1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates allocas by either converting them into vectors or
11 // by migrating them to local address space.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "Utils/AMDGPUBaseInfo.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/CaptureTracking.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/GlobalValue.h"
34 #include "llvm/IR/GlobalVariable.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/MDBuilder.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include "llvm/Support/MathExtras.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include <algorithm>
55 #include <cassert>
56 #include <cstdint>
57 #include <map>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
61 
62 #define DEBUG_TYPE "amdgpu-promote-alloca"
63 
64 using namespace llvm;
65 
66 namespace {
67 
68 // FIXME: This can create globals so should be a module pass.
69 class AMDGPUPromoteAlloca : public FunctionPass {
70 private:
71   const TargetMachine *TM;
72   Module *Mod = nullptr;
73   const DataLayout *DL = nullptr;
74   MDNode *MaxWorkGroupSizeRange = nullptr;
75 
76   // FIXME: This should be per-kernel.
77   uint32_t LocalMemLimit = 0;
78   uint32_t CurrentLocalMemUsage = 0;
79 
80   bool IsAMDGCN = false;
81   bool IsAMDHSA = false;
82 
83   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
84   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
85 
86   /// BaseAlloca is the alloca root the search started from.
87   /// Val may be that alloca or a recursive user of it.
88   bool collectUsesWithPtrTypes(Value *BaseAlloca,
89                                Value *Val,
90                                std::vector<Value*> &WorkList) const;
91 
92   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
93   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
94   /// Returns true if both operands are derived from the same alloca. Val should
95   /// be the same value as one of the input operands of UseInst.
96   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
97                                        Instruction *UseInst,
98                                        int OpIdx0, int OpIdx1) const;
99 
100 public:
101   static char ID;
102 
103   AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) :
104     FunctionPass(ID), TM(TM_) {}
105 
106   bool doInitialization(Module &M) override;
107   bool runOnFunction(Function &F) override;
108 
109   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
110 
111   void handleAlloca(AllocaInst &I);
112 
113   void getAnalysisUsage(AnalysisUsage &AU) const override {
114     AU.setPreservesCFG();
115     FunctionPass::getAnalysisUsage(AU);
116   }
117 };
118 
119 } // end anonymous namespace
120 
121 char AMDGPUPromoteAlloca::ID = 0;
122 
123 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
124                    "AMDGPU promote alloca to vector or LDS", false, false)
125 
126 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
127 
128 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
129   if (!TM)
130     return false;
131 
132   Mod = &M;
133   DL = &Mod->getDataLayout();
134 
135   // The maximum workitem id.
136   //
137   // FIXME: Should get as subtarget property. Usually runtime enforced max is
138   // 256.
139   MDBuilder MDB(Mod->getContext());
140   MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048));
141 
142   const Triple &TT = TM->getTargetTriple();
143 
144   IsAMDGCN = TT.getArch() == Triple::amdgcn;
145   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
146 
147   return false;
148 }
149 
150 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
151   if (!TM || skipFunction(F))
152     return false;
153 
154   const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F);
155   if (!ST.isPromoteAllocaEnabled())
156     return false;
157 
158   FunctionType *FTy = F.getFunctionType();
159 
160   // If the function has any arguments in the local address space, then it's
161   // possible these arguments require the entire local memory space, so
162   // we cannot use local memory in the pass.
163   for (Type *ParamTy : FTy->params()) {
164     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
165     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
166       LocalMemLimit = 0;
167       DEBUG(dbgs() << "Function has local memory argument. Promoting to "
168                       "local memory disabled.\n");
169       return false;
170     }
171   }
172 
173   LocalMemLimit = ST.getLocalMemorySize();
174   if (LocalMemLimit == 0)
175     return false;
176 
177   const DataLayout &DL = Mod->getDataLayout();
178 
179   // Check how much local memory is being used by global objects
180   CurrentLocalMemUsage = 0;
181   for (GlobalVariable &GV : Mod->globals()) {
182     if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
183       continue;
184 
185     for (const User *U : GV.users()) {
186       const Instruction *Use = dyn_cast<Instruction>(U);
187       if (!Use)
188         continue;
189 
190       if (Use->getParent()->getParent() == &F) {
191         unsigned Align = GV.getAlignment();
192         if (Align == 0)
193           Align = DL.getABITypeAlignment(GV.getValueType());
194 
195         // FIXME: Try to account for padding here. The padding is currently
196         // determined from the inverse order of uses in the function. I'm not
197         // sure if the use list order is in any way connected to this, so the
198         // total reported size is likely incorrect.
