1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates allocas by either converting them into vectors or 10 // by migrating them to local address space. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUSubtarget.h" 16 #include "Utils/AMDGPUBaseInfo.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsAMDGPU.h" 41 #include "llvm/IR/IntrinsicsR600.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/IR/User.h" 47 #include "llvm/IR/Value.h" 48 #include "llvm/Pass.h" 49 #include "llvm/Support/Casting.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <algorithm> 56 #include <cassert> 57 #include <cstdint> 58 #include <map> 59 #include <tuple> 60 #include <utility> 61 #include <vector> 62 63 #define DEBUG_TYPE "amdgpu-promote-alloca" 64 65 using namespace llvm; 66 67 namespace { 68 69 static cl::opt<bool> DisablePromoteAllocaToVector( 70 "disable-promote-alloca-to-vector", 71 cl::desc("Disable promote alloca to vector"), 72 cl::init(false)); 73 74 static cl::opt<bool> DisablePromoteAllocaToLDS( 75 "disable-promote-alloca-to-lds", 76 cl::desc("Disable promote alloca to LDS"), 77 cl::init(false)); 78 79 // FIXME: This can create globals so should be a module pass. 80 class AMDGPUPromoteAlloca : public FunctionPass { 81 private: 82 const TargetMachine *TM; 83 Module *Mod = nullptr; 84 const DataLayout *DL = nullptr; 85 86 // FIXME: This should be per-kernel. 87 uint32_t LocalMemLimit = 0; 88 uint32_t CurrentLocalMemUsage = 0; 89 90 bool IsAMDGCN = false; 91 bool IsAMDHSA = false; 92 93 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 94 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 95 96 /// BaseAlloca is the alloca root the search started from. 97 /// Val may be that alloca or a recursive user of it. 98 bool collectUsesWithPtrTypes(Value *BaseAlloca, 99 Value *Val, 100 std::vector<Value*> &WorkList) const; 101 102 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 103 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 104 /// Returns true if both operands are derived from the same alloca. Val should 105 /// be the same value as one of the input operands of UseInst. 106 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 107 Instruction *UseInst, 108 int OpIdx0, int OpIdx1) const; 109 110 /// Check whether we have enough local memory for promotion. 111 bool hasSufficientLocalMem(const Function &F); 112 113 public: 114 static char ID; 115 116 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 117 118 bool doInitialization(Module &M) override; 119 bool runOnFunction(Function &F) override; 120 121 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 122 123 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 124 125 void getAnalysisUsage(AnalysisUsage &AU) const override { 126 AU.setPreservesCFG(); 127 FunctionPass::getAnalysisUsage(AU); 128 } 129 }; 130 131 class AMDGPUPromoteAllocaToVector : public FunctionPass { 132 public: 133 static char ID; 134 135 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 136 137 bool runOnFunction(Function &F) override; 138 139 StringRef getPassName() const override { 140 return "AMDGPU Promote Alloca to vector"; 141 } 142 143 bool handleAlloca(AllocaInst &I); 144 145 void getAnalysisUsage(AnalysisUsage &AU) const override { 146 AU.setPreservesCFG(); 147 FunctionPass::getAnalysisUsage(AU); 148 } 149 }; 150 151 } // end anonymous namespace 152 153 char AMDGPUPromoteAlloca::ID = 0; 154 char AMDGPUPromoteAllocaToVector::ID = 0; 155 156 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 157 "AMDGPU promote alloca to vector or LDS", false, false) 158 159 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 160 "AMDGPU promote alloca to vector", false, false) 161 162 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 163 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 164 165 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 166 Mod = &M; 167 DL = &Mod->getDataLayout(); 168 169 return false; 170 } 171 172 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 173 if (skipFunction(F)) 174 return false; 175 176 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 177 TM = &TPC->getTM<TargetMachine>(); 178 else 179 return false; 180 181 const Triple &TT = TM->getTargetTriple(); 182 IsAMDGCN = TT.getArch() == Triple::amdgcn; 183 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 184 185 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 186 if (!ST.isPromoteAllocaEnabled()) 187 return false; 188 189 bool SufficientLDS = hasSufficientLocalMem(F); 190 bool Changed = false; 191 BasicBlock &EntryBB = *F.begin(); 192 193 SmallVector<AllocaInst *, 16> Allocas; 194 for (Instruction &I : EntryBB) { 195 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 196 Allocas.push_back(AI); 197 } 198 199 for (AllocaInst *AI : Allocas) { 200 if (handleAlloca(*AI, SufficientLDS)) 201 Changed = true; 202 } 203 204 return Changed; 205 } 206 207 std::pair<Value *, Value *> 208 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 209 const Function &F = *Builder.GetInsertBlock()->getParent(); 210 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 211 212 if (!IsAMDHSA) { 213 Function *LocalSizeYFn 214 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 215 Function *LocalSizeZFn 216 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 217 218 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 219 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 220 221 ST.makeLIDRangeMetadata(LocalSizeY); 222 ST.makeLIDRangeMetadata(LocalSizeZ); 223 224 return std::make_pair(LocalSizeY, LocalSizeZ); 225 } 226 227 // We must read the size out of the dispatch pointer. 228 assert(IsAMDGCN); 229 230 // We are indexing into this struct, and want to extract the workgroup_size_* 231 // fields. 232 // 233 // typedef struct hsa_kernel_dispatch_packet_s { 234 // uint16_t header; 235 // uint16_t setup; 236 // uint16_t workgroup_size_x ; 237 // uint16_t workgroup_size_y; 238 // uint16_t workgroup_size_z; 239 // uint16_t reserved0; 240 // uint32_t grid_size_x ; 241 // uint32_t grid_size_y ; 242 // uint32_t grid_size_z; 243 // 244 // uint32_t private_segment_size; 245 // uint32_t group_segment_size; 246 // uint64_t kernel_object; 247 // 248 // #ifdef HSA_LARGE_MODEL 249 // void *kernarg_address; 250 // #elif defined HSA_LITTLE_ENDIAN 251 // void *kernarg_address; 252 // uint32_t reserved1; 253 // #else 254 // uint32_t reserved1; 255 // void *kernarg_address; 256 // #endif 257 // uint64_t reserved2; 258 // hsa_signal_t completion_signal; // uint64_t wrapper 259 // } hsa_kernel_dispatch_packet_t 260 // 261 Function *DispatchPtrFn 262 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 263 264 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 265 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 266 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 267 268 // Size of the dispatch packet struct. 269 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 270 271 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 272 Value *CastDispatchPtr = Builder.CreateBitCast( 273 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 274 275 // We could do a single 64-bit load here, but it's likely that the basic 276 // 32-bit and extract sequence is already present, and it is probably easier 277 // to CSE this. The loads should be mergable later anyway. 278 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 279 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 280 281 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 282 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 283 284 MDNode *MD = MDNode::get(Mod->getContext(), None); 285 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 286 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 287 ST.makeLIDRangeMetadata(LoadZU); 288 289 // Extract y component. Upper half of LoadZU should be zero already. 290 Value *Y = Builder.CreateLShr(LoadXY, 16); 291 292 return std::make_pair(Y, LoadZU); 293 } 294 295 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 296 const AMDGPUSubtarget &ST = 297 AMDGPUSubtarget::get(*TM, *Builder.GetInsertBlock()->getParent()); 298 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 299 300 switch (N) { 301 case 0: 302 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 303 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 304 break; 305 case 1: 306 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 307 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 308 break; 309 310 case 2: 311 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 312 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 313 break; 314 default: 315 llvm_unreachable("invalid dimension"); 316 } 317 318 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 319 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 320 ST.makeLIDRangeMetadata(CI); 321 322 return CI; 323 } 324 325 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 326 return FixedVectorType::get(ArrayTy->getElementType(), 327 ArrayTy->getNumElements()); 328 } 329 330 static Value *stripBitcasts(Value *V) { 331 while (Instruction *I = dyn_cast<Instruction>(V)) { 332 if (I->getOpcode() != Instruction::BitCast) 333 break; 334 V = I->getOperand(0); 335 } 336 return V; 337 } 338 339 static Value * 340 calculateVectorIndex(Value *Ptr, 341 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 342 GetElementPtrInst *GEP = cast<GetElementPtrInst>(stripBitcasts(Ptr)); 343 344 auto I = GEPIdx.find(GEP); 345 return I == GEPIdx.end() ? nullptr : I->second; 346 } 347 348 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 349 // FIXME we only support simple cases 350 if (GEP->getNumOperands() != 3) 351 return nullptr; 352 353 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 354 if (!I0 || !I0->isZero()) 355 return nullptr; 356 357 return GEP->getOperand(2); 358 } 359 360 // Not an instruction handled below to turn into a vector. 361 // 362 // TODO: Check isTriviallyVectorizable for calls and handle other 363 // instructions. 364 static bool canVectorizeInst(Instruction *Inst, User *User, 365 const DataLayout &DL) { 366 switch (Inst->getOpcode()) { 367 case Instruction::Load: { 368 // Currently only handle the case where the Pointer Operand is a GEP. 369 // Also we could not vectorize volatile or atomic loads. 370 LoadInst *LI = cast<LoadInst>(Inst); 371 if (isa<AllocaInst>(User) && 372 LI->getPointerOperandType() == User->getType() && 373 isa<VectorType>(LI->getType())) 374 return true; 375 376 Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 377 if (!PtrInst) 378 return false; 379 380 return (PtrInst->getOpcode() == Instruction::GetElementPtr || 381 PtrInst->getOpcode() == Instruction::BitCast) && 382 LI->isSimple(); 383 } 384 case Instruction::BitCast: 385 return true; 386 case Instruction::Store: { 387 // Must be the stored pointer operand, not a stored value, plus 388 // since it should be canonical form, the User should be a GEP. 389 // Also we could not vectorize volatile or atomic stores. 390 StoreInst *SI = cast<StoreInst>(Inst); 391 if (isa<AllocaInst>(User) && 392 SI->getPointerOperandType() == User->getType() && 393 isa<VectorType>(SI->getValueOperand()->getType())) 394 return true; 395 396 Instruction *UserInst = dyn_cast<Instruction>(User); 397 if (!UserInst) 398 return false; 399 400 return (SI->getPointerOperand() == User) && 401 (UserInst->getOpcode() == Instruction::GetElementPtr || 402 UserInst->getOpcode() == Instruction::BitCast) && 403 SI->isSimple(); 404 } 405 default: 406 return false; 407 } 408 } 409 410 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL) { 411 412 if (DisablePromoteAllocaToVector) { 413 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 414 return false; 415 } 416 417 Type *AllocaTy = Alloca->getAllocatedType(); 418 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 419 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 420 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 421 ArrayTy->getNumElements() > 0) 422 VectorTy = arrayTypeToVecType(ArrayTy); 423 } 424 425 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 426 427 // FIXME: There is no reason why we can't support larger arrays, we 428 // are just being conservative for now. 429 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 430 // could also be promoted but we don't currently handle this case 431 if (!VectorTy || VectorTy->getNumElements() > 16 || 432 VectorTy->getNumElements() < 2) { 433 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 434 return false; 435 } 436 437 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 438 std::vector<Value *> WorkList; 439 SmallVector<User *, 8> Users(Alloca->users()); 440 SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 441 Type *VecEltTy = VectorTy->getElementType(); 442 while (!Users.empty()) { 443 User *AllocaUser = Users.pop_back_val(); 444 User *UseUser = UseUsers.pop_back_val(); 445 Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 446 447 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 448 if (!GEP) { 449 if (!canVectorizeInst(Inst, UseUser, DL)) 450 return false; 451 452 if (Inst->getOpcode() == Instruction::BitCast) { 453 Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 454 Type *ToTy = Inst->getType()->getPointerElementType(); 455 if (FromTy->isAggregateType() || ToTy->isAggregateType() || 456 DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 457 continue; 458 459 for (User *CastUser : Inst->users()) { 460 if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 461 continue; 462 Users.push_back(CastUser); 463 UseUsers.push_back(Inst); 464 } 465 466 continue; 467 } 468 469 WorkList.push_back(AllocaUser); 470 continue; 471 } 472 473 Value *Index = GEPToVectorIndex(GEP); 474 475 // If we can't compute a vector index from this GEP, then we can't 476 // promote this alloca to vector. 