1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 #define DEBUG_TYPE "amdgpu-promote-alloca" 25 26 using namespace llvm; 27 28 namespace { 29 30 // FIXME: This can create globals so should be a module pass. 31 class AMDGPUPromoteAlloca : public FunctionPass { 32 private: 33 const TargetMachine *TM; 34 Module *Mod; 35 const DataLayout *DL; 36 MDNode *MaxWorkGroupSizeRange; 37 38 // FIXME: This should be per-kernel. 39 uint32_t LocalMemLimit; 40 uint32_t CurrentLocalMemUsage; 41 42 bool IsAMDGCN; 43 bool IsAMDHSA; 44 45 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 46 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 47 48 /// BaseAlloca is the alloca root the search started from. 49 /// Val may be that alloca or a recursive user of it. 50 bool collectUsesWithPtrTypes(Value *BaseAlloca, 51 Value *Val, 52 std::vector<Value*> &WorkList) const; 53 54 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 55 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 56 /// Returns true if both operands are derived from the same alloca. Val should 57 /// be the same value as one of the input operands of UseInst. 58 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 59 Instruction *UseInst, 60 int OpIdx0, int OpIdx1) const; 61 62 public: 63 static char ID; 64 65 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 66 FunctionPass(ID), 67 TM(TM_), 68 Mod(nullptr), 69 DL(nullptr), 70 MaxWorkGroupSizeRange(nullptr), 71 LocalMemLimit(0), 72 CurrentLocalMemUsage(0), 73 IsAMDGCN(false), 74 IsAMDHSA(false) { } 75 76 bool doInitialization(Module &M) override; 77 bool runOnFunction(Function &F) override; 78 79 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 80 81 void handleAlloca(AllocaInst &I); 82 83 void getAnalysisUsage(AnalysisUsage &AU) const override { 84 AU.setPreservesCFG(); 85 FunctionPass::getAnalysisUsage(AU); 86 } 87 }; 88 89 } // End anonymous namespace 90 91 char AMDGPUPromoteAlloca::ID = 0; 92 93 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 94 "AMDGPU promote alloca to vector or LDS", false, false) 95 96 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 97 98 99 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 100 if (!TM) 101 return false; 102 103 Mod = &M; 104 DL = &Mod->getDataLayout(); 105 106 // The maximum workitem id. 107 // 108 // FIXME: Should get as subtarget property. Usually runtime enforced max is 109 // 256. 110 MDBuilder MDB(Mod->getContext()); 111 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 112 113 const Triple &TT = TM->getTargetTriple(); 114 115 IsAMDGCN = TT.getArch() == Triple::amdgcn; 116 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 117 118 return false; 119 } 120 121 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 122 if (!TM || skipFunction(F)) 123 return false; 124 125 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 126 if (!ST.isPromoteAllocaEnabled()) 127 return false; 128 129 FunctionType *FTy = F.getFunctionType(); 130 131 // If the function has any arguments in the local address space, then it's 132 // possible these arguments require the entire local memory space, so 133 // we cannot use local memory in the pass. 134 for (Type *ParamTy : FTy->params()) { 135 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 136 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 137 LocalMemLimit = 0; 138 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 139 "local memory disabled.\n"); 140 return false; 141 } 142 } 143 144 LocalMemLimit = ST.getLocalMemorySize(); 145 if (LocalMemLimit == 0) 146 return false; 147 148 const DataLayout &DL = Mod->getDataLayout(); 149 150 // Check how much local memory is being used by global objects 151 CurrentLocalMemUsage = 0; 152 for (GlobalVariable &GV : Mod->globals()) { 153 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 154 continue; 155 156 for (const User *U : GV.users()) { 157 const Instruction *Use = dyn_cast<Instruction>(U); 158 if (!Use) 159 continue; 160 161 if (Use->getParent()->getParent() == &F) { 162 unsigned Align = GV.getAlignment(); 163 if (Align == 0) 164 Align = DL.getABITypeAlignment(GV.getValueType()); 165 166 // FIXME: Try to account for padding here. The padding is currently 167 // determined from the inverse order of uses in the function. I'm not 168 // sure if the use list order is in any way connected to this, so the 169 // total reported size is likely incorrect. 170 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 171 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 172 CurrentLocalMemUsage += AllocSize; 173 break; 174 } 175 } 176 } 177 178 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage); 179 180 // Restrict local memory usage so that we don't drastically reduce occupancy, 181 // unless it is already significantly reduced. 