1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates allocas by either converting them into vectors or
11 // by migrating them to local address space.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/CodeGen/TargetPassConfig.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/GlobalValue.h"
35 #include "llvm/IR/GlobalVariable.h"
36 #include "llvm/IR/IRBuilder.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/IntrinsicInst.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/LLVMContext.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <map>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
61 
62 #define DEBUG_TYPE "amdgpu-promote-alloca"
63 
64 using namespace llvm;
65 
66 namespace {
67 
68 static cl::opt<bool> DisablePromoteAllocaToVector(
69   "disable-promote-alloca-to-vector",
70   cl::desc("Disable promote alloca to vector"),
71   cl::init(false));
72 
73 // FIXME: This can create globals so should be a module pass.
74 class AMDGPUPromoteAlloca : public FunctionPass {
75 private:
76   const TargetMachine *TM;
77   Module *Mod = nullptr;
78   const DataLayout *DL = nullptr;
79   AMDGPUAS AS;
80 
81   // FIXME: This should be per-kernel.
82   uint32_t LocalMemLimit = 0;
83   uint32_t CurrentLocalMemUsage = 0;
84 
85   bool IsAMDGCN = false;
86   bool IsAMDHSA = false;
87 
88   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
89   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
90 
91   /// BaseAlloca is the alloca root the search started from.
92   /// Val may be that alloca or a recursive user of it.
93   bool collectUsesWithPtrTypes(Value *BaseAlloca,
94                                Value *Val,
95                                std::vector<Value*> &WorkList) const;
96 
97   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
98   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
99   /// Returns true if both operands are derived from the same alloca. Val should
100   /// be the same value as one of the input operands of UseInst.
101   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
102                                        Instruction *UseInst,
103                                        int OpIdx0, int OpIdx1) const;
104 
105   /// Check whether we have enough local memory for promotion.
106   bool hasSufficientLocalMem(const Function &F);
107 
108 public:
109   static char ID;
110 
111   AMDGPUPromoteAlloca() : FunctionPass(ID) {}
112 
113   bool doInitialization(Module &M) override;
114   bool runOnFunction(Function &F) override;
115 
116   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
117 
118   bool handleAlloca(AllocaInst &I, bool SufficientLDS);
119 
120   void getAnalysisUsage(AnalysisUsage &AU) const override {
121     AU.setPreservesCFG();
122     FunctionPass::getAnalysisUsage(AU);
123   }
124 };
125 
126 } // end anonymous namespace
127 
128 char AMDGPUPromoteAlloca::ID = 0;
129 
130 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
131                 "AMDGPU promote alloca to vector or LDS", false, false)
132 
133 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
134 
135 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
136   Mod = &M;
137   DL = &Mod->getDataLayout();
138 
139   return false;
140 }
141 
142 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
143   if (skipFunction(F))
144     return false;
145 
146   if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>())
147     TM = &TPC->getTM<TargetMachine>();
148   else
149     return false;
150 
151   const Triple &TT = TM->getTargetTriple();
152   IsAMDGCN = TT.getArch() == Triple::amdgcn;
153   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
154 
155   const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F);
156   if (!ST.isPromoteAllocaEnabled())
157     return false;
158 
159   AS = AMDGPU::getAMDGPUAS(*F.getParent());
160 
161   bool SufficientLDS = hasSufficientLocalMem(F);
162   bool Changed = false;
163   BasicBlock &EntryBB = *F.begin();
164   for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) {
165     AllocaInst *AI = dyn_cast<AllocaInst>(I);
166 
167     ++I;
168     if (AI)
169       Changed |= handleAlloca(*AI, SufficientLDS);
170   }
171 
172   return Changed;
173 }
174 
175 std::pair<Value *, Value *>
176 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
177   const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(
178                                 *Builder.GetInsertBlock()->getParent());
179 
180   if (!IsAMDHSA) {
181     Function *LocalSizeYFn
182       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
183     Function *LocalSizeZFn
184       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
185 
186     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
187     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
188 
189     ST.makeLIDRangeMetadata(LocalSizeY);
190     ST.makeLIDRangeMetadata(LocalSizeZ);
191 
192     return std::make_pair(LocalSizeY, LocalSizeZ);
193   }
194 
195   // We must read the size out of the dispatch pointer.
196   assert(IsAMDGCN);
197 
198   // We are indexing into this struct, and want to extract the workgroup_size_*
199   // fields.