477 if (!Index) { 478 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 479 << '\n'); 480 return false; 481 } 482 483 GEPVectorIdx[GEP] = Index; 484 Users.append(GEP->user_begin(), GEP->user_end()); 485 UseUsers.append(GEP->getNumUses(), GEP); 486 } 487 488 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 489 << *VectorTy << '\n'); 490 491 for (Value *V : WorkList) { 492 Instruction *Inst = cast<Instruction>(V); 493 IRBuilder<> Builder(Inst); 494 switch (Inst->getOpcode()) { 495 case Instruction::Load: { 496 if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 497 break; 498 499 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 500 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 501 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 502 503 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 504 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 505 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 506 if (Inst->getType() != VecEltTy) 507 ExtractElement = Builder.CreateBitCast(ExtractElement, Inst->getType()); 508 Inst->replaceAllUsesWith(ExtractElement); 509 Inst->eraseFromParent(); 510 break; 511 } 512 case Instruction::Store: { 513 StoreInst *SI = cast<StoreInst>(Inst); 514 if (SI->getValueOperand()->getType() == AllocaTy || 515 SI->getValueOperand()->getType()->isVectorTy()) 516 break; 517 518 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 519 Value *Ptr = SI->getPointerOperand(); 520 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 521 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 522 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 523 Value *Elt = SI->getValueOperand(); 524 if (Elt->getType() != VecEltTy) 525 Elt = Builder.CreateBitCast(Elt, VecEltTy); 526 Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 527 Builder.CreateStore(NewVecValue, BitCast); 528 Inst->eraseFromParent(); 529 break; 530 } 531 532 default: 533 llvm_unreachable("Inconsistency in instructions promotable to vector"); 534 } 535 } 536 return true; 537 } 538 539 static bool isCallPromotable(CallInst *CI) { 540 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 541 if (!II) 542 return false; 543 544 switch (II->getIntrinsicID()) { 545 case Intrinsic::memcpy: 546 case Intrinsic::memmove: 547 case Intrinsic::memset: 548 case Intrinsic::lifetime_start: 549 case Intrinsic::lifetime_end: 550 case Intrinsic::invariant_start: 551 case Intrinsic::invariant_end: 552 case Intrinsic::launder_invariant_group: 553 case Intrinsic::strip_invariant_group: 554 case Intrinsic::objectsize: 555 return true; 556 default: 557 return false; 558 } 559 } 560 561 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 562 Value *Val, 563 Instruction *Inst, 564 int OpIdx0, 565 int OpIdx1) const { 566 // Figure out which operand is the one we might not be promoting. 567 Value *OtherOp = Inst->getOperand(OpIdx0); 568 if (Val == OtherOp) 569 OtherOp = Inst->getOperand(OpIdx1); 570 571 if (isa<ConstantPointerNull>(OtherOp)) 572 return true; 573 574 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 575 if (!isa<AllocaInst>(OtherObj)) 576 return false; 577 578 // TODO: We should be able to replace undefs with the right pointer type. 579 580 // TODO: If we know the other base object is another promotable 581 // alloca, not necessarily this alloca, we can do this. The 582 // important part is both must have the same address space at 583 // the end. 584 if (OtherObj != BaseAlloca) { 585 LLVM_DEBUG( 586 dbgs() << "Found a binary instruction with another alloca object\n"); 587 return false; 588 } 589 590 return true; 591 } 592 593 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 594 Value *BaseAlloca, 595 Value *Val, 596 std::vector<Value*> &WorkList) const { 597 598 for (User *User : Val->users()) { 599 if (is_contained(WorkList, User)) 600 continue; 601 602 if (CallInst *CI = dyn_cast<CallInst>(User)) { 603 if (!isCallPromotable(CI)) 604 return false; 605 606 WorkList.push_back(User); 607 continue; 608 } 609 610 Instruction *UseInst = cast<Instruction>(User); 611 if (UseInst->getOpcode() == Instruction::PtrToInt) 612 return false; 613 614 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 615 if (LI->isVolatile()) 616 return false; 617 618 continue; 619 } 620 621 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 622 if (SI->isVolatile()) 623 return false; 624 625 // Reject if the stored value is not the pointer operand. 