1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "Utils/AMDGPUBaseInfo.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <map> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 #define DEBUG_TYPE "amdgpu-promote-alloca" 63 64 using namespace llvm; 65 66 namespace { 67 68 // FIXME: This can create globals so should be a module pass. 69 class AMDGPUPromoteAlloca : public FunctionPass { 70 private: 71 const TargetMachine *TM; 72 Module *Mod = nullptr; 73 const DataLayout *DL = nullptr; 74 MDNode *MaxWorkGroupSizeRange = nullptr; 75 76 // FIXME: This should be per-kernel. 77 uint32_t LocalMemLimit = 0; 78 uint32_t CurrentLocalMemUsage = 0; 79 80 bool IsAMDGCN = false; 81 bool IsAMDHSA = false; 82 83 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 84 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 85 86 /// BaseAlloca is the alloca root the search started from. 87 /// Val may be that alloca or a recursive user of it. 88 bool collectUsesWithPtrTypes(Value *BaseAlloca, 89 Value *Val, 90 std::vector<Value*> &WorkList) const; 91 92 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 93 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 94 /// Returns true if both operands are derived from the same alloca. Val should 95 /// be the same value as one of the input operands of UseInst. 96 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 97 Instruction *UseInst, 98 int OpIdx0, int OpIdx1) const; 99 100 public: 101 static char ID; 102 103 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 104 FunctionPass(ID), TM(TM_) {} 105 106 bool doInitialization(Module &M) override; 107 bool runOnFunction(Function &F) override; 108 109 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 110 111 void handleAlloca(AllocaInst &I); 112 113 void getAnalysisUsage(AnalysisUsage &AU) const override { 114 AU.setPreservesCFG(); 115 FunctionPass::getAnalysisUsage(AU); 116 } 117 }; 118 119 } // end anonymous namespace 120 121 char AMDGPUPromoteAlloca::ID = 0; 122 123 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 124 "AMDGPU promote alloca to vector or LDS", false, false) 125 126 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 127 128 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 129 if (!TM) 130 return false; 131 132 Mod = &M; 133 DL = &Mod->getDataLayout(); 134 135 // The maximum workitem id. 136 // 137 // FIXME: Should get as subtarget property. Usually runtime enforced max is 138 // 256. 139 MDBuilder MDB(Mod->getContext()); 140 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 141 142 const Triple &TT = TM->getTargetTriple(); 143 144 IsAMDGCN = TT.getArch() == Triple::amdgcn; 145 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 146 147 return false; 148 } 149 150 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 151 if (!TM || skipFunction(F)) 152 return false; 153 154 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 155 if (!ST.isPromoteAllocaEnabled()) 156 return false; 157 158 FunctionType *FTy = F.getFunctionType(); 159 160 // If the function has any arguments in the local address space, then it's 161 // possible these arguments require the entire local memory space, so 162 // we cannot use local memory in the pass. 163 for (Type *ParamTy : FTy->params()) { 164 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 165 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 166 LocalMemLimit = 0; 167 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 168 "local memory disabled.\n"); 169 return false; 170 } 171 } 172 173 LocalMemLimit = ST.getLocalMemorySize(); 174 if (LocalMemLimit == 0) 175 return false; 176 177 const DataLayout &DL = Mod->getDataLayout(); 178 179 // Check how much local memory is being used by global objects 180 CurrentLocalMemUsage = 0; 181 for (GlobalVariable &GV : Mod->globals()) { 182 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 183 continue; 184 185 for (const User *U : GV.users()) { 186 const Instruction *Use = dyn_cast<Instruction>(U); 187 if (!Use) 188 continue; 189 190 if (Use->getParent()->getParent() == &F) { 191 unsigned Align = GV.getAlignment(); 192 if (Align == 0) 193 Align = DL.getABITypeAlignment(GV.getValueType()); 194 195 // FIXME: Try to account for padding here. The padding is currently 196 // determined from the inverse order of uses in the function. I'm not 197 // sure if the use list order is in any way connected to this, so the 198 // total reported size is likely incorrect. 199 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 200 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 201 CurrentLocalMemUsage += AllocSize; 202 break; 203 } 204 } 205 } 206 207 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage); 208 209 // Restrict local memory usage so that we don't drastically reduce occupancy, 210 // unless it is already significantly reduced. 211 212 // TODO: Have some sort of hint or other heuristics to guess occupancy based 213 // on other factors.. 214 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 215 if (OccupancyHint == 0) 216 OccupancyHint = 7; 217 218 // Clamp to max value. 