1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates allocas by either converting them into vectors or 10 // by migrating them to local address space. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPUSubtarget.h" 16 #include "Utils/AMDGPUBaseInfo.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/CaptureTracking.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/IRBuilder.h" 36 #include "llvm/IR/Instruction.h" 37 #include "llvm/IR/Instructions.h" 38 #include "llvm/IR/IntrinsicInst.h" 39 #include "llvm/IR/Intrinsics.h" 40 #include "llvm/IR/IntrinsicsAMDGPU.h" 41 #include "llvm/IR/IntrinsicsR600.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/IR/Metadata.h" 44 #include "llvm/IR/Module.h" 45 #include "llvm/IR/PassManager.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/IR/User.h" 48 #include "llvm/IR/Value.h" 49 #include "llvm/Pass.h" 50 #include "llvm/Support/Casting.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/ErrorHandling.h" 53 #include "llvm/Support/MathExtras.h" 54 #include "llvm/Support/raw_ostream.h" 55 #include "llvm/Target/TargetMachine.h" 56 #include <algorithm> 57 #include <cassert> 58 #include <cstdint> 59 #include <map> 60 #include <tuple> 61 #include <utility> 62 #include <vector> 63 64 #define DEBUG_TYPE "amdgpu-promote-alloca" 65 66 using namespace llvm; 67 68 namespace { 69 70 static cl::opt<bool> DisablePromoteAllocaToVector( 71 "disable-promote-alloca-to-vector", 72 cl::desc("Disable promote alloca to vector"), 73 cl::init(false)); 74 75 static cl::opt<bool> DisablePromoteAllocaToLDS( 76 "disable-promote-alloca-to-lds", 77 cl::desc("Disable promote alloca to LDS"), 78 cl::init(false)); 79 80 static cl::opt<unsigned> PromoteAllocaToVectorLimit( 81 "amdgpu-promote-alloca-to-vector-limit", 82 cl::desc("Maximum byte size to consider promote alloca to vector"), 83 cl::init(0)); 84 85 // FIXME: This can create globals so should be a module pass. 86 class AMDGPUPromoteAlloca : public FunctionPass { 87 public: 88 static char ID; 89 90 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 91 92 bool runOnFunction(Function &F) override; 93 94 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 95 96 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 97 98 void getAnalysisUsage(AnalysisUsage &AU) const override { 99 AU.setPreservesCFG(); 100 FunctionPass::getAnalysisUsage(AU); 101 } 102 }; 103 104 class AMDGPUPromoteAllocaImpl { 105 private: 106 const TargetMachine &TM; 107 Module *Mod = nullptr; 108 const DataLayout *DL = nullptr; 109 110 // FIXME: This should be per-kernel. 111 uint32_t LocalMemLimit = 0; 112 uint32_t CurrentLocalMemUsage = 0; 113 unsigned MaxVGPRs; 114 115 bool IsAMDGCN = false; 116 bool IsAMDHSA = false; 117 118 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 119 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 120 121 /// BaseAlloca is the alloca root the search started from. 122 /// Val may be that alloca or a recursive user of it. 123 bool collectUsesWithPtrTypes(Value *BaseAlloca, 124 Value *Val, 125 std::vector<Value*> &WorkList) const; 126 127 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 128 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 129 /// Returns true if both operands are derived from the same alloca. Val should 130 /// be the same value as one of the input operands of UseInst. 131 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 132 Instruction *UseInst, 133 int OpIdx0, int OpIdx1) const; 134 135 /// Check whether we have enough local memory for promotion. 136 bool hasSufficientLocalMem(const Function &F); 137 138 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 139 140 public: 141 AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} 142 bool run(Function &F); 143 }; 144 145 class AMDGPUPromoteAllocaToVector : public FunctionPass { 146 public: 147 static char ID; 148 149 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 150 151 bool runOnFunction(Function &F) override; 152 153 StringRef getPassName() const override { 154 return "AMDGPU Promote Alloca to vector"; 155 } 156 157 void getAnalysisUsage(AnalysisUsage &AU) const override { 158 AU.setPreservesCFG(); 159 FunctionPass::getAnalysisUsage(AU); 160 } 161 }; 162 163 } // end anonymous namespace 164 165 char AMDGPUPromoteAlloca::ID = 0; 166 char AMDGPUPromoteAllocaToVector::ID = 0; 167 168 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 169 "AMDGPU promote alloca to vector or LDS", false, false) 170 171 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 172 "AMDGPU promote