199         uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
200         CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
201         CurrentLocalMemUsage += AllocSize;
202         break;
203       }
204     }
205   }
206 
207   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage,
208                                                           F);
209 
210   // Restrict local memory usage so that we don't drastically reduce occupancy,
211   // unless it is already significantly reduced.
212 
213   // TODO: Have some sort of hint or other heuristics to guess occupancy based
214   // on other factors..
215   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
216   if (OccupancyHint == 0)
217     OccupancyHint = 7;
218 
219   // Clamp to max value.
220   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
221 
222   // Check the hint but ignore it if it's obviously wrong from the existing LDS
223   // usage.
224   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
225 
226 
227   // Round up to the next tier of usage.
228   unsigned MaxSizeWithWaveCount
229     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F);
230 
231   // Program is possibly broken by using more local mem than available.
232   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
233     return false;
234 
235   LocalMemLimit = MaxSizeWithWaveCount;
236 
237   DEBUG(
238     dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n"
239     << "  Rounding size to " << MaxSizeWithWaveCount
240     << " with a maximum occupancy of " << MaxOccupancy << '\n'
241     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
242     << " available for promotion\n"
243   );
244 
245   BasicBlock &EntryBB = *F.begin();
246   for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) {
247     AllocaInst *AI = dyn_cast<AllocaInst>(I);
248 
249     ++I;
250     if (AI)
251       handleAlloca(*AI);
252   }
253 
254   return true;
255 }
256 
257 std::pair<Value *, Value *>
258 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
259   if (!IsAMDHSA) {
260     Function *LocalSizeYFn
261       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
262     Function *LocalSizeZFn
263       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
264 
265     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
266     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
267 
268     LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
269     LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
270 
271     return std::make_pair(LocalSizeY, LocalSizeZ);
272   }
273 
274   // We must read the size out of the dispatch pointer.
275   assert(IsAMDGCN);
276 
277   // We are indexing into this struct, and want to extract the workgroup_size_*
278   // fields.
279   //
280   //   typedef struct hsa_kernel_dispatch_packet_s {
281   //     uint16_t header;
282   //     uint16_t setup;
283   //     uint16_t workgroup_size_x ;
284   //     uint16_t workgroup_size_y;
285   //     uint16_t workgroup_size_z;
286   //     uint16_t reserved0;
287   //     uint32_t grid_size_x ;
288   //     uint32_t grid_size_y ;
289   //     uint32_t grid_size_z;
290   //
291   //     uint32_t private_segment_size;
292   //     uint32_t group_segment_size;
293   //     uint64_t kernel_object;
294   //
295   // #ifdef HSA_LARGE_MODEL
296   //     void *kernarg_address;
297   // #elif defined HSA_LITTLE_ENDIAN
298   //     void *kernarg_address;
299   //     uint32_t reserved1;
300   // #else
301   //     uint32_t reserved1;
302   //     void *kernarg_address;
303   // #endif
304   //     uint64_t reserved2;
305   //     hsa_signal_t completion_signal; // uint64_t wrapper
306   //   } hsa_kernel_dispatch_packet_t
307   //
308   Function *DispatchPtrFn
309     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
310 
311   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
312   DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias);
313   DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
314 
315   // Size of the dispatch packet struct.
316   DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64);
317 
318   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
319   Value *CastDispatchPtr = Builder.CreateBitCast(
320     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
321 
322   // We could do a single 64-bit load here, but it's likely that the basic
323   // 32-bit and extract sequence is already present, and it is probably easier
324   // to CSE this. The loads should be mergable later anyway.