626 if (SI->getPointerOperand() != Val) 627 return false; 628 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 629 if (RMW->isVolatile()) 630 return false; 631 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 632 if (CAS->isVolatile()) 633 return false; 634 } 635 636 // Only promote a select if we know that the other select operand 637 // is from another pointer that will also be promoted. 638 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 639 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 640 return false; 641 642 // May need to rewrite constant operands. 643 WorkList.push_back(ICmp); 644 } 645 646 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 647 // Give up if the pointer may be captured. 648 if (PointerMayBeCaptured(UseInst, true, true)) 649 return false; 650 // Don't collect the users of this. 651 WorkList.push_back(User); 652 continue; 653 } 654 655 if (!User->getType()->isPointerTy()) 656 continue; 657 658 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 659 // Be conservative if an address could be computed outside the bounds of 660 // the alloca. 661 if (!GEP->isInBounds()) 662 return false; 663 } 664 665 // Only promote a select if we know that the other select operand is from 666 // another pointer that will also be promoted. 667 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 668 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 669 return false; 670 } 671 672 // Repeat for phis. 673 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 674 // TODO: Handle more complex cases. We should be able to replace loops 675 // over arrays. 676 switch (Phi->getNumIncomingValues()) { 677 case 1: 678 break; 679 case 2: 680 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 681 return false; 682 break; 683 default: 684 return false; 685 } 686 } 687 688 WorkList.push_back(User); 689 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 690 return false; 691 } 692 693 return true; 694 } 695 696 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { 697 698 FunctionType *FTy = F.getFunctionType(); 699 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, F); 700 701 // If the function has any arguments in the local address space, then it's 702 // possible these arguments require the entire local memory space, so 703 // we cannot use local memory in the pass. 704 for (Type *ParamTy : FTy->params()) { 705 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 706 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 707 LocalMemLimit = 0; 708 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 709 "local memory disabled.\n"); 710 return false; 711 } 712 } 713 714 LocalMemLimit = ST.getLocalMemorySize(); 715 if (LocalMemLimit == 0) 716 return false; 717 718 const DataLayout &DL = Mod->getDataLayout(); 719 720 // Check how much local memory is being used by global objects 721 CurrentLocalMemUsage = 0; 722 for (GlobalVariable &GV : Mod->globals()) { 723 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 724 continue; 725 726 for (const User *U : GV.users()) { 727 const Instruction *Use = dyn_cast<Instruction>(U); 728 if (!Use) 729 continue; 730 731 if (Use->getParent()->getParent() == &F) { 732 unsigned Align = GV.getAlignment(); 733 if (Align == 0) 734 Align = DL.getABITypeAlignment(GV.getValueType()); 735 736 // FIXME: Try to account for padding here. The padding is currently 737 // determined from the inverse order of uses in the function. I'm not 738 // sure if the use list order is in any way connected to this, so the 739 // total reported size is likely incorrect. 740 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 741 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 742 CurrentLocalMemUsage += AllocSize; 743 break; 744 } 745 } 746 } 747 748 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 749 F); 750 751 // Restrict local memory usage so that we don't drastically reduce occupancy, 752 // unless it is already significantly reduced. 753 754 // TODO: Have some sort of hint or other heuristics to guess occupancy based 755 // on other factors.. 756 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 757 if (OccupancyHint == 0) 758 OccupancyHint = 7; 759 760 // Clamp to max value. 761 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 762 763 // Check the hint but ignore it if it's obviously wrong from the existing LDS 764 // usage. 765 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 766 767 768 // Round up to the next tier of usage. 769 unsigned MaxSizeWithWaveCount 770 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 771 772 // Program is possibly broken by using more local mem than available. 