alloca to vector", false, false) 173 174 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 175 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 176 177 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 178 if (skipFunction(F)) 179 return false; 180 181 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 182 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); 183 } 184 return false; 185 } 186 187 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 188 FunctionAnalysisManager &AM) { 189 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); 190 if (Changed) { 191 PreservedAnalyses PA; 192 PA.preserveSet<CFGAnalyses>(); 193 return PA; 194 } 195 return PreservedAnalyses::all(); 196 } 197 198 bool AMDGPUPromoteAllocaImpl::run(Function &F) { 199 Mod = F.getParent(); 200 DL = &Mod->getDataLayout(); 201 202 const Triple &TT = TM.getTargetTriple(); 203 IsAMDGCN = TT.getArch() == Triple::amdgcn; 204 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 205 206 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 207 if (!ST.isPromoteAllocaEnabled()) 208 return false; 209 210 if (IsAMDGCN) { 211 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 212 MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 213 } else { 214 MaxVGPRs = 128; 215 } 216 217 bool SufficientLDS = hasSufficientLocalMem(F); 218 bool Changed = false; 219 BasicBlock &EntryBB = *F.begin(); 220 221 SmallVector<AllocaInst *, 16> Allocas; 222 for (Instruction &I : EntryBB) { 223 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 224 Allocas.push_back(AI); 225 } 226 227 for (AllocaInst *AI : Allocas) { 228 if (handleAlloca(*AI, SufficientLDS)) 229 Changed = true; 230 } 231 232 return Changed; 233 } 234 235 std::pair<Value *, Value *> 236 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 237 const Function &F = *Builder.GetInsertBlock()->getParent(); 238 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 239 240 if (!IsAMDHSA) { 241 Function *LocalSizeYFn 242 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 243 Function *LocalSizeZFn 244 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 245 246 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 247 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 248 249 ST.makeLIDRangeMetadata(LocalSizeY); 250 ST.makeLIDRangeMetadata(LocalSizeZ); 251 252 return std::make_pair(LocalSizeY, LocalSizeZ); 253 } 254 255 // We must read the size out of the dispatch pointer. 256 assert(IsAMDGCN); 257 258 // We are indexing into this struct, and want to extract the workgroup_size_* 259 // fields. 260 // 261 // typedef struct hsa_kernel_dispatch_packet_s { 262 // uint16_t header; 263 // uint16_t setup; 264 // uint16_t workgroup_size_x ; 265 // uint16_t workgroup_size_y; 266 // uint16_t workgroup_size_z; 267 // uint16_t reserved0; 268 // uint32_t grid_size_x ; 269 // uint32_t grid_size_y ; 270 // uint32_t grid_size_z; 271 // 272 // uint32_t private_segment_size; 273 // uint32_t group_segment_size; 274 // uint64_t kernel_object; 275 // 276 // #ifdef HSA_LARGE_MODEL 277 // void *kernarg_address; 278 // #elif defined HSA_LITTLE_ENDIAN 279 // void *kernarg_address; 280 // uint32_t reserved1; 281 // #else 282 // uint32_t reserved1; 283 // void *kernarg_address; 284 // #endif 285 // uint64_t reserved2; 286 // hsa_signal_t completion_signal; // uint64_t wrapper 287 // } hsa_kernel_dispatch_packet_t 288 // 289 Function *DispatchPtrFn 290 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 291 292 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 293 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 294 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 295 296 // Size of the dispatch packet struct. 297 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 298 299 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 300 Value *CastDispatchPtr = Builder.CreateBitCast( 301 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 302 303 // We could do a single 64-bit load here, but it's likely that the basic 304 // 32-bit and extract sequence is already present, and it is probably easier 305 // to CSE this. The loads should be mergable later anyway. 306 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 307 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 308 309 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 310 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 311 312 MDNode *MD = MDNode::get(Mod->getContext(), None); 313 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 314 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 315 ST.makeLIDRangeMetadata(LoadZU); 316 317 // Extract y component. Upper half of LoadZU should be zero already. 