200   //
201   //   typedef struct hsa_kernel_dispatch_packet_s {
202   //     uint16_t header;
203   //     uint16_t setup;
204   //     uint16_t workgroup_size_x ;
205   //     uint16_t workgroup_size_y;
206   //     uint16_t workgroup_size_z;
207   //     uint16_t reserved0;
208   //     uint32_t grid_size_x ;
209   //     uint32_t grid_size_y ;
210   //     uint32_t grid_size_z;
211   //
212   //     uint32_t private_segment_size;
213   //     uint32_t group_segment_size;
214   //     uint64_t kernel_object;
215   //
216   // #ifdef HSA_LARGE_MODEL
217   //     void *kernarg_address;
218   // #elif defined HSA_LITTLE_ENDIAN
219   //     void *kernarg_address;
220   //     uint32_t reserved1;
221   // #else
222   //     uint32_t reserved1;
223   //     void *kernarg_address;
224   // #endif
225   //     uint64_t reserved2;
226   //     hsa_signal_t completion_signal; // uint64_t wrapper
227   //   } hsa_kernel_dispatch_packet_t
228   //
229   Function *DispatchPtrFn
230     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
231 
232   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
233   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias);
234   DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
235 
236   // Size of the dispatch packet struct.
237   DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64);
238 
239   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
240   Value *CastDispatchPtr = Builder.CreateBitCast(
241     DispatchPtr, PointerType::get(I32Ty, AS.CONSTANT_ADDRESS));
242 
243   // We could do a single 64-bit load here, but it's likely that the basic
244   // 32-bit and extract sequence is already present, and it is probably easier
245   // to CSE this. The loads should be mergable later anyway.
246   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1);
247   LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4);
248 
249   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2);
250   LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4);
251 
252   MDNode *MD = MDNode::get(Mod->getContext(), None);
253   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
254   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
255   ST.makeLIDRangeMetadata(LoadZU);
256 
257   // Extract y component. Upper half of LoadZU should be zero already.
258   Value *Y = Builder.CreateLShr(LoadXY, 16);
259 
260   return std::make_pair(Y, LoadZU);
261 }
262 
263 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
264   const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(
265                                 *Builder.GetInsertBlock()->getParent());
266   Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
267 
268   switch (N) {
269   case 0:
270     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
271       : Intrinsic::r600_read_tidig_x;
272     break;
273   case 1:
274     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
275       : Intrinsic::r600_read_tidig_y;
276     break;
277 
278   case 2:
279     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
280       : Intrinsic::r600_read_tidig_z;
281     break;
282   default:
283     llvm_unreachable("invalid dimension");
284   }
285 
286   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
287   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
288   ST.makeLIDRangeMetadata(CI);
289 
290   return CI;
291 }
292 
293 static VectorType *arrayTypeToVecType(ArrayType *ArrayTy) {
294   return VectorType::get(ArrayTy->getElementType(),
295                          ArrayTy->getNumElements());
296 }
297 
298 static Value *
299 calculateVectorIndex(Value *Ptr,
300                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
301   GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
302 
303   auto I = GEPIdx.find(GEP);
304   return I == GEPIdx.end() ? nullptr : I->second;
305 }
306 
307 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
308   // FIXME we only support simple cases
309   if (GEP->getNumOperands() != 3)
310     return nullptr;
311 
312   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
313   if (!I0 || !I0->isZero())
314     return nullptr;
315 
316   return GEP->getOperand(2);
317 }
318 
319 // Not an instruction handled below to turn into a vector.
320 //
321 // TODO: Check isTriviallyVectorizable for calls and handle other
322 // instructions.
323 static bool canVectorizeInst(Instruction *Inst, User *User) {
324   switch (Inst->getOpcode()) {
325   case Instruction::Load: {
326     LoadInst *LI = cast<LoadInst>(Inst);
327     // Currently only handle the case where the Pointer Operand is a GEP so check for that case.
328     return isa<GetElementPtrInst>(LI->getPointerOperand()) && !LI->isVolatile();
329   }
330   case Instruction::BitCast:
331   case Instruction::AddrSpaceCast:
332     return true;
333   case Instruction::Store: {
334     // Must be the stored pointer operand, not a stored value, plus
335     // since it should be canonical form, the User should be a GEP.