219 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 220 221 // Check the hint but ignore it if it's obviously wrong from the existing LDS 222 // usage. 223 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 224 225 226 // Round up to the next tier of usage. 227 unsigned MaxSizeWithWaveCount 228 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy); 229 230 // Program is possibly broken by using more local mem than available. 231 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 232 return false; 233 234 LocalMemLimit = MaxSizeWithWaveCount; 235 236 DEBUG( 237 dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" 238 << " Rounding size to " << MaxSizeWithWaveCount 239 << " with a maximum occupancy of " << MaxOccupancy << '\n' 240 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 241 << " available for promotion\n" 242 ); 243 244 BasicBlock &EntryBB = *F.begin(); 245 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 246 AllocaInst *AI = dyn_cast<AllocaInst>(I); 247 248 ++I; 249 if (AI) 250 handleAlloca(*AI); 251 } 252 253 return true; 254 } 255 256 std::pair<Value *, Value *> 257 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 258 if (!IsAMDHSA) { 259 Function *LocalSizeYFn 260 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 261 Function *LocalSizeZFn 262 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 263 264 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 265 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 266 267 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 268 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 269 270 return std::make_pair(LocalSizeY, LocalSizeZ); 271 } 272 273 // We must read the size out of the dispatch pointer. 274 assert(IsAMDGCN); 275 276 // We are indexing into this struct, and want to extract the workgroup_size_* 277 // fields. 278 // 279 // typedef struct hsa_kernel_dispatch_packet_s { 280 // uint16_t header; 281 // uint16_t setup; 282 // uint16_t workgroup_size_x ; 283 // uint16_t workgroup_size_y; 284 // uint16_t workgroup_size_z; 285 // uint16_t reserved0; 286 // uint32_t grid_size_x ; 287 // uint32_t grid_size_y ; 288 // uint32_t grid_size_z; 289 // 290 // uint32_t private_segment_size; 291 // uint32_t group_segment_size; 292 // uint64_t kernel_object; 293 // 294 // #ifdef HSA_LARGE_MODEL 295 // void *kernarg_address; 296 // #elif defined HSA_LITTLE_ENDIAN 297 // void *kernarg_address; 298 // uint32_t reserved1; 299 // #else 300 // uint32_t reserved1; 301 // void *kernarg_address; 302 // #endif 303 // uint64_t reserved2; 304 // hsa_signal_t completion_signal; // uint64_t wrapper 305 // } hsa_kernel_dispatch_packet_t 306 // 307 Function *DispatchPtrFn 308 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 309 310 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 311 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); 312 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 313 314 // Size of the dispatch packet struct. 315 DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); 316 317 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 318 Value *CastDispatchPtr = Builder.CreateBitCast( 319 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 320 321 // We could do a single 64-bit load here, but it's likely that the basic 322 // 32-bit and extract sequence is already present, and it is probably easier 323 // to CSE this. The loads should be mergable later anyway. 324 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 325 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 326 327 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 328 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 329 330 MDNode *MD = MDNode::get(Mod->getContext(), None); 331 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 332 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 333 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 334 335 // Extract y component. Upper half of LoadZU should be zero already. 336 Value *Y = Builder.CreateLShr(LoadXY, 16); 337 338 return std::make_pair(Y, LoadZU); 339 } 340 341 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 342 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 343 344 switch (N) { 345 case 0: 346 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 347 : Intrinsic::r600_read_tidig_x; 348 break; 349 case 1: 350 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 351 : Intrinsic::r600_read_tidig_y; 352 break; 353 354 case 2: 355 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 356 : Intrinsic::r600_read_tidig_z; 357 break; 358 default: 359 llvm_unreachable("invalid dimension"); 360 } 361 362 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 363 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 364 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 365 366 return CI; 367 } 368 369 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 370 return VectorType::get(ArrayTy->getArrayElementType(), 371 ArrayTy->getArrayNumElements()); 372 } 373 374 static Value * 375 calculateVectorIndex(Value *Ptr, 376 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 377 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 378 379 auto I = GEPIdx.find(GEP); 380 return I == GEPIdx.end() ? nullptr : I->second; 381 } 382 383 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 384 // FIXME we only support simple cases 385 if (GEP->getNumOperands() != 3) 386 return nullptr; 387 388 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 389 if (!I0 || !I0->isZero()) 390 return nullptr; 391 392 return GEP->getOperand(2); 393 } 394 395 // Not an instruction handled below to turn into a vector. 