773 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 774 return false; 775 776 LocalMemLimit = MaxSizeWithWaveCount; 777 778 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 779 << " bytes of LDS\n" 780 << " Rounding size to " << MaxSizeWithWaveCount 781 << " with a maximum occupancy of " << MaxOccupancy << '\n' 782 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 783 << " available for promotion\n"); 784 785 return true; 786 } 787 788 // FIXME: Should try to pick the most likely to be profitable allocas first. 789 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { 790 // Array allocations are probably not worth handling, since an allocation of 791 // the array type is the canonical form. 792 if (!I.isStaticAlloca() || I.isArrayAllocation()) 793 return false; 794 795 const DataLayout &DL = Mod->getDataLayout(); 796 IRBuilder<> Builder(&I); 797 798 // First try to replace the alloca with a vector 799 Type *AllocaTy = I.getAllocatedType(); 800 801 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 802 803 if (tryPromoteAllocaToVector(&I, DL)) 804 return true; // Promoted to vector. 805 806 if (DisablePromoteAllocaToLDS) 807 return false; 808 809 const Function &ContainingFunction = *I.getParent()->getParent(); 810 CallingConv::ID CC = ContainingFunction.getCallingConv(); 811 812 // Don't promote the alloca to LDS for shader calling conventions as the work 813 // item ID intrinsics are not supported for these calling conventions. 814 // Furthermore not all LDS is available for some of the stages. 815 switch (CC) { 816 case CallingConv::AMDGPU_KERNEL: 817 case CallingConv::SPIR_KERNEL: 818 break; 819 default: 820 LLVM_DEBUG( 821 dbgs() 822 << " promote alloca to LDS not supported with calling convention.\n"); 823 return false; 824 } 825 826 // Not likely to have sufficient local memory for promotion. 827 if (!SufficientLDS) 828 return false; 829 830 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(*TM, ContainingFunction); 831 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 832 833 unsigned Align = I.getAlignment(); 834 if (Align == 0) 835 Align = DL.getABITypeAlignment(I.getAllocatedType()); 836 837 // FIXME: This computed padding is likely wrong since it depends on inverse 838 // usage order. 839 // 840 // FIXME: It is also possible that if we're allowed to use all of the memory 841 // could could end up using more than the maximum due to alignment padding. 842 843 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 844 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 845 NewSize += AllocSize; 846 847 if (NewSize > LocalMemLimit) { 848 LLVM_DEBUG(dbgs() << " " << AllocSize 849 << " bytes of local memory not available to promote\n"); 850 return false; 851 } 852 853 CurrentLocalMemUsage = NewSize; 854 855 std::vector<Value*> WorkList; 856 857 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 858 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 859 return false; 860 } 861 862 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 863 864 Function *F = I.getParent()->getParent(); 865 866 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 867 GlobalVariable *GV = new GlobalVariable( 868 *Mod, GVTy, false, GlobalValue::InternalLinkage, 869 UndefValue::get(GVTy), 870 Twine(F->getName()) + Twine('.') + I.getName(), 871 nullptr, 872 GlobalVariable::NotThreadLocal, 873 AMDGPUAS::LOCAL_ADDRESS); 874 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 875 GV->setAlignment(MaybeAlign(I.getAlignment())); 876 877 Value *TCntY, *TCntZ; 878 879 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 880 Value *TIdX = getWorkitemID(Builder, 0); 881 Value *TIdY = getWorkitemID(Builder, 1); 882 Value *TIdZ = getWorkitemID(Builder, 2); 883 884 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 885 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 886 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 887 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 888 TID = Builder.CreateAdd(TID, TIdZ); 889 890 Value *Indices[] = { 891 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 892 TID 893 }; 894 895 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 896 I.mutateType(Offset->getType()); 897 I.replaceAllUsesWith(Offset); 898 I.eraseFromParent(); 899 900 for (Value *V : WorkList) { 901 CallInst *Call = dyn_cast<CallInst>(V); 902 if (!Call) { 903 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 904 Value *Src0 = CI->getOperand(0); 905 Type *EltTy = Src0->getType()->getPointerElementType(); 906 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 907 908 if (isa<ConstantPointerNull>(CI->getOperand(0))) 909 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 910 911 if (isa<ConstantPointerNull>(CI->getOperand(1))) 912 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 913 914 continue; 915 } 916 917 // The operand's value should be corrected on its own and we don't want to 918 // touch the users. 