336     StoreInst *SI = cast<StoreInst>(Inst);
337     return (SI->getPointerOperand() == User) && isa<GetElementPtrInst>(User) && !SI->isVolatile();
338   }
339   default:
340     return false;
341   }
342 }
343 
344 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, AMDGPUAS AS) {
345 
346   if (DisablePromoteAllocaToVector) {
347     DEBUG(dbgs() << "  Promotion alloca to vector is disabled\n");
348     return false;
349   }
350 
351   ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType());
352 
353   DEBUG(dbgs() << "Alloca candidate for vectorization\n");
354 
355   // FIXME: There is no reason why we can't support larger arrays, we
356   // are just being conservative for now.
357   // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these
358   // could also be promoted but we don't currently handle this case
359   if (!AllocaTy ||
360       AllocaTy->getNumElements() > 16 ||
361       AllocaTy->getNumElements() < 2 ||
362       !VectorType::isValidElementType(AllocaTy->getElementType())) {
363     DEBUG(dbgs() << "  Cannot convert type to vector\n");
364     return false;
365   }
366 
367   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
368   std::vector<Value*> WorkList;
369   for (User *AllocaUser : Alloca->users()) {
370     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
371     if (!GEP) {
372       if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
373         return false;
374 
375       WorkList.push_back(AllocaUser);
376       continue;
377     }
378 
379     Value *Index = GEPToVectorIndex(GEP);
380 
381     // If we can't compute a vector index from this GEP, then we can't
382     // promote this alloca to vector.
383     if (!Index) {
384       DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP << '\n');
385       return false;
386     }
387 
388     GEPVectorIdx[GEP] = Index;
389     for (User *GEPUser : AllocaUser->users()) {
390       if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
391         return false;
392 
393       WorkList.push_back(GEPUser);
394     }
395   }
396 
397   VectorType *VectorTy = arrayTypeToVecType(AllocaTy);
398 
399   DEBUG(dbgs() << "  Converting alloca to vector "
400         << *AllocaTy << " -> " << *VectorTy << '\n');
401 
402   for (Value *V : WorkList) {
403     Instruction *Inst = cast<Instruction>(V);
404     IRBuilder<> Builder(Inst);
405     switch (Inst->getOpcode()) {
406     case Instruction::Load: {
407       Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS);
408       Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand();
409       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
410 
411       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
412       Value *VecValue = Builder.CreateLoad(BitCast);
413       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
414       Inst->replaceAllUsesWith(ExtractElement);
415       Inst->eraseFromParent();
416       break;
417     }
418     case Instruction::Store: {
419       Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS);
420 
421       StoreInst *SI = cast<StoreInst>(Inst);
422       Value *Ptr = SI->getPointerOperand();
423       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
424       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
425       Value *VecValue = Builder.CreateLoad(BitCast);
426       Value *NewVecValue = Builder.CreateInsertElement(VecValue,
427                                                        SI->getValueOperand(),
428                                                        Index);
429       Builder.CreateStore(NewVecValue, BitCast);
430       Inst->eraseFromParent();
431       break;
432     }
433     case Instruction::BitCast:
434     case Instruction::AddrSpaceCast:
435       break;
436 
437     default:
438       llvm_unreachable("Inconsistency in instructions promotable to vector");
439     }
440   }
441   return true;
442 }
443 
444 static bool isCallPromotable(CallInst *CI) {
445   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
446   if (!II)
447     return false;
448 
449   switch (II->getIntrinsicID()) {
450   case Intrinsic::memcpy:
451   case Intrinsic::memmove:
452   case Intrinsic::memset:
453   case Intrinsic::lifetime_start:
454   case Intrinsic::lifetime_end:
455   case Intrinsic::invariant_start:
456   case Intrinsic::invariant_end:
457   case Intrinsic::invariant_group_barrier:
458   case Intrinsic::objectsize:
459     return true;
460   default:
461     return false;
462   }
463 }
464 
465 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
466                                                           Value *Val,
467                                                           Instruction *Inst,
468                                                           int OpIdx0,
469                                                           int OpIdx1) const {
470   // Figure out which operand is the one we might not be promoting.
471   Value *OtherOp = Inst->getOperand(OpIdx0);
472   if (Val == OtherOp)
473     OtherOp = Inst->getOperand(OpIdx1);
474 
475   if (isa<ConstantPointerNull>(OtherOp))
476     return true;
477 
478   Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
479   if (!isa<AllocaInst>(OtherObj))
480     return false;
481 
482   // TODO: We should be able to replace undefs with the right pointer type.
