; 218 // #elif defined HSA_LITTLE_ENDIAN 219 // void *kernarg_address; 220 // uint32_t reserved1; 221 // #else 222 // uint32_t reserved1; 223 // void *kernarg_address; 224 // #endif 225 // uint64_t reserved2; 226 // hsa_signal_t completion_signal; // uint64_t wrapper 227 // } hsa_kernel_dispatch_packet_t 228 // 229 Function *DispatchPtrFn 230 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 231 232 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 233 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 234 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 235 236 // Size of the dispatch packet struct. 237 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 238 239 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 240 Value *CastDispatchPtr = Builder.CreateBitCast( 241 DispatchPtr, PointerType::get(I32Ty, AS.CONSTANT_ADDRESS)); 242 243 // We could do a single 64-bit load here, but it's likely that the basic 244 // 32-bit and extract sequence is already present, and it is probably easier 245 // to CSE this. The loads should be mergable later anyway. 246 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 247 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 248 249 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 250 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 251 252 MDNode *MD = MDNode::get(Mod->getContext(), None); 253 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 254 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 255 ST.makeLIDRangeMetadata(LoadZU); 256 257 // Extract y component. Upper half of LoadZU should be zero already. 258 Value *Y = Builder.CreateLShr(LoadXY, 16); 259 260 return std::make_pair(Y, LoadZU); 261 } 262 263 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 264 const AMDGPUSubtarget &ST = 265 AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent()); 266 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 267 268 switch (N) { 269 case 0: 270 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 271 : Intrinsic::r600_read_tidig_x; 272 break; 273 case 1: 274 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 275 : Intrinsic::r600_read_tidig_y; 276 break; 277 278 case 2: 279 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 280 : Intrinsic::r600_read_tidig_z; 281 break; 282 default: 283 llvm_unreachable("invalid dimension"); 284 } 285 286 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 287 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 288 ST.makeLIDRangeMetadata(CI); 289 290 return CI; 291 } 292 293 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 294 return VectorType::get(ArrayTy->getElementType(), 295 ArrayTy->getNumElements()); 296 } 297 298 static Value * 299 calculateVectorIndex(Value *Ptr, 300 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 301 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 302 303 auto I = GEPIdx.find(GEP); 304 return I == GEPIdx.end() ? nullptr : I->second; 305 } 306 307 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 308 // FIXME we only support simple cases 309 if (GEP->getNumOperands() != 3) 310 return nullptr; 311 312 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 313 if (!I0 || !I0->isZero()) 314 return nullptr; 315 316 return GEP->getOperand(2); 317 } 318 319 // Not an instruction handled below to turn into a vector. 320 // 321 // TODO: Check isTriviallyVectorizable for calls and handle other 322 // instructions. 323 static bool canVectorizeInst(Instruction *Inst, User *User) { 324 switch (Inst->getOpcode()) { 325 case Instruction::Load: { 326 // Currently only handle the case where the Pointer Operand is a GEP. 327 // Also we could not vectorize volatile or atomic loads. 328 LoadInst *LI = cast<LoadInst>(Inst); 329 return isa<GetElementPtrInst>(LI->getPointerOperand()) && LI->isSimple(); 330 } 331 case Instruction::BitCast: 332 return true; 333 case Instruction::Store: { 334 // Must be the stored pointer operand, not a stored value, plus 335 // since it should be canonical form, the User should be a GEP. 336 // Also we could not vectorize volatile or atomic stores. 