919 if (isa<AddrSpaceCastInst>(V)) 920 continue; 921 922 Type *EltTy = V->getType()->getPointerElementType(); 923 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 924 925 // FIXME: It doesn't really make sense to try to do this for all 926 // instructions. 927 V->mutateType(NewTy); 928 929 // Adjust the types of any constant operands. 930 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 931 if (isa<ConstantPointerNull>(SI->getOperand(1))) 932 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 933 934 if (isa<ConstantPointerNull>(SI->getOperand(2))) 935 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 936 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 937 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 938 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 939 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 940 } 941 } 942 943 continue; 944 } 945 946 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 947 Builder.SetInsertPoint(Intr); 948 switch (Intr->getIntrinsicID()) { 949 case Intrinsic::lifetime_start: 950 case Intrinsic::lifetime_end: 951 // These intrinsics are for address space 0 only 952 Intr->eraseFromParent(); 953 continue; 954 case Intrinsic::memcpy: { 955 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 956 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(), 957 MemCpy->getRawSource(), MemCpy->getSourceAlign(), 958 MemCpy->getLength(), MemCpy->isVolatile()); 959 Intr->eraseFromParent(); 960 continue; 961 } 962 case Intrinsic::memmove: { 963 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 964 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(), 965 MemMove->getRawSource(), MemMove->getSourceAlign(), 966 MemMove->getLength(), MemMove->isVolatile()); 967 Intr->eraseFromParent(); 968 continue; 969 } 970 case Intrinsic::memset: { 971 MemSetInst *MemSet = cast<MemSetInst>(Intr); 972 Builder.CreateMemSet( 973 MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 974 MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 975 Intr->eraseFromParent(); 976 continue; 977 } 978 case Intrinsic::invariant_start: 979 case Intrinsic::invariant_end: 980 case Intrinsic::launder_invariant_group: 981 case Intrinsic::strip_invariant_group: 982 Intr->eraseFromParent(); 983 // FIXME: I think the invariant marker should still theoretically apply, 984 // but the intrinsics need to be changed to accept pointers with any 985 // address space. 986 continue; 987 case Intrinsic::objectsize: { 988 Value *Src = Intr->getOperand(0); 989 Type *SrcTy = Src->getType()->getPointerElementType(); 990 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 991 Intrinsic::objectsize, 992 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 993 ); 994 995 CallInst *NewCall = Builder.CreateCall( 996 ObjectSize, 997 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 998 Intr->replaceAllUsesWith(NewCall); 999 Intr->eraseFromParent(); 1000 continue; 1001 } 1002 default: 1003 Intr->print(errs()); 1004 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1005 } 1006 } 1007 return true; 1008 } 1009 1010 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1011 if (skipFunction(F) || DisablePromoteAllocaToVector) 1012 return false; 1013 1014 bool Changed = false; 1015 BasicBlock &EntryBB = *F.begin(); 1016 1017 SmallVector<AllocaInst *, 16> Allocas; 1018 for (Instruction &I : EntryBB) { 1019 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1020 Allocas.push_back(AI); 1021 } 1022 1023 for (AllocaInst *AI : Allocas) { 1024 if (handleAlloca(*AI)) 1025 Changed = true; 1026 } 1027 1028 return Changed; 1029 } 1030 1031 bool AMDGPUPromoteAllocaToVector::handleAlloca(AllocaInst &I) { 1032 // Array allocations are probably not worth handling, since an allocation of 1033 // the array type is the canonical form. 1034 if (!I.isStaticAlloca() || I.isArrayAllocation()) 1035 return false; 1036 1037 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1038 1039 Module *Mod = I.getParent()->getParent()->getParent(); 1040 return tryPromoteAllocaToVector(&I, Mod->getDataLayout()); 1041 } 1042 1043 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 1044 return new AMDGPUPromoteAlloca(); 1045 } 1046 1047 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 1048 return new AMDGPUPromoteAllocaToVector(); 1049 } 1050