318 Value *Y = Builder.CreateLShr(LoadXY, 16); 319 320 return std::make_pair(Y, LoadZU); 321 } 322 323 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 324 unsigned N) { 325 const AMDGPUSubtarget &ST = 326 AMDGPUSubtarget::get(TM, *Builder.GetInsertBlock()->getParent()); 327 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 328 329 switch (N) { 330 case 0: 331 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 332 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 333 break; 334 case 1: 335 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 336 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 337 break; 338 339 case 2: 340 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 341 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 342 break; 343 default: 344 llvm_unreachable("invalid dimension"); 345 } 346 347 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 348 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 349 ST.makeLIDRangeMetadata(CI); 350 351 return CI; 352 } 353 354 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 355 return FixedVectorType::get(ArrayTy->getElementType(), 356 ArrayTy->getNumElements()); 357 } 358 359 static Value *stripBitcasts(Value *V) { 360 while (Instruction *I = dyn_cast<Instruction>(V)) { 361 if (I->getOpcode() != Instruction::BitCast) 362 break; 363 V = I->getOperand(0); 364 } 365 return V; 366 } 367 368 static Value * 369 calculateVectorIndex(Value *Ptr, 370 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 371 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); 372 if (!GEP) 373 return nullptr; 374 375 auto I = GEPIdx.find(GEP); 376 return I == GEPIdx.end() ? nullptr : I->second; 377 } 378 379 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 380 // FIXME we only support simple cases 381 if (GEP->getNumOperands() != 3) 382 return nullptr; 383 384 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 385 if (!I0 || !I0->isZero()) 386 return nullptr; 387 388 return GEP->getOperand(2); 389 } 390 391 // Not an instruction handled below to turn into a vector. 392 // 393 // TODO: Check isTriviallyVectorizable for calls and handle other 394 // instructions. 395 static bool canVectorizeInst(Instruction *Inst, User *User, 396 const DataLayout &DL) { 397 switch (Inst->getOpcode()) { 398 case Instruction::Load: { 399 // Currently only handle the case where the Pointer Operand is a GEP. 400 // Also we could not vectorize volatile or atomic loads. 401 LoadInst *LI = cast<LoadInst>(Inst); 402 if (isa<AllocaInst>(User) && 403 LI->getPointerOperandType() == User->getType() && 404 isa<VectorType>(LI->getType())) 405 return true; 406 407 Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 408 if (!PtrInst) 409 return false; 410 411 return (PtrInst->getOpcode() == Instruction::GetElementPtr || 412 PtrInst->getOpcode() == Instruction::BitCast) && 413 LI->isSimple(); 414 } 415 case Instruction::BitCast: 416 return true; 417 case Instruction::Store: { 418 // Must be the stored pointer operand, not a stored value, plus 419 // since it should be canonical form, the User should be a GEP. 420 // Also we could not vectorize volatile or atomic stores. 421 StoreInst *SI = cast<StoreInst>(Inst); 422 if (isa<AllocaInst>(User) && 423 SI->getPointerOperandType() == User->getType() && 424 isa<VectorType>(SI->getValueOperand()->getType())) 425 return true; 426 427 Instruction *UserInst = dyn_cast<Instruction>(User); 428 if (!UserInst) 429 return false; 430 431 return (SI->getPointerOperand() == User) && 432 (UserInst->getOpcode() == Instruction::GetElementPtr || 433 UserInst->getOpcode() == Instruction::BitCast) && 434 SI->isSimple(); 435 } 436 default: 437 return false; 438 } 439 } 440 441 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, 442 unsigned MaxVGPRs) { 443 444 if (DisablePromoteAllocaToVector) { 445 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 446 return false; 447 } 448 449 Type *AllocaTy = Alloca->getAllocatedType(); 450 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 451 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 452 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 453 ArrayTy->getNumElements() > 0) 454 VectorTy = arrayTypeToVecType(ArrayTy); 455 } 456 457 // Use up to 1/4 of available register budget for vectorization. 