337 StoreInst *SI = cast<StoreInst>(Inst); 338 return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && SI->isSimple(); 339 } 340 default: 341 return false; 342 } 343 } 344 345 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, AMDGPUAS AS) { 346 347 if (DisablePromoteAllocaToVector) { 348 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 349 return false; 350 } 351 352 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 353 354 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 355 356 // FIXME: There is no reason why we can't support larger arrays, we 357 // are just being conservative for now. 358 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 359 // could also be promoted but we don't currently handle this case 360 if (!AllocaTy || 361 AllocaTy->getNumElements() > 16 || 362 AllocaTy->getNumElements() < 2 || 363 !VectorType::isValidElementType(AllocaTy->getElementType())) { 364 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 365 return false; 366 } 367 368 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 369 std::vector<Value*> WorkList; 370 for (User *AllocaUser : Alloca->users()) { 371 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 372 if (!GEP) { 373 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 374 return false; 375 376 WorkList.push_back(AllocaUser); 377 continue; 378 } 379 380 Value *Index = GEPToVectorIndex(GEP); 381 382 // If we can't compute a vector index from this GEP, then we can't 383 // promote this alloca to vector. 384 if (!Index) { 385 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 386 << '\n'); 387 return false; 388 } 389 390 GEPVectorIdx[GEP] = Index; 391 for (User *GEPUser : AllocaUser->users()) { 392 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 393 return false; 394 395 WorkList.push_back(GEPUser); 396 } 397 } 398 399 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 400 401 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 402 << *VectorTy << '\n'); 403 404 for (Value *V : WorkList) { 405 Instruction *Inst = cast<Instruction>(V); 406 IRBuilder<> Builder(Inst); 407 switch (Inst->getOpcode()) { 408 case Instruction::Load: { 409 Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS); 410 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 411 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 412 413 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 414 Value *VecValue = Builder.CreateLoad(BitCast); 415 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 416 Inst->replaceAllUsesWith(ExtractElement); 417 Inst->eraseFromParent(); 418 break; 419 } 420 case Instruction::Store: { 421 Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS); 422 423 StoreInst *SI = cast<StoreInst>(Inst); 424 Value *Ptr = SI->getPointerOperand(); 425 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 426 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 427 Value *VecValue = Builder.CreateLoad(BitCast); 428 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 429 SI->getValueOperand(), 430 Index); 431 Builder.CreateStore(NewVecValue, BitCast); 432 Inst->eraseFromParent(); 433 break; 434 } 435 case Instruction::BitCast: 436 case Instruction::AddrSpaceCast: 437 break; 438 439 default: 440 llvm_unreachable("Inconsistency in instructions promotable to vector"); 441 } 442 } 443 return true; 444 } 445 446 static bool isCallPromotable(CallInst *CI) { 447 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 448 if (!II) 449 return false; 450 451 switch (II->getIntrinsicID()) { 452 case Intrinsic::memcpy: 453 case Intrinsic::memmove: 454 case Intrinsic::memset: 455 case Intrinsic::lifetime_start: 456 case Intrinsic::lifetime_end: 457 case Intrinsic::invariant_start: 458 case Intrinsic::invariant_end: 459 case Intrinsic::launder_invariant_group: 460 case Intrinsic::strip_invariant_group: 461 case Intrinsic::objectsize: 462 return true; 463 default: 464 return false; 465 } 466 } 467 468 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 469 Value *Val, 470 Instruction *Inst, 471 int OpIdx0, 472 int OpIdx1) const { 473 // Figure out which operand is the one we might not be promoting. 474 Value *OtherOp = Inst->getOperand(OpIdx0); 475 if (Val == OtherOp) 476 OtherOp = Inst->getOperand(OpIdx1); 477 478 if (isa<ConstantPointerNull>(OtherOp)) 479 return true; 480 481 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 482 if (!isa<AllocaInst>(OtherObj)) 483 return false; 484 485 // TODO: We should be able to replace undefs with the right pointer type. 486 487 // TODO: If we know the other base object is another promotable 488 // alloca, not necessarily this alloca, we can do this. The 489 // important part is both must have the same address space at 490 // the end. 491 if (OtherObj != BaseAlloca) { 492 LLVM_DEBUG( 493 dbgs() << "Found a binary instruction with another alloca object\n"); 494 return false; 495 } 496 497 return true; 498 } 