325   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1);
326   LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4);
327 
328   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2);
329   LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4);
330 
331   MDNode *MD = MDNode::get(Mod->getContext(), None);
332   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
333   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
334   LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
335 
336   // Extract y component. Upper half of LoadZU should be zero already.
337   Value *Y = Builder.CreateLShr(LoadXY, 16);
338 
339   return std::make_pair(Y, LoadZU);
340 }
341 
342 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
343   Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
344 
345   switch (N) {
346   case 0:
347     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
348       : Intrinsic::r600_read_tidig_x;
349     break;
350   case 1:
351     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
352       : Intrinsic::r600_read_tidig_y;
353     break;
354 
355   case 2:
356     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
357       : Intrinsic::r600_read_tidig_z;
358     break;
359   default:
360     llvm_unreachable("invalid dimension");
361   }
362 
363   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
364   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
365   CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
366 
367   return CI;
368 }
369 
370 static VectorType *arrayTypeToVecType(Type *ArrayTy) {
371   return VectorType::get(ArrayTy->getArrayElementType(),
372                          ArrayTy->getArrayNumElements());
373 }
374 
375 static Value *
376 calculateVectorIndex(Value *Ptr,
377                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
378   GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
379 
380   auto I = GEPIdx.find(GEP);
381   return I == GEPIdx.end() ? nullptr : I->second;
382 }
383 
384 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
385   // FIXME we only support simple cases
386   if (GEP->getNumOperands() != 3)
387     return nullptr;
388 
389   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
390   if (!I0 || !I0->isZero())
391     return nullptr;
392 
393   return GEP->getOperand(2);
394 }
395 
396 // Not an instruction handled below to turn into a vector.
397 //
398 // TODO: Check isTriviallyVectorizable for calls and handle other
399 // instructions.
400 static bool canVectorizeInst(Instruction *Inst, User *User) {
401   switch (Inst->getOpcode()) {
402   case Instruction::Load:
403   case Instruction::BitCast:
404   case Instruction::AddrSpaceCast:
405     return true;
406   case Instruction::Store: {
407     // Must be the stored pointer operand, not a stored value.
408     StoreInst *SI = cast<StoreInst>(Inst);
409     return SI->getPointerOperand() == User;
410   }
411   default:
412     return false;
413   }
414 }
415 
416 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
417   ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType());
418 
419   DEBUG(dbgs() << "Alloca candidate for vectorization\n");
420 
421   // FIXME: There is no reason why we can't support larger arrays, we
422   // are just being conservative for now.
423   if (!AllocaTy ||
424       AllocaTy->getElementType()->isVectorTy() ||
425       AllocaTy->getNumElements() > 4 ||
426       AllocaTy->getNumElements() < 2) {
427     DEBUG(dbgs() << "  Cannot convert type to vector\n");
428     return false;
429   }
430 
431   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
432   std::vector<Value*> WorkList;
433   for (User *AllocaUser : Alloca->users()) {
434     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
435     if (!GEP) {
436       if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
437         return false;
438 
439       WorkList.push_back(AllocaUser);
440       continue;
441     }
442 
443     Value *Index = GEPToVectorIndex(GEP);
444 
445     // If we can't compute a vector index from this GEP, then we can't
446     // promote this alloca to vector.