458 unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 459 : (MaxVGPRs * 32); 460 461 if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { 462 LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " 463 << MaxVGPRs << " registers available\n"); 464 return false; 465 } 466 467 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 468 469 // FIXME: There is no reason why we can't support larger arrays, we 470 // are just being conservative for now. 471 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 472 // could also be promoted but we don't currently handle this case 473 if (!VectorTy || VectorTy->getNumElements() > 16 || 474 VectorTy->getNumElements() < 2) { 475 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 476 return false; 477 } 478 479 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 480 std::vector<Value *> WorkList; 481 SmallVector<User *, 8> Users(Alloca->users()); 482 SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 483 Type *VecEltTy = VectorTy->getElementType(); 484 while (!Users.empty()) { 485 User *AllocaUser = Users.pop_back_val(); 486 User *UseUser = UseUsers.pop_back_val(); 487 Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 488 489 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 490 if (!GEP) { 491 if (!canVectorizeInst(Inst, UseUser, DL)) 492 return false; 493 494 if (Inst->getOpcode() == Instruction::BitCast) { 495 Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 496 Type *ToTy = Inst->getType()->getPointerElementType(); 497 if (FromTy->isAggregateType() || ToTy->isAggregateType() || 498 DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 499 continue; 500 501 for (User *CastUser : Inst->users()) { 502 if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 503 continue; 504 Users.push_back(CastUser); 505 UseUsers.push_back(Inst); 506 } 507 508 continue; 509 } 510 511 WorkList.push_back(AllocaUser); 512 continue; 513 } 514 515 Value *Index = GEPToVectorIndex(GEP); 516 517 // If we can't compute a vector index from this GEP, then we can't 518 // promote this alloca to vector. 519 if (!Index) { 520 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 521 << '\n'); 522 return false; 523 } 524 525 GEPVectorIdx[GEP] = Index; 526 Users.append(GEP->user_begin(), GEP->user_end()); 527 UseUsers.append(GEP->getNumUses(), GEP); 528 } 529 530 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 531 << *VectorTy << '\n'); 532 533 for (Value *V : WorkList) { 534 Instruction *Inst = cast<Instruction>(V); 535 IRBuilder<> Builder(Inst); 536 switch (Inst->getOpcode()) { 537 case Instruction::Load: { 538 if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 539 break; 540 541 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 542 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 543 if (!Index) 544 break; 545 546 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 547 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 548 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 549 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 550 if (Inst->getType() != VecEltTy) 551 ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); 552 Inst->replaceAllUsesWith(ExtractElement); 553 Inst->eraseFromParent(); 554 break; 555 } 556 case Instruction::Store: { 557 StoreInst *SI = cast<StoreInst>(Inst); 558 if (SI->getValueOperand()->getType() == AllocaTy || 559 SI->getValueOperand()->getType()->isVectorTy()) 560 break; 561 562 Value *Ptr = SI->getPointerOperand(); 563 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 564 if (!Index) 565 break; 566 567 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 568 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 569 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 570 Value *Elt = SI->getValueOperand(); 571 if (Elt->getType() != VecEltTy) 572 Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); 573 Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 574 Builder.CreateStore(NewVecValue, BitCast); 575 Inst->eraseFromParent(); 576 break; 577 } 578 579 default: 580 llvm_unreachable("Inconsistency in instructions promotable to vector"); 581 } 582 } 583 return true; 584 } 585 586 static bool isCallPromotable(CallInst *CI) { 587 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 588 if (!II) 589 return false; 590 591 switch (II->getIntrinsicID()) { 592 case Intrinsic::memcpy: 593 case Intrinsic::memmove: 594 case Intrinsic::memset: 595 case Intrinsic::lifetime_start: 596 case Intrinsic::lifetime_end: 597 case Intrinsic::invariant_start: 598 case Intrinsic::invariant_end: 599 case Intrinsic::launder_invariant_group: 600 case Intrinsic::strip_invariant_group: 601 case Intrinsic::objectsize: 602 return true; 603 default: 604 return false; 605 } 606 } 607 608 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 609 Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 610 int OpIdx1) const { 611 // Figure out which operand is the one we might not be promoting. 