499 500 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 501 Value *BaseAlloca, 502 Value *Val, 503 std::vector<Value*> &WorkList) const { 504 505 for (User *User : Val->users()) { 506 if (is_contained(WorkList, User)) 507 continue; 508 509 if (CallInst *CI = dyn_cast<CallInst>(User)) { 510 if (!isCallPromotable(CI)) 511 return false; 512 513 WorkList.push_back(User); 514 continue; 515 } 516 517 Instruction *UseInst = cast<Instruction>(User); 518 if (UseInst->getOpcode() == Instruction::PtrToInt) 519 return false; 520 521 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 522 if (LI->isVolatile()) 523 return false; 524 525 continue; 526 } 527 528 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 529 if (SI->isVolatile()) 530 return false; 531 532 // Reject if the stored value is not the pointer operand. 533 if (SI->getPointerOperand() != Val) 534 return false; 535 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 536 if (RMW->isVolatile()) 537 return false; 538 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 539 if (CAS->isVolatile()) 540 return false; 541 } 542 543 // Only promote a select if we know that the other select operand 544 // is from another pointer that will also be promoted. 545 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 546 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 547 return false; 548 549 // May need to rewrite constant operands. 550 WorkList.push_back(ICmp); 551 } 552 553 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 554 // Give up if the pointer may be captured. 555 if (PointerMayBeCaptured(UseInst, true, true)) 556 return false; 557 // Don't collect the users of this. 558 WorkList.push_back(User); 559 continue; 560 } 561 562 if (!User->getType()->isPointerTy()) 563 continue; 564 565 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 566 // Be conservative if an address could be computed outside the bounds of 567 // the alloca. 568 if (!GEP->isInBounds()) 569 return false; 570 } 571 572 // Only promote a select if we know that the other select operand is from 573 // another pointer that will also be promoted. 574 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 575 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 576 return false; 577 } 578 579 // Repeat for phis. 580 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 581 // TODO: Handle more complex cases. We should be able to replace loops 582 // over arrays. 583 switch (Phi->getNumIncomingValues()) { 584 case 1: 585 break; 586 case 2: 587 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 588 return false; 589 break; 590 default: 591 return false; 592 } 593 } 594 595 WorkList.push_back(User); 596 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 597 return false; 598 } 599 600 return true; 601 } 602 603 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { 604 605 FunctionType *FTy = F.getFunctionType(); 606 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 607 608 // If the function has any arguments in the local address space, then it's 609 // possible these arguments require the entire local memory space, so 610 // we cannot use local memory in the pass. 611 for (Type *ParamTy : FTy->params()) { 612 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 613 if (PtrTy && PtrTy->getAddressSpace() == AS.LOCAL_ADDRESS) { 614 LocalMemLimit = 0; 615 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 616 "local memory disabled.\n"); 617 return false; 618 } 619 } 620 621 LocalMemLimit = ST.getLocalMemorySize(); 622 if (LocalMemLimit == 0) 623 return false; 624 625 const DataLayout &DL = Mod->getDataLayout(); 626 627 // Check how much local memory is being used by global objects 628 CurrentLocalMemUsage = 0; 629 for (GlobalVariable &GV : Mod->globals()) { 630 if (GV.getType()->getAddressSpace() != AS.LOCAL_ADDRESS) 631 continue; 632 633 for (const User *U : GV.users()) { 634 const Instruction *Use = dyn_cast<Instruction>(U); 635 if (!Use) 636 continue; 637 638 if (Use->getParent()->getParent() == &F) { 639 unsigned Align = GV.getAlignment(); 640 if (Align == 0) 641 Align = DL.getABITypeAlignment(GV.getValueType()); 642 643 // FIXME: Try to account for padding here. The padding is currently 644 // determined from the inverse order of uses in the function. I'm not 645 // sure if the use list order is in any way connected to this, so the 646 // total reported size is likely incorrect. 