447     if (!Index) {
448       DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP << '\n');
449       return false;
450     }
451 
452     GEPVectorIdx[GEP] = Index;
453     for (User *GEPUser : AllocaUser->users()) {
454       if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
455         return false;
456 
457       WorkList.push_back(GEPUser);
458     }
459   }
460 
461   VectorType *VectorTy = arrayTypeToVecType(AllocaTy);
462 
463   DEBUG(dbgs() << "  Converting alloca to vector "
464         << *AllocaTy << " -> " << *VectorTy << '\n');
465 
466   for (Value *V : WorkList) {
467     Instruction *Inst = cast<Instruction>(V);
468     IRBuilder<> Builder(Inst);
469     switch (Inst->getOpcode()) {
470     case Instruction::Load: {
471       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
472       Value *Ptr = Inst->getOperand(0);
473       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
474 
475       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
476       Value *VecValue = Builder.CreateLoad(BitCast);
477       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
478       Inst->replaceAllUsesWith(ExtractElement);
479       Inst->eraseFromParent();
480       break;
481     }
482     case Instruction::Store: {
483       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
484 
485       Value *Ptr = Inst->getOperand(1);
486       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
487       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
488       Value *VecValue = Builder.CreateLoad(BitCast);
489       Value *NewVecValue = Builder.CreateInsertElement(VecValue,
490                                                        Inst->getOperand(0),
491                                                        Index);
492       Builder.CreateStore(NewVecValue, BitCast);
493       Inst->eraseFromParent();
494       break;
495     }
496     case Instruction::BitCast:
497     case Instruction::AddrSpaceCast:
498       break;
499 
500     default:
501       llvm_unreachable("Inconsistency in instructions promotable to vector");
502     }
503   }
504   return true;
505 }
506 
507 static bool isCallPromotable(CallInst *CI) {
508   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
509   if (!II)
510     return false;
511 
512   switch (II->getIntrinsicID()) {
513   case Intrinsic::memcpy:
514   case Intrinsic::memmove:
515   case Intrinsic::memset:
516   case Intrinsic::lifetime_start:
517   case Intrinsic::lifetime_end:
518   case Intrinsic::invariant_start:
519   case Intrinsic::invariant_end:
520   case Intrinsic::invariant_group_barrier:
521   case Intrinsic::objectsize:
522     return true;
523   default:
524     return false;
525   }
526 }
527 
528 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
529                                                           Value *Val,
530                                                           Instruction *Inst,
531                                                           int OpIdx0,
532                                                           int OpIdx1) const {
533   // Figure out which operand is the one we might not be promoting.
534   Value *OtherOp = Inst->getOperand(OpIdx0);
535   if (Val == OtherOp)
536     OtherOp = Inst->getOperand(OpIdx1);
537 
538   if (isa<ConstantPointerNull>(OtherOp))
539     return true;
540 
541   Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
542   if (!isa<AllocaInst>(OtherObj))
543     return false;
544 
545   // TODO: We should be able to replace undefs with the right pointer type.
546 
547   // TODO: If we know the other base object is another promotable
548   // alloca, not necessarily this alloca, we can do this. The
549   // important part is both must have the same address space at
550   // the end.
551   if (OtherObj != BaseAlloca) {
552     DEBUG(dbgs() << "Found a binary instruction with another alloca object\n");
553     return false;
554   }
555 
556   return true;
557 }
558 
559 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
560   Value *BaseAlloca,
561   Value *Val,
562   std::vector<Value*> &WorkList) const {
563 
564   for (User *User : Val->users()) {
565     if (is_contained(WorkList, User))
566       continue;
567 
568     if (CallInst *CI = dyn_cast<CallInst>(User)) {
569       if (!isCallPromotable(CI))
570         return false;
571 
572       WorkList.push_back(User);
573       continue;
574     }
575 
576     Instruction *UseInst = cast<Instruction>(User);
577     if (UseInst->getOpcode() == Instruction::PtrToInt)
578       return false;
579 
580     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
581       if (LI->isVolatile())
582         return false;
583 
584       continue;
585     }
586 
587     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
588       if (SI->isVolatile())
589         return false;
590 
591       // Reject if the stored value is not the pointer operand.
592       if (SI->getPointerOperand() != Val)
593         return false;
594     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
595       if (RMW->isVolatile())
596         return false;
597     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
598       if (CAS->isVolatile())
599         return false;
600     }
601 
602     // Only promote a select if we know that the other select operand
603     // is from another pointer that will also be promoted.
604     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
605       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
606         return false;
607 
608       // May need to rewrite constant operands.