612 Value *OtherOp = Inst->getOperand(OpIdx0); 613 if (Val == OtherOp) 614 OtherOp = Inst->getOperand(OpIdx1); 615 616 if (isa<ConstantPointerNull>(OtherOp)) 617 return true; 618 619 Value *OtherObj = getUnderlyingObject(OtherOp); 620 if (!isa<AllocaInst>(OtherObj)) 621 return false; 622 623 // TODO: We should be able to replace undefs with the right pointer type. 624 625 // TODO: If we know the other base object is another promotable 626 // alloca, not necessarily this alloca, we can do this. The 627 // important part is both must have the same address space at 628 // the end. 629 if (OtherObj != BaseAlloca) { 630 LLVM_DEBUG( 631 dbgs() << "Found a binary instruction with another alloca object\n"); 632 return false; 633 } 634 635 return true; 636 } 637 638 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 639 Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 640 641 for (User *User : Val->users()) { 642 if (is_contained(WorkList, User)) 643 continue; 644 645 if (CallInst *CI = dyn_cast<CallInst>(User)) { 646 if (!isCallPromotable(CI)) 647 return false; 648 649 WorkList.push_back(User); 650 continue; 651 } 652 653 Instruction *UseInst = cast<Instruction>(User); 654 if (UseInst->getOpcode() == Instruction::PtrToInt) 655 return false; 656 657 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 658 if (LI->isVolatile()) 659 return false; 660 661 continue; 662 } 663 664 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 665 if (SI->isVolatile()) 666 return false; 667 668 // Reject if the stored value is not the pointer operand. 669 if (SI->getPointerOperand() != Val) 670 return false; 671 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 672 if (RMW->isVolatile()) 673 return false; 674 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 675 if (CAS->isVolatile()) 676 return false; 677 } 678 679 // Only promote a select if we know that the other select operand 680 // is from another pointer that will also be promoted. 681 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 682 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 683 return false; 684 685 // May need to rewrite constant operands. 686 WorkList.push_back(ICmp); 687 } 688 689 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 690 // Give up if the pointer may be captured. 691 if (PointerMayBeCaptured(UseInst, true, true)) 692 return false; 693 // Don't collect the users of this. 694 WorkList.push_back(User); 695 continue; 696 } 697 698 if (!User->getType()->isPointerTy()) 699 continue; 700 701 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 702 // Be conservative if an address could be computed outside the bounds of 703 // the alloca. 704 if (!GEP->isInBounds()) 705 return false; 706 } 707 708 // Only promote a select if we know that the other select operand is from 709 // another pointer that will also be promoted. 710 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 711 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 712 return false; 713 } 714 715 // Repeat for phis. 716 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 717 // TODO: Handle more complex cases. We should be able to replace loops 718 // over arrays. 719 switch (Phi->getNumIncomingValues()) { 720 case 1: 721 break; 722 case 2: 723 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 724 return false; 725 break; 726 default: 727 return false; 728 } 729 } 730 731 WorkList.push_back(User); 732 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 733 return false; 734 } 735 736 return true; 737 } 738 739 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 740 741 FunctionType *FTy = F.getFunctionType(); 742 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 743 744 // If the function has any arguments in the local address space, then it's 745 // possible these arguments require the entire local memory space, so 746 // we cannot use local memory in the pass. 747 for (Type *ParamTy : FTy->params()) { 748 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 749 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 750 LocalMemLimit = 0; 751 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 752 "local memory disabled.