396 // 397 // TODO: Check isTriviallyVectorizable for calls and handle other 398 // instructions. 399 static bool canVectorizeInst(Instruction *Inst, User *User) { 400 switch (Inst->getOpcode()) { 401 case Instruction::Load: 402 case Instruction::BitCast: 403 case Instruction::AddrSpaceCast: 404 return true; 405 case Instruction::Store: { 406 // Must be the stored pointer operand, not a stored value. 407 StoreInst *SI = cast<StoreInst>(Inst); 408 return SI->getPointerOperand() == User; 409 } 410 default: 411 return false; 412 } 413 } 414 415 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 416 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 417 418 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 419 420 // FIXME: There is no reason why we can't support larger arrays, we 421 // are just being conservative for now. 422 if (!AllocaTy || 423 AllocaTy->getElementType()->isVectorTy() || 424 AllocaTy->getNumElements() > 4 || 425 AllocaTy->getNumElements() < 2) { 426 DEBUG(dbgs() << " Cannot convert type to vector\n"); 427 return false; 428 } 429 430 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 431 std::vector<Value*> WorkList; 432 for (User *AllocaUser : Alloca->users()) { 433 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 434 if (!GEP) { 435 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 436 return false; 437 438 WorkList.push_back(AllocaUser); 439 continue; 440 } 441 442 Value *Index = GEPToVectorIndex(GEP); 443 444 // If we can't compute a vector index from this GEP, then we can't 445 // promote this alloca to vector. 446 if (!Index) { 447 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 448 return false; 449 } 450 451 GEPVectorIdx[GEP] = Index; 452 for (User *GEPUser : AllocaUser->users()) { 453 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 454 return false; 455 456 WorkList.push_back(GEPUser); 457 } 458 } 459 460 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 461 462 DEBUG(dbgs() << " Converting alloca to vector " 463 << *AllocaTy << " -> " << *VectorTy << '\n'); 464 465 for (Value *V : WorkList) { 466 Instruction *Inst = cast<Instruction>(V); 467 IRBuilder<> Builder(Inst); 468 switch (Inst->getOpcode()) { 469 case Instruction::Load: { 470 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 471 Value *Ptr = Inst->getOperand(0); 472 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 473 474 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 475 Value *VecValue = Builder.CreateLoad(BitCast); 476 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 477 Inst->replaceAllUsesWith(ExtractElement); 478 Inst->eraseFromParent(); 479 break; 480 } 481 case Instruction::Store: { 482 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 483 484 Value *Ptr = Inst->getOperand(1); 485 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 486 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 487 Value *VecValue = Builder.CreateLoad(BitCast); 488 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 489 Inst->getOperand(0), 490 Index); 491 Builder.CreateStore(NewVecValue, BitCast); 492 Inst->eraseFromParent(); 493 break; 494 } 495 case Instruction::BitCast: 496 case Instruction::AddrSpaceCast: 497 break; 498 499 default: 500 llvm_unreachable("Inconsistency in instructions promotable to vector"); 501 } 502 } 503 return true; 504 } 505 506 static bool isCallPromotable(CallInst *CI) { 507 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 508 if (!II) 509 return false; 510 511 switch (II->getIntrinsicID()) { 512 case Intrinsic::memcpy: 513 case Intrinsic::memmove: 514 case Intrinsic::memset: 515 case Intrinsic::lifetime_start: 516 case Intrinsic::lifetime_end: 517 case Intrinsic::invariant_start: 518 case Intrinsic::invariant_end: 519 case Intrinsic::invariant_group_barrier: 520 case Intrinsic::objectsize: 521 return true; 522 default: 523 return false; 524 } 525 } 526 527 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 528 Value *Val, 529 Instruction *Inst, 530 int OpIdx0, 531 int OpIdx1) const { 532 // Figure out which operand is the one we might not be promoting. 