609       WorkList.push_back(ICmp);
610     }
611 
612     if (UseInst->getOpcode() == Instruction::AddrSpaceCast) {
613       // Give up if the pointer may be captured.
614       if (PointerMayBeCaptured(UseInst, true, true))
615         return false;
616       // Don't collect the users of this.
617       WorkList.push_back(User);
618       continue;
619     }
620 
621     if (!User->getType()->isPointerTy())
622       continue;
623 
624     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
625       // Be conservative if an address could be computed outside the bounds of
626       // the alloca.
627       if (!GEP->isInBounds())
628         return false;
629     }
630 
631     // Only promote a select if we know that the other select operand is from
632     // another pointer that will also be promoted.
633     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
634       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
635         return false;
636     }
637 
638     // Repeat for phis.
639     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
640       // TODO: Handle more complex cases. We should be able to replace loops
641       // over arrays.
642       switch (Phi->getNumIncomingValues()) {
643       case 1:
644         break;
645       case 2:
646         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
647           return false;
648         break;
649       default:
650         return false;
651       }
652     }
653 
654     WorkList.push_back(User);
655     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
656       return false;
657   }
658 
659   return true;
660 }
661 
662 // FIXME: Should try to pick the most likely to be profitable allocas first.
663 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) {
664   // Array allocations are probably not worth handling, since an allocation of
665   // the array type is the canonical form.
666   if (!I.isStaticAlloca() || I.isArrayAllocation())
667     return;
668 
669   IRBuilder<> Builder(&I);
670 
671   // First try to replace the alloca with a vector
672   Type *AllocaTy = I.getAllocatedType();
673 
674   DEBUG(dbgs() << "Trying to promote " << I << '\n');
675 
676   if (tryPromoteAllocaToVector(&I)) {
677     DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n");
678     return;
679   }
680 
681   const Function &ContainingFunction = *I.getParent()->getParent();
682 
683   // Don't promote the alloca to LDS for shader calling conventions as the work
684   // item ID intrinsics are not supported for these calling conventions.
685   // Furthermore not all LDS is available for some of the stages.
686   if (AMDGPU::isShader(ContainingFunction.getCallingConv()))
687     return;
688 
689   const AMDGPUSubtarget &ST =
690     TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction);
691   // FIXME: We should also try to get this value from the reqd_work_group_size
692   // function attribute if it is available.
693   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
694 
695   const DataLayout &DL = Mod->getDataLayout();
696 
697   unsigned Align = I.getAlignment();
698   if (Align == 0)
699     Align = DL.getABITypeAlignment(I.getAllocatedType());
700 
701   // FIXME: This computed padding is likely wrong since it depends on inverse
702   // usage order.
703   //
704   // FIXME: It is also possible that if we're allowed to use all of the memory
705   // could could end up using more than the maximum due to alignment padding.
706 
707   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
708   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
709   NewSize += AllocSize;
710 
711   if (NewSize > LocalMemLimit) {
712     DEBUG(dbgs() << "  " << AllocSize
713           << " bytes of local memory not available to promote\n");
714     return;
715   }
716 
717   CurrentLocalMemUsage = NewSize;
718 
719   std::vector<Value*> WorkList;
720 
721   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
722     DEBUG(dbgs() << " Do not know how to convert all uses\n");
723     return;
724   }
725 
726   DEBUG(dbgs() << "Promoting alloca to local memory\n");
727 
728   Function *F = I.getParent()->getParent();
729 
730   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
731   GlobalVariable *GV = new GlobalVariable(
732       *Mod, GVTy, false, GlobalValue::InternalLinkage,
733       UndefValue::get(GVTy),
734       Twine(F->getName()) + Twine('.') + I.getName(),
735       nullptr,
736       GlobalVariable::NotThreadLocal,
737       AMDGPUAS::LOCAL_ADDRESS);
738   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
739   GV->setAlignment(I.getAlignment());
740 
741   Value *TCntY, *TCntZ;
742 
743   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
744   Value *TIdX = getWorkitemID(Builder, 0);
745   Value *TIdY = getWorkitemID(Builder, 1);
746   Value *TIdZ = getWorkitemID(Builder, 2);
747 
748   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
749   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
750   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
751   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
752   TID = Builder.CreateAdd(TID, TIdZ);
753 
754   Value *Indices[] = {
755     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
756     TID
757   };
758 
759   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
760   I.mutateType(Offset->getType());
761   I.replaceAllUsesWith(Offset);
762   I.eraseFromParent();
763 
764   for (Value *V : WorkList) {
765     CallInst *Call = dyn_cast<CallInst>(V);
766     if (!Call) {
767       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
768         Value *Src0 = CI->getOperand(0);
769         Type *EltTy = Src0->getType()->getPointerElementType();
770         PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
771 
772         if (isa<ConstantPointerNull>(CI->getOperand(0)))
773           CI->setOperand(0, ConstantPointerNull::get(NewTy));
774 
775         if (isa<ConstantPointerNull>(CI->getOperand(1)))
776           CI->setOperand(1, ConstantPointerNull::get(NewTy));
777 
778         continue;
779       }
780 
781       // The operand's value should be corrected on its own and we don't want to
782       // touch the users.