483 
484   // TODO: If we know the other base object is another promotable
485   // alloca, not necessarily this alloca, we can do this. The
486   // important part is both must have the same address space at
487   // the end.
488   if (OtherObj != BaseAlloca) {
489     DEBUG(dbgs() << "Found a binary instruction with another alloca object\n");
490     return false;
491   }
492 
493   return true;
494 }
495 
496 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
497   Value *BaseAlloca,
498   Value *Val,
499   std::vector<Value*> &WorkList) const {
500 
501   for (User *User : Val->users()) {
502     if (is_contained(WorkList, User))
503       continue;
504 
505     if (CallInst *CI = dyn_cast<CallInst>(User)) {
506       if (!isCallPromotable(CI))
507         return false;
508 
509       WorkList.push_back(User);
510       continue;
511     }
512 
513     Instruction *UseInst = cast<Instruction>(User);
514     if (UseInst->getOpcode() == Instruction::PtrToInt)
515       return false;
516 
517     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
518       if (LI->isVolatile())
519         return false;
520 
521       continue;
522     }
523 
524     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
525       if (SI->isVolatile())
526         return false;
527 
528       // Reject if the stored value is not the pointer operand.
529       if (SI->getPointerOperand() != Val)
530         return false;
531     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
532       if (RMW->isVolatile())
533         return false;
534     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
535       if (CAS->isVolatile())
536         return false;
537     }
538 
539     // Only promote a select if we know that the other select operand
540     // is from another pointer that will also be promoted.
541     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
542       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
543         return false;
544 
545       // May need to rewrite constant operands.
546       WorkList.push_back(ICmp);
547     }
548 
549     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
550       // Give up if the pointer may be captured.
551       if (PointerMayBeCaptured(UseInst, true, true))
552         return false;
553       // Don't collect the users of this.
554       WorkList.push_back(User);
555       continue;
556     }
557 
558     if (!User->getType()->isPointerTy())
559       continue;
560 
561     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
562       // Be conservative if an address could be computed outside the bounds of
563       // the alloca.
564       if (!GEP->isInBounds())
565         return false;
566     }
567 
568     // Only promote a select if we know that the other select operand is from
569     // another pointer that will also be promoted.
570     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
571       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
572         return false;
573     }
574 
575     // Repeat for phis.
576     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
577       // TODO: Handle more complex cases. We should be able to replace loops
578       // over arrays.
579       switch (Phi->getNumIncomingValues()) {
580       case 1:
581         break;
582       case 2:
583         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
584           return false;
585         break;
586       default:
587         return false;
588       }
589     }
590 
591     WorkList.push_back(User);
592     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
593       return false;
594   }
595 
596   return true;
597 }
598 
599 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) {
600 
601   FunctionType *FTy = F.getFunctionType();
602   const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F);
603 
604   // If the function has any arguments in the local address space, then it's
605   // possible these arguments require the entire local memory space, so
606   // we cannot use local memory in the pass.
607   for (Type *ParamTy : FTy->params()) {
608     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
609     if (PtrTy && PtrTy->getAddressSpace() == AS.LOCAL_ADDRESS) {
610       LocalMemLimit = 0;
611       DEBUG(dbgs() << "Function has local memory argument. Promoting to "
612                       "local memory disabled.\n");
613       return false;
614     }
615   }
616 
617   LocalMemLimit = ST.getLocalMemorySize();
618   if (LocalMemLimit == 0)
619     return false;
620 
621   const DataLayout &DL = Mod->getDataLayout();
622 
623   // Check how much local memory is being used by global objects
624   CurrentLocalMemUsage = 0;
625   for (GlobalVariable &GV : Mod->globals()) {
626     if (GV.getType()->getAddressSpace() != AS.LOCAL_ADDRESS)
627       continue;
628 
629     for (const User *U : GV.users()) {
630       const Instruction *Use = dyn_cast<Instruction>(U);
631       if (!Use)
632         continue;
633 
634       if (Use->getParent()->getParent() == &F) {
635         unsigned Align = GV.getAlignment();
636         if (Align == 0)
637           Align = DL.getABITypeAlignment(GV.getValueType());
638 
639         // FIXME: Try to account for padding here. The padding is currently
640         // determined from the inverse order of uses in the function. I'm not
641         // sure if the use list order is in any way connected to this, so the
642         // total reported size is likely incorrect.