533 Value *OtherOp = Inst->getOperand(OpIdx0); 534 if (Val == OtherOp) 535 OtherOp = Inst->getOperand(OpIdx1); 536 537 if (isa<ConstantPointerNull>(OtherOp)) 538 return true; 539 540 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 541 if (!isa<AllocaInst>(OtherObj)) 542 return false; 543 544 // TODO: We should be able to replace undefs with the right pointer type. 545 546 // TODO: If we know the other base object is another promotable 547 // alloca, not necessarily this alloca, we can do this. The 548 // important part is both must have the same address space at 549 // the end. 550 if (OtherObj != BaseAlloca) { 551 DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); 552 return false; 553 } 554 555 return true; 556 } 557 558 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 559 Value *BaseAlloca, 560 Value *Val, 561 std::vector<Value*> &WorkList) const { 562 563 for (User *User : Val->users()) { 564 if (is_contained(WorkList, User)) 565 continue; 566 567 if (CallInst *CI = dyn_cast<CallInst>(User)) { 568 if (!isCallPromotable(CI)) 569 return false; 570 571 WorkList.push_back(User); 572 continue; 573 } 574 575 Instruction *UseInst = cast<Instruction>(User); 576 if (UseInst->getOpcode() == Instruction::PtrToInt) 577 return false; 578 579 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 580 if (LI->isVolatile()) 581 return false; 582 583 continue; 584 } 585 586 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 587 if (SI->isVolatile()) 588 return false; 589 590 // Reject if the stored value is not the pointer operand. 591 if (SI->getPointerOperand() != Val) 592 return false; 593 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 594 if (RMW->isVolatile()) 595 return false; 596 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 597 if (CAS->isVolatile()) 598 return false; 599 } 600 601 // Only promote a select if we know that the other select operand 602 // is from another pointer that will also be promoted. 603 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 604 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 605 return false; 606 607 // May need to rewrite constant operands. 608 WorkList.push_back(ICmp); 609 } 610 611 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 612 // Give up if the pointer may be captured. 613 if (PointerMayBeCaptured(UseInst, true, true)) 614 return false; 615 // Don't collect the users of this. 616 WorkList.push_back(User); 617 continue; 618 } 619 620 if (!User->getType()->isPointerTy()) 621 continue; 622 623 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 624 // Be conservative if an address could be computed outside the bounds of 625 // the alloca. 626 if (!GEP->isInBounds()) 627 return false; 628 } 629 630 // Only promote a select if we know that the other select operand is from 631 // another pointer that will also be promoted. 632 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 633 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 634 return false; 635 } 636 637 // Repeat for phis. 638 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 639 // TODO: Handle more complex cases. We should be able to replace loops 640 // over arrays. 641 switch (Phi->getNumIncomingValues()) { 642 case 1: 643 break; 644 case 2: 645 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 646 return false; 647 break; 648 default: 649 return false; 650 } 651 } 652 653 WorkList.push_back(User); 654 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 655 return false; 656 } 657 658 return true; 659 } 660 661 // FIXME: Should try to pick the most likely to be profitable allocas first. 662 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { 663 // Array allocations are probably not worth handling, since an allocation of 664 // the array type is the canonical form. 665 if (!I.isStaticAlloca() || I.isArrayAllocation()) 666 return; 667 668 IRBuilder<> Builder(&I); 669 670 // First try to replace the alloca with a vector 671 Type *AllocaTy = I.getAllocatedType(); 672 673 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 674 675 if (tryPromoteAllocaToVector(&I)) { 676 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 677 return; 678 } 679 680 const Function &ContainingFunction = *I.getParent()->getParent(); 681 682 // Don't promote the alloca to LDS for shader calling conventions as the work 683 // item ID intrinsics are not supported for these calling conventions. 684 // Furthermore not all LDS is available for some of the stages. 685 if (AMDGPU::isShader(ContainingFunction.getCallingConv())) 686 return; 687 688 const AMDGPUSubtarget &ST = 689 TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction); 690 // FIXME: We should also try to get this value from the reqd_work_group_size 691 // function attribute if it is available. 692 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 693 694 const DataLayout &DL = Mod->getDataLayout(); 695 696 unsigned Align = I.getAlignment(); 697 if (Align == 0) 698 Align = DL.getABITypeAlignment(I.getAllocatedType()); 699 700 // FIXME: This computed padding is likely wrong since it depends on inverse 701 // usage order. 702 // 703 // FIXME: It is also possible that if we're allowed to use all of the memory 704 // could could end up using more than the maximum due to alignment padding. 