647 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 648 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 649 CurrentLocalMemUsage += AllocSize; 650 break; 651 } 652 } 653 } 654 655 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 656 F); 657 658 // Restrict local memory usage so that we don't drastically reduce occupancy, 659 // unless it is already significantly reduced. 660 661 // TODO: Have some sort of hint or other heuristics to guess occupancy based 662 // on other factors.. 663 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 664 if (OccupancyHint == 0) 665 OccupancyHint = 7; 666 667 // Clamp to max value. 668 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 669 670 // Check the hint but ignore it if it's obviously wrong from the existing LDS 671 // usage. 672 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 673 674 675 // Round up to the next tier of usage. 676 unsigned MaxSizeWithWaveCount 677 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 678 679 // Program is possibly broken by using more local mem than available. 680 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 681 return false; 682 683 LocalMemLimit = MaxSizeWithWaveCount; 684 685 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 686 << " bytes of LDS\n" 687 << " Rounding size to " << MaxSizeWithWaveCount 688 << " with a maximum occupancy of " << MaxOccupancy << '\n' 689 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 690 << " available for promotion\n"); 691 692 return true; 693 } 694 695 // FIXME: Should try to pick the most likely to be profitable allocas first. 696 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { 697 // Array allocations are probably not worth handling, since an allocation of 698 // the array type is the canonical form. 699 if (!I.isStaticAlloca() || I.isArrayAllocation()) 700 return false; 701 702 IRBuilder<> Builder(&I); 703 704 // First try to replace the alloca with a vector 705 Type *AllocaTy = I.getAllocatedType(); 706 707 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 708 709 if (tryPromoteAllocaToVector(&I, AS)) 710 return true; // Promoted to vector. 711 712 const Function &ContainingFunction = *I.getParent()->getParent(); 713 CallingConv::ID CC = ContainingFunction.getCallingConv(); 714 715 // Don't promote the alloca to LDS for shader calling conventions as the work 716 // item ID intrinsics are not supported for these calling conventions. 717 // Furthermore not all LDS is available for some of the stages. 718 switch (CC) { 719 case CallingConv::AMDGPU_KERNEL: 720 case CallingConv::SPIR_KERNEL: 721 break; 722 default: 723 LLVM_DEBUG( 724 dbgs() 725 << " promote alloca to LDS not supported with calling convention.\n"); 726 return false; 727 } 728 729 // Not likely to have sufficient local memory for promotion. 730 if (!SufficientLDS) 731 return false; 732 733 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction); 734 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 735 736 const DataLayout &DL = Mod->getDataLayout(); 737 738 unsigned Align = I.getAlignment(); 739 if (Align == 0) 740 Align = DL.getABITypeAlignment(I.getAllocatedType()); 741 742 // FIXME: This computed padding is likely wrong since it depends on inverse 743 // usage order. 744 // 745 // FIXME: It is also possible that if we're allowed to use all of the memory 746 // could could end up using more than the maximum due to alignment padding. 747 748 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 749 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 750 NewSize += AllocSize; 751 752 if (NewSize > LocalMemLimit) { 753 LLVM_DEBUG(dbgs() << " " << AllocSize 754 << " bytes of local memory not available to promote\n"); 755 return false; 756 } 757 758 CurrentLocalMemUsage = NewSize; 759 760 std::vector<Value*> WorkList; 761 762 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 763 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 764 return false; 765 } 766 767 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 768 769 Function *F = I.getParent()->getParent(); 770 771 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 772 GlobalVariable *GV = new GlobalVariable( 773 *Mod, GVTy, false, GlobalValue::InternalLinkage, 774 UndefValue::get(GVTy), 775 Twine(F->getName()) + Twine('.') + I.getName(), 776 nullptr, 777 GlobalVariable::NotThreadLocal, 778 AS.LOCAL_ADDRESS); 779 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 780 GV->setAlignment(I.getAlignment()); 781 782 Value *TCntY, *TCntZ; 783 784 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 785 Value *TIdX = getWorkitemID(Builder, 0); 786 Value *TIdY = getWorkitemID(Builder, 1); 787 Value *TIdZ = getWorkitemID(Builder, 2); 788 789 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 790 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 791 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 792 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 793 TID = Builder.CreateAdd(TID, TIdZ); 794 795 Value *Indices[] = { 796 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 797 TID 798 }; 799 800 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 801 I.mutateType(Offset->getType()); 802 I.replaceAllUsesWith(Offset); 803 I.eraseFromParent(); 804 805 for (Value *V : WorkList) { 806 CallInst *Call = dyn_cast<CallInst>(V); 807 if (!Call) { 808 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 809 Value *Src0 = CI->getOperand(0); 810 Type *EltTy = Src0->getType()->getPointerElementType(); 811 PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS); 812 813 if (isa<ConstantPointerNull>(CI->getOperand(0))) 814 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 815 816 if (isa<ConstantPointerNull>(CI->getOperand(1))) 817 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 818 819 continue; 820 } 821 822 // The operand's value should be corrected on its own and we don't want to 823 // touch the users. 824 if (isa<AddrSpaceCastInst>(V)) 825 continue; 826 827 Type *EltTy = V->getType()->getPointerElementType(); 828 PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS); 829 830 // FIXME: It doesn't really make sense to try to do this for all 831 // instructions. 832 V->mutateType(NewTy); 833 834 // Adjust the types of any constant operands. 835 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 836 if (isa<ConstantPointerNull>(SI->getOperand(1))) 837 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 838 839 if (isa<ConstantPointerNull>(SI->getOperand(2))) 840 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 841 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 842 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 843 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 844 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 845 } 846 } 847 848 continue; 849 } 850 851 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 852 Builder.SetInsertPoint(Intr); 853 switch (Intr->getIntrinsicID()) { 854 case Intrinsic::lifetime_start: 855 case Intrinsic::lifetime_end: 856 // These intrinsics are for address space 0 only 857 Intr->eraseFromParent(); 858 continue; 859 case Intrinsic::memcpy: { 860 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 861 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(), 862 MemCpy->getRawSource(), MemCpy->getSourceAlignment(), 863 MemCpy->getLength(), MemCpy->isVolatile()); 864 Intr->eraseFromParent(); 865 continue; 866 } 867 case Intrinsic::memmove: { 868 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 869 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(), 870 MemMove->getRawSource(), MemMove->getSourceAlignment(), 871 MemMove->getLength(), MemMove->isVolatile()); 872 Intr->eraseFromParent(); 873 continue; 874 } 875 case Intrinsic::memset: { 876 MemSetInst *MemSet = cast<MemSetInst>(Intr); 877 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 878 MemSet->getLength(), MemSet->getDestAlignment(), 879 MemSet->isVolatile()); 880 Intr->eraseFromParent(); 881 continue; 882 } 883 case Intrinsic::invariant_start: 884 case Intrinsic::invariant_end: 885 case Intrinsic::launder_invariant_group: 886 case Intrinsic::strip_invariant_group: 887 Intr->eraseFromParent(); 888 // FIXME: I think the invariant marker should still theoretically apply, 889 // but the intrinsics need to be changed to accept pointers with any 890 // address space. 891 continue; 892 case Intrinsic::objectsize: { 893 Value *Src = Intr->getOperand(0); 894 Type *SrcTy = Src->getType()->getPointerElementType(); 895 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 896 Intrinsic::objectsize, 897 { Intr->getType(), PointerType::get(SrcTy, AS.LOCAL_ADDRESS) } 898 ); 899 900 CallInst *NewCall = Builder.CreateCall( 901 ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)}); 902 Intr->replaceAllUsesWith(NewCall); 903 Intr->eraseFromParent(); 904 continue; 905 } 906 default: 907 Intr->print(errs()); 908 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 909 } 910 } 911 return true; 912 } 913 914 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 915 return new AMDGPUPromoteAlloca(); 916 } 917