182 183 // TODO: Have some sort of hint or other heuristics to guess occupancy based 184 // on other factors.. 185 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 186 if (OccupancyHint == 0) 187 OccupancyHint = 7; 188 189 // Clamp to max value. 190 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 191 192 // Check the hint but ignore it if it's obviously wrong from the existing LDS 193 // usage. 194 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 195 196 197 // Round up to the next tier of usage. 198 unsigned MaxSizeWithWaveCount 199 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy); 200 201 // Program is possibly broken by using more local mem than available. 202 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 203 return false; 204 205 LocalMemLimit = MaxSizeWithWaveCount; 206 207 DEBUG( 208 dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" 209 << " Rounding size to " << MaxSizeWithWaveCount 210 << " with a maximum occupancy of " << MaxOccupancy << '\n' 211 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 212 << " available for promotion\n" 213 ); 214 215 BasicBlock &EntryBB = *F.begin(); 216 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 217 AllocaInst *AI = dyn_cast<AllocaInst>(I); 218 219 ++I; 220 if (AI) 221 handleAlloca(*AI); 222 } 223 224 return true; 225 } 226 227 std::pair<Value *, Value *> 228 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 229 if (!IsAMDHSA) { 230 Function *LocalSizeYFn 231 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 232 Function *LocalSizeZFn 233 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 234 235 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 236 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 237 238 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 239 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 240 241 return std::make_pair(LocalSizeY, LocalSizeZ); 242 } 243 244 // We must read the size out of the dispatch pointer. 245 assert(IsAMDGCN); 246 247 // We are indexing into this struct, and want to extract the workgroup_size_* 248 // fields. 249 // 250 // typedef struct hsa_kernel_dispatch_packet_s { 251 // uint16_t header; 252 // uint16_t setup; 253 // uint16_t workgroup_size_x ; 254 // uint16_t workgroup_size_y; 255 // uint16_t workgroup_size_z; 256 // uint16_t reserved0; 257 // uint32_t grid_size_x ; 258 // uint32_t grid_size_y ; 259 // uint32_t grid_size_z; 260 // 261 // uint32_t private_segment_size; 262 // uint32_t group_segment_size; 263 // uint64_t kernel_object; 264 // 265 // #ifdef HSA_LARGE_MODEL 266 // void *kernarg_address; 267 // #elif defined HSA_LITTLE_ENDIAN 268 // void *kernarg_address; 269 // uint32_t reserved1; 270 // #else 271 // uint32_t reserved1; 272 // void *kernarg_address; 273 // #endif 274 // uint64_t reserved2; 275 // hsa_signal_t completion_signal; // uint64_t wrapper 276 // } hsa_kernel_dispatch_packet_t 277 // 278 Function *DispatchPtrFn 279 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 280 281 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 282 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); 283 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 284 285 // Size of the dispatch packet struct. 286 DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); 287 288 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 289 Value *CastDispatchPtr = Builder.CreateBitCast( 290 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 291 292 // We could do a single 64-bit load here, but it's likely that the basic 293 // 32-bit and extract sequence is already present, and it is probably easier 294 // to CSE this. The loads should be mergable later anyway. 295 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 296 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 297 298 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 299 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 300 301 MDNode *MD = llvm::MDNode::get(Mod->getContext(), None); 302 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 303 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 304 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 305 306 // Extract y component. Upper half of LoadZU should be zero already. 