705 706 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 707 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 708 NewSize += AllocSize; 709 710 if (NewSize > LocalMemLimit) { 711 DEBUG(dbgs() << " " << AllocSize 712 << " bytes of local memory not available to promote\n"); 713 return; 714 } 715 716 CurrentLocalMemUsage = NewSize; 717 718 std::vector<Value*> WorkList; 719 720 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 721 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 722 return; 723 } 724 725 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 726 727 Function *F = I.getParent()->getParent(); 728 729 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 730 GlobalVariable *GV = new GlobalVariable( 731 *Mod, GVTy, false, GlobalValue::InternalLinkage, 732 UndefValue::get(GVTy), 733 Twine(F->getName()) + Twine('.') + I.getName(), 734 nullptr, 735 GlobalVariable::NotThreadLocal, 736 AMDGPUAS::LOCAL_ADDRESS); 737 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 738 GV->setAlignment(I.getAlignment()); 739 740 Value *TCntY, *TCntZ; 741 742 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 743 Value *TIdX = getWorkitemID(Builder, 0); 744 Value *TIdY = getWorkitemID(Builder, 1); 745 Value *TIdZ = getWorkitemID(Builder, 2); 746 747 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 748 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 749 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 750 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 751 TID = Builder.CreateAdd(TID, TIdZ); 752 753 Value *Indices[] = { 754 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 755 TID 756 }; 757 758 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 759 I.mutateType(Offset->getType()); 760 I.replaceAllUsesWith(Offset); 761 I.eraseFromParent(); 762 763 for (Value *V : WorkList) { 764 CallInst *Call = dyn_cast<CallInst>(V); 765 if (!Call) { 766 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 767 Value *Src0 = CI->getOperand(0); 768 Type *EltTy = Src0->getType()->getPointerElementType(); 769 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 770 771 if (isa<ConstantPointerNull>(CI->getOperand(0))) 772 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 773 774 if (isa<ConstantPointerNull>(CI->getOperand(1))) 775 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 776 777 continue; 778 } 779 780 // The operand's value should be corrected on its own and we don't want to 781 // touch the users. 782 if (isa<AddrSpaceCastInst>(V)) 783 continue; 784 785 Type *EltTy = V->getType()->getPointerElementType(); 786 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 787 788 // FIXME: It doesn't really make sense to try to do this for all 789 // instructions. 790 V->mutateType(NewTy); 791 792 // Adjust the types of any constant operands. 793 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 794 if (isa<ConstantPointerNull>(SI->getOperand(1))) 795 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 796 797 if (isa<ConstantPointerNull>(SI->getOperand(2))) 798 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 799 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 800 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 801 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 802 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 803 } 804 } 805 806 continue; 807 } 808 809 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 810 Builder.SetInsertPoint(Intr); 811 switch (Intr->getIntrinsicID()) { 812 case Intrinsic::lifetime_start: 813 case Intrinsic::lifetime_end: 814 // These intrinsics are for address space 0 only 815 Intr->eraseFromParent(); 816 continue; 817 case Intrinsic::memcpy: { 818 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 819 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 820 MemCpy->getLength(), MemCpy->getAlignment(), 821 MemCpy->isVolatile()); 822 Intr->eraseFromParent(); 823 continue; 824 } 825 case Intrinsic::memmove: { 826 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 827 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 828 MemMove->getLength(), MemMove->getAlignment(), 829 MemMove->isVolatile()); 830 Intr->eraseFromParent(); 831 continue; 832 } 833 case Intrinsic::memset: { 834 MemSetInst *MemSet = cast<MemSetInst>(Intr); 835 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 836 MemSet->getLength(), MemSet->getAlignment(), 837 MemSet->isVolatile()); 838 Intr->eraseFromParent(); 839 continue; 840 } 841 case Intrinsic::invariant_start: 842 case Intrinsic::invariant_end: 843 case Intrinsic::invariant_group_barrier: 844 Intr->eraseFromParent(); 845 // FIXME: I think the invariant marker should still theoretically apply, 846 // but the intrinsics need to be changed to accept pointers with any 847 // address space. 848 continue; 849 case Intrinsic::objectsize: { 850 Value *Src = Intr->getOperand(0); 851 Type *SrcTy = Src->getType()->getPointerElementType(); 852 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 853 Intrinsic::objectsize, 854 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 855 ); 856 857 CallInst *NewCall 858 = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) }); 859 Intr->replaceAllUsesWith(NewCall); 860 Intr->eraseFromParent(); 861 continue; 862 } 863 default: 864 Intr->print(errs()); 865 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 866 } 867 } 868 } 869 870 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 871 return new AMDGPUPromoteAlloca(TM); 872 } 873