\n"); 753 return false; 754 } 755 } 756 757 LocalMemLimit = ST.getLocalMemorySize(); 758 if (LocalMemLimit == 0) 759 return false; 760 761 SmallVector<const Constant *, 16> Stack; 762 SmallPtrSet<const Constant *, 8> VisitedConstants; 763 SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 764 765 auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 766 for (const User *U : Val->users()) { 767 if (const Instruction *Use = dyn_cast<Instruction>(U)) { 768 if (Use->getParent()->getParent() == &F) 769 return true; 770 } else { 771 const Constant *C = cast<Constant>(U); 772 if (VisitedConstants.insert(C).second) 773 Stack.push_back(C); 774 } 775 } 776 777 return false; 778 }; 779 780 for (GlobalVariable &GV : Mod->globals()) { 781 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 782 continue; 783 784 if (visitUsers(&GV, &GV)) { 785 UsedLDS.insert(&GV); 786 Stack.clear(); 787 continue; 788 } 789 790 // For any ConstantExpr uses, we need to recursively search the users until 791 // we see a function. 792 while (!Stack.empty()) { 793 const Constant *C = Stack.pop_back_val(); 794 if (visitUsers(&GV, C)) { 795 UsedLDS.insert(&GV); 796 Stack.clear(); 797 break; 798 } 799 } 800 } 801 802 const DataLayout &DL = Mod->getDataLayout(); 803 SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 804 AllocatedSizes.reserve(UsedLDS.size()); 805 806 for (const GlobalVariable *GV : UsedLDS) { 807 Align Alignment = 808 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 809 uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 810 AllocatedSizes.emplace_back(AllocSize, Alignment); 811 } 812 813 // Sort to try to estimate the worst case alignment padding 814 // 815 // FIXME: We should really do something to fix the addresses to a more optimal 816 // value instead 817 llvm::sort(AllocatedSizes.begin(), AllocatedSizes.end(), 818 [](std::pair<uint64_t, Align> LHS, std::pair<uint64_t, Align> RHS) { 819 return LHS.second < RHS.second; 820 }); 821 822 // Check how much local memory is being used by global objects 823 CurrentLocalMemUsage = 0; 824 825 // FIXME: Try to account for padding here. The real padding and address is 826 // currently determined from the inverse order of uses in the function when 827 // legalizing, which could also potentially change. We try to estimate the 828 // worst case here, but we probably should fix the addresses earlier. 829 for (auto Alloc : AllocatedSizes) { 830 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 831 CurrentLocalMemUsage += Alloc.first; 832 } 833 834 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 835 F); 836 837 // Restrict local memory usage so that we don't drastically reduce occupancy, 838 // unless it is already significantly reduced. 839 840 // TODO: Have some sort of hint or other heuristics to guess occupancy based 841 // on other factors.. 842 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 843 if (OccupancyHint == 0) 844 OccupancyHint = 7; 845 846 // Clamp to max value. 847 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 848 849 // Check the hint but ignore it if it's obviously wrong from the existing LDS 850 // usage. 851 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 852 853 854 // Round up to the next tier of usage. 855 unsigned MaxSizeWithWaveCount 856 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 857 858 // Program is possibly broken by using more local mem than available. 859 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 860 return false; 861 862 LocalMemLimit = MaxSizeWithWaveCount; 863 864 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 865 << " bytes of LDS\n" 866 << " Rounding size to " << MaxSizeWithWaveCount 867 << " with a maximum occupancy of " << MaxOccupancy << '\n' 868 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 869 << " available for promotion\n"); 870 871 return true; 872 } 873 874 // FIXME: Should try to pick the most likely to be profitable allocas first. 875 bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { 876 // Array allocations are probably not worth handling, since an allocation of 877 // the array type is the canonical form. 878 if (!I.isStaticAlloca() || I.isArrayAllocation()) 879 return false; 880 881 const DataLayout &DL = Mod->getDataLayout(); 882 IRBuilder<> Builder(&I); 883 884 // First try to replace the alloca with a vector 885 Type *AllocaTy = I.getAllocatedType(); 886 887 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 888 889 if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) 890 return true; // Promoted to vector. 