643         uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
644         CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
645         CurrentLocalMemUsage += AllocSize;
646         break;
647       }
648     }
649   }
650 
651   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
652                                                           F);
653 
654   // Restrict local memory usage so that we don't drastically reduce occupancy,
655   // unless it is already significantly reduced.
656 
657   // TODO: Have some sort of hint or other heuristics to guess occupancy based
658   // on other factors..
659   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
660   if (OccupancyHint == 0)
661     OccupancyHint = 7;
662 
663   // Clamp to max value.
664   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
665 
666   // Check the hint but ignore it if it's obviously wrong from the existing LDS
667   // usage.
668   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
669 
670 
671   // Round up to the next tier of usage.
672   unsigned MaxSizeWithWaveCount
673     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
674 
675   // Program is possibly broken by using more local mem than available.
676   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
677     return false;
678 
679   LocalMemLimit = MaxSizeWithWaveCount;
680 
681   DEBUG(
682     dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n"
683     << "  Rounding size to " << MaxSizeWithWaveCount
684     << " with a maximum occupancy of " << MaxOccupancy << '\n'
685     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
686     << " available for promotion\n"
687   );
688 
689   return true;
690 }
691 
692 // FIXME: Should try to pick the most likely to be profitable allocas first.
693 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) {
694   // Array allocations are probably not worth handling, since an allocation of
695   // the array type is the canonical form.
696   if (!I.isStaticAlloca() || I.isArrayAllocation())
697     return false;
698 
699   IRBuilder<> Builder(&I);
700 
701   // First try to replace the alloca with a vector
702   Type *AllocaTy = I.getAllocatedType();
703 
704   DEBUG(dbgs() << "Trying to promote " << I << '\n');
705 
706   if (tryPromoteAllocaToVector(&I, AS))
707     return true; // Promoted to vector.
708 
709   const Function &ContainingFunction = *I.getParent()->getParent();
710   CallingConv::ID CC = ContainingFunction.getCallingConv();
711 
712   // Don't promote the alloca to LDS for shader calling conventions as the work
713   // item ID intrinsics are not supported for these calling conventions.
714   // Furthermore not all LDS is available for some of the stages.
715   switch (CC) {
716   case CallingConv::AMDGPU_KERNEL:
717   case CallingConv::SPIR_KERNEL:
718     break;
719   default:
720     DEBUG(dbgs() << " promote alloca to LDS not supported with calling convention.\n");
721     return false;
722   }
723 
724   // Not likely to have sufficient local memory for promotion.
725   if (!SufficientLDS)
726     return false;
727 
728   const AMDGPUSubtarget &ST =
729     TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction);
730   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
731 
732   const DataLayout &DL = Mod->getDataLayout();
733 
734   unsigned Align = I.getAlignment();
735   if (Align == 0)
736     Align = DL.getABITypeAlignment(I.getAllocatedType());
737 
738   // FIXME: This computed padding is likely wrong since it depends on inverse
739   // usage order.
740   //
741   // FIXME: It is also possible that if we're allowed to use all of the memory
742   // could could end up using more than the maximum due to alignment padding.