783       if (isa<AddrSpaceCastInst>(V))
784         continue;
785 
786       Type *EltTy = V->getType()->getPointerElementType();
787       PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
788 
789       // FIXME: It doesn't really make sense to try to do this for all
790       // instructions.
791       V->mutateType(NewTy);
792 
793       // Adjust the types of any constant operands.
794       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
795         if (isa<ConstantPointerNull>(SI->getOperand(1)))
796           SI->setOperand(1, ConstantPointerNull::get(NewTy));
797 
798         if (isa<ConstantPointerNull>(SI->getOperand(2)))
799           SI->setOperand(2, ConstantPointerNull::get(NewTy));
800       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
801         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
802           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
803             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
804         }
805       }
806 
807       continue;
808     }
809 
810     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
811     Builder.SetInsertPoint(Intr);
812     switch (Intr->getIntrinsicID()) {
813     case Intrinsic::lifetime_start:
814     case Intrinsic::lifetime_end:
815       // These intrinsics are for address space 0 only
816       Intr->eraseFromParent();
817       continue;
818     case Intrinsic::memcpy: {
819       MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
820       Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(),
821                            MemCpy->getLength(), MemCpy->getAlignment(),
822                            MemCpy->isVolatile());
823       Intr->eraseFromParent();
824       continue;
825     }
826     case Intrinsic::memmove: {
827       MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
828       Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(),
829                             MemMove->getLength(), MemMove->getAlignment(),
830                             MemMove->isVolatile());
831       Intr->eraseFromParent();
832       continue;
833     }
834     case Intrinsic::memset: {
835       MemSetInst *MemSet = cast<MemSetInst>(Intr);
836       Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
837                            MemSet->getLength(), MemSet->getAlignment(),
838                            MemSet->isVolatile());
839       Intr->eraseFromParent();
840       continue;
841     }
842     case Intrinsic::invariant_start:
843     case Intrinsic::invariant_end:
844     case Intrinsic::invariant_group_barrier:
845       Intr->eraseFromParent();
846       // FIXME: I think the invariant marker should still theoretically apply,
847       // but the intrinsics need to be changed to accept pointers with any
848       // address space.
849       continue;
850     case Intrinsic::objectsize: {
851       Value *Src = Intr->getOperand(0);
852       Type *SrcTy = Src->getType()->getPointerElementType();
853       Function *ObjectSize = Intrinsic::getDeclaration(Mod,
854         Intrinsic::objectsize,
855         { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
856       );
857 
858       CallInst *NewCall
859         = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) });
860       Intr->replaceAllUsesWith(NewCall);
861       Intr->eraseFromParent();
862       continue;
863     }
864     default:
865       Intr->print(errs());
866       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
867     }
868   }
869 }
870 
871 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) {
872   return new AMDGPUPromoteAlloca(TM);
873 }
874