891 892 if (DisablePromoteAllocaToLDS) 893 return false; 894 895 const Function &ContainingFunction = *I.getParent()->getParent(); 896 CallingConv::ID CC = ContainingFunction.getCallingConv(); 897 898 // Don't promote the alloca to LDS for shader calling conventions as the work 899 // item ID intrinsics are not supported for these calling conventions. 900 // Furthermore not all LDS is available for some of the stages. 901 switch (CC) { 902 case CallingConv::AMDGPU_KERNEL: 903 case CallingConv::SPIR_KERNEL: 904 break; 905 default: 906 LLVM_DEBUG( 907 dbgs() 908 << " promote alloca to LDS not supported with calling convention.\n"); 909 return false; 910 } 911 912 // Not likely to have sufficient local memory for promotion. 913 if (!SufficientLDS) 914 return false; 915 916 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 917 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 918 919 Align Alignment = 920 DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 921 922 // FIXME: This computed padding is likely wrong since it depends on inverse 923 // usage order. 924 // 925 // FIXME: It is also possible that if we're allowed to use all of the memory 926 // could could end up using more than the maximum due to alignment padding. 927 928 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 929 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 930 NewSize += AllocSize; 931 932 if (NewSize > LocalMemLimit) { 933 LLVM_DEBUG(dbgs() << " " << AllocSize 934 << " bytes of local memory not available to promote\n"); 935 return false; 936 } 937 938 CurrentLocalMemUsage = NewSize; 939 940 std::vector<Value*> WorkList; 941 942 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 943 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 944 return false; 945 } 946 947 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 948 949 Function *F = I.getParent()->getParent(); 950 951 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 952 GlobalVariable *GV = new GlobalVariable( 953 *Mod, GVTy, false, GlobalValue::InternalLinkage, 954 UndefValue::get(GVTy), 955 Twine(F->getName()) + Twine('.') + I.getName(), 956 nullptr, 957 GlobalVariable::NotThreadLocal, 958 AMDGPUAS::LOCAL_ADDRESS); 959 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 960 GV->setAlignment(MaybeAlign(I.getAlignment())); 961 962 Value *TCntY, *TCntZ; 963 964 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 965 Value *TIdX = getWorkitemID(Builder, 0); 966 Value *TIdY = getWorkitemID(Builder, 1); 967 Value *TIdZ = getWorkitemID(Builder, 2); 968 969 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 970 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 971 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 972 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 973 TID = Builder.CreateAdd(TID, TIdZ); 974 975 Value *Indices[] = { 976 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 977 TID 978 }; 979 980 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 981 I.mutateType(Offset->getType()); 982 I.replaceAllUsesWith(Offset); 983 I.eraseFromParent(); 984 985 for (Value *V : WorkList) { 986 CallInst *Call = dyn_cast<CallInst>(V); 987 if (!Call) { 988 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 989 Value *Src0 = CI->getOperand(0); 990 Type *EltTy = Src0->getType()->getPointerElementType(); 991 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 992 993 if (isa<ConstantPointerNull>(CI->getOperand(0))) 994 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 995 996 if (isa<ConstantPointerNull>(CI->getOperand(1))) 997 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 998 999 continue; 1000 } 1001 1002 // The operand's value should be corrected on its own and we don't want to 1003 // touch the users. 1004 if (isa<AddrSpaceCastInst>(V)) 1005 continue; 1006 1007 Type *EltTy = V->getType()->getPointerElementType(); 1008 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 1009 1010 // FIXME: It doesn't really make sense to try to do this for all 1011 // instructions. 1012 V->mutateType(NewTy); 1013 1014 // Adjust the types of any constant operands. 