743 
744   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
745   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
746   NewSize += AllocSize;
747 
748   if (NewSize > LocalMemLimit) {
749     DEBUG(dbgs() << "  " << AllocSize
750           << " bytes of local memory not available to promote\n");
751     return false;
752   }
753 
754   CurrentLocalMemUsage = NewSize;
755 
756   std::vector<Value*> WorkList;
757 
758   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
759     DEBUG(dbgs() << " Do not know how to convert all uses\n");
760     return false;
761   }
762 
763   DEBUG(dbgs() << "Promoting alloca to local memory\n");
764 
765   Function *F = I.getParent()->getParent();
766 
767   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
768   GlobalVariable *GV = new GlobalVariable(
769       *Mod, GVTy, false, GlobalValue::InternalLinkage,
770       UndefValue::get(GVTy),
771       Twine(F->getName()) + Twine('.') + I.getName(),
772       nullptr,
773       GlobalVariable::NotThreadLocal,
774       AS.LOCAL_ADDRESS);
775   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
776   GV->setAlignment(I.getAlignment());
777 
778   Value *TCntY, *TCntZ;
779 
780   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
781   Value *TIdX = getWorkitemID(Builder, 0);
782   Value *TIdY = getWorkitemID(Builder, 1);
783   Value *TIdZ = getWorkitemID(Builder, 2);
784 
785   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
786   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
787   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
788   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
789   TID = Builder.CreateAdd(TID, TIdZ);
790 
791   Value *Indices[] = {
792     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
793     TID
794   };
795 
796   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
797   I.mutateType(Offset->getType());
798   I.replaceAllUsesWith(Offset);
799   I.eraseFromParent();
800 
801   for (Value *V : WorkList) {
802     CallInst *Call = dyn_cast<CallInst>(V);
803     if (!Call) {
804       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
805         Value *Src0 = CI->getOperand(0);
806         Type *EltTy = Src0->getType()->getPointerElementType();
807         PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS);
808 
809         if (isa<ConstantPointerNull>(CI->getOperand(0)))
810           CI->setOperand(0, ConstantPointerNull::get(NewTy));
811 
812         if (isa<ConstantPointerNull>(CI->getOperand(1)))
813           CI->setOperand(1, ConstantPointerNull::get(NewTy));
814 
815         continue;
816       }
817 
818       // The operand's value should be corrected on its own and we don't want to
819       // touch the users.
820       if (isa<AddrSpaceCastInst>(V))
821         continue;
822 
823       Type *EltTy = V->getType()->getPointerElementType();
824       PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS);
825 
826       // FIXME: It doesn't really make sense to try to do this for all
827       // instructions.
828       V->mutateType(NewTy);
829 
830       // Adjust the types of any constant operands.
831       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
832         if (isa<ConstantPointerNull>(SI->getOperand(1)))
833           SI->setOperand(1, ConstantPointerNull::get(NewTy));
834 
835         if (isa<ConstantPointerNull>(SI->getOperand(2)))
836           SI->setOperand(2, ConstantPointerNull::get(NewTy));
837       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
838         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
839           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
840             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
841         }
842       }
843 
844       continue;
845     }
846 
847     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
848     Builder.SetInsertPoint(Intr);
849     switch (Intr->getIntrinsicID()) {
850     case Intrinsic::lifetime_start:
851     case Intrinsic::lifetime_end:
852       // These intrinsics are for address space 0 only
853       Intr->eraseFromParent();
854       continue;
855     case Intrinsic::memcpy: {
856       MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
857       Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlignment(),
858                            MemCpy->getRawSource(), MemCpy->getSourceAlignment(),
859                            MemCpy->getLength(), MemCpy->isVolatile());
860       Intr->eraseFromParent();
861       continue;
862     }
863     case Intrinsic::memmove: {
864       MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
865       Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlignment(),
866                             MemMove->getRawSource(), MemMove->getSourceAlignment(),
867                             MemMove->getLength(), MemMove->isVolatile());
868       Intr->eraseFromParent();
869       continue;
870     }
871     case Intrinsic::memset: {
872       MemSetInst *MemSet = cast<MemSetInst>(Intr);
873       Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
874                            MemSet->getLength(), MemSet->getDestAlignment(),
875                            MemSet->isVolatile());
876       Intr->eraseFromParent();
877       continue;
878     }
879     case Intrinsic::invariant_start:
880     case Intrinsic::invariant_end:
881     case Intrinsic::invariant_group_barrier:
882       Intr->eraseFromParent();
883       // FIXME: I think the invariant marker should still theoretically apply,
884       // but the intrinsics need to be changed to accept pointers with any
885       // address space.
886       continue;
887     case Intrinsic::objectsize: {
888       Value *Src = Intr->getOperand(0);
889       Type *SrcTy = Src->getType()->getPointerElementType();
890       Function *ObjectSize = Intrinsic::getDeclaration(Mod,
891         Intrinsic::objectsize,
892         { Intr->getType(), PointerType::get(SrcTy, AS.LOCAL_ADDRESS) }
893       );
894 
895       CallInst *NewCall = Builder.CreateCall(
896           ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)});
897       Intr->replaceAllUsesWith(NewCall);
898       Intr->eraseFromParent();
899       continue;
900     }
901     default:
902       Intr->print(errs());
903       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
904     }
905   }
906   return true;
907 }
908 
909 FunctionPass *llvm::createAMDGPUPromoteAlloca() {
910   return new AMDGPUPromoteAlloca();
911 }
912