1015 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 1016 if (isa<ConstantPointerNull>(SI->getOperand(1))) 1017 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 1018 1019 if (isa<ConstantPointerNull>(SI->getOperand(2))) 1020 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 1021 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 1022 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1023 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 1024 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 1025 } 1026 } 1027 1028 continue; 1029 } 1030 1031 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 1032 Builder.SetInsertPoint(Intr); 1033 switch (Intr->getIntrinsicID()) { 1034 case Intrinsic::lifetime_start: 1035 case Intrinsic::lifetime_end: 1036 // These intrinsics are for address space 0 only 1037 Intr->eraseFromParent(); 1038 continue; 1039 case Intrinsic::memcpy: { 1040 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 1041 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getDestAlign(), 1042 MemCpy->getRawSource(), MemCpy->getSourceAlign(), 1043 MemCpy->getLength(), MemCpy->isVolatile()); 1044 Intr->eraseFromParent(); 1045 continue; 1046 } 1047 case Intrinsic::memmove: { 1048 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 1049 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getDestAlign(), 1050 MemMove->getRawSource(), MemMove->getSourceAlign(), 1051 MemMove->getLength(), MemMove->isVolatile()); 1052 Intr->eraseFromParent(); 1053 continue; 1054 } 1055 case Intrinsic::memset: { 1056 MemSetInst *MemSet = cast<MemSetInst>(Intr); 1057 Builder.CreateMemSet( 1058 MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 1059 MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 1060 Intr->eraseFromParent(); 1061 continue; 1062 } 1063 case Intrinsic::invariant_start: 1064 case Intrinsic::invariant_end: 1065 case Intrinsic::launder_invariant_group: 1066 case Intrinsic::strip_invariant_group: 1067 Intr->eraseFromParent(); 1068 // FIXME: I think the invariant marker should still theoretically apply, 1069 // but the intrinsics need to be changed to accept pointers with any 1070 // address space. 1071 continue; 1072 case Intrinsic::objectsize: { 1073 Value *Src = Intr->getOperand(0); 1074 Type *SrcTy = Src->getType()->getPointerElementType(); 1075 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 1076 Intrinsic::objectsize, 1077 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 1078 ); 1079 1080 CallInst *NewCall = Builder.CreateCall( 1081 ObjectSize, 1082 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 1083 Intr->replaceAllUsesWith(NewCall); 1084 Intr->eraseFromParent(); 1085 continue; 1086 } 1087 default: 1088 Intr->print(errs()); 1089 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1090 } 1091 } 1092 return true; 1093 } 1094 1095 bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { 1096 // Array allocations are probably not worth handling, since an allocation of 1097 // the array type is the canonical form. 1098 if (!I.isStaticAlloca() || I.isArrayAllocation()) 1099 return false; 1100 1101 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1102 1103 Module *Mod = I.getParent()->getParent()->getParent(); 1104 return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); 1105 } 1106 1107 bool promoteAllocasToVector(Function &F, TargetMachine &TM) { 1108 if (DisablePromoteAllocaToVector) 1109 return false; 1110 1111 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1112 if (!ST.isPromoteAllocaEnabled()) 1113 return false; 1114 1115 unsigned MaxVGPRs; 1116 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1117 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 1118 MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 1119 } else { 1120 MaxVGPRs = 128; 1121 } 1122 1123 bool Changed = false; 1124 BasicBlock &EntryBB = *F.begin(); 1125 1126 SmallVector<AllocaInst *, 16> Allocas; 1127 for (Instruction &I : EntryBB) { 1128 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1129 Allocas.push_back(AI); 1130 } 1131 1132 for (AllocaInst *AI : Allocas) { 1133 if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) 1134 Changed = true; 1135 } 1136 1137 return Changed; 1138 } 1139 1140 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1141 if (skipFunction(F)) 1142 return false; 1143 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1144 return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); 1145 } 1146 return false; 1147 } 1148 1149 PreservedAnalyses 1150 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 1151 bool Changed = promoteAllocasToVector(F, TM); 1152 if (Changed) { 1153 PreservedAnalyses PA; 1154 PA.preserveSet<CFGAnalyses>(); 1155 return PA; 1156 } 1157 return PreservedAnalyses::all(); 1158 } 1159 1160 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 1161 return new AMDGPUPromoteAlloca(); 1162 } 1163 1164 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 1165 return new AMDGPUPromoteAllocaToVector(); 1166 } 1167