307 Value *Y = Builder.CreateLShr(LoadXY, 16); 308 309 return std::make_pair(Y, LoadZU); 310 } 311 312 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 313 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 314 315 switch (N) { 316 case 0: 317 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 318 : Intrinsic::r600_read_tidig_x; 319 break; 320 case 1: 321 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 322 : Intrinsic::r600_read_tidig_y; 323 break; 324 325 case 2: 326 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 327 : Intrinsic::r600_read_tidig_z; 328 break; 329 default: 330 llvm_unreachable("invalid dimension"); 331 } 332 333 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 334 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 335 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 336 337 return CI; 338 } 339 340 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 341 return VectorType::get(ArrayTy->getArrayElementType(), 342 ArrayTy->getArrayNumElements()); 343 } 344 345 static Value * 346 calculateVectorIndex(Value *Ptr, 347 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 348 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 349 350 auto I = GEPIdx.find(GEP); 351 return I == GEPIdx.end() ? nullptr : I->second; 352 } 353 354 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 355 // FIXME we only support simple cases 356 if (GEP->getNumOperands() != 3) 357 return nullptr; 358 359 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 360 if (!I0 || !I0->isZero()) 361 return nullptr; 362 363 return GEP->getOperand(2); 364 } 365 366 // Not an instruction handled below to turn into a vector. 367 // 368 // TODO: Check isTriviallyVectorizable for calls and handle other 369 // instructions. 370 static bool canVectorizeInst(Instruction *Inst, User *User) { 371 switch (Inst->getOpcode()) { 372 case Instruction::Load: 373 case Instruction::BitCast: 374 case Instruction::AddrSpaceCast: 375 return true; 376 case Instruction::Store: { 377 // Must be the stored pointer operand, not a stored value. 378 StoreInst *SI = cast<StoreInst>(Inst); 379 return SI->getPointerOperand() == User; 380 } 381 default: 382 return false; 383 } 384 } 385 386 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 387 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 388 389 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 390 391 // FIXME: There is no reason why we can't support larger arrays, we 392 // are just being conservative for now. 393 if (!AllocaTy || 394 AllocaTy->getElementType()->isVectorTy() || 395 AllocaTy->getNumElements() > 4 || 396 AllocaTy->getNumElements() < 2) { 397 DEBUG(dbgs() << " Cannot convert type to vector\n"); 398 return false; 399 } 400 401 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 402 std::vector<Value*> WorkList; 403 for (User *AllocaUser : Alloca->users()) { 404 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 405 if (!GEP) { 406 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 407 return false; 408 409 WorkList.push_back(AllocaUser); 410 continue; 411 } 412 413 Value *Index = GEPToVectorIndex(GEP); 414 415 // If we can't compute a vector index from this GEP, then we can't 416 // promote this alloca to vector. 417 if (!Index) { 418 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 419 return false; 420 } 421 422 GEPVectorIdx[GEP] = Index; 423 for (User *GEPUser : AllocaUser->users()) { 424 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 425 return false; 426 427 WorkList.push_back(GEPUser); 428 } 429 } 430 431 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 432 433 DEBUG(dbgs() << " Converting alloca to vector " 434 << *AllocaTy << " -> " << *VectorTy << '\n'); 435 436 for (Value *V : WorkList) { 437 Instruction *Inst = cast<Instruction>(V); 438 IRBuilder<> Builder(Inst); 439 switch (Inst->getOpcode()) { 440 case Instruction::Load: { 441 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 442 Value *Ptr = Inst->getOperand(0); 443 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 444 445 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 446 Value *VecValue = Builder.CreateLoad(BitCast); 447 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 448 Inst->replaceAllUsesWith(ExtractElement); 449 Inst->eraseFromParent(); 450 break; 451 } 452 case Instruction::Store: { 453 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 454 455 Value *Ptr = Inst->getOperand(1); 456 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 457 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 458 Value *VecValue = Builder.CreateLoad(BitCast); 459 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 460 Inst->getOperand(0), 461 Index); 462 Builder.CreateStore(NewVecValue, BitCast); 463 Inst->eraseFromParent(); 464 break; 465 } 466 case Instruction::BitCast: 467 case Instruction::AddrSpaceCast: 468 break; 469 470 default: 471 llvm_unreachable("Inconsistency in instructions promotable to vector"); 472 } 473 } 474 return true; 475 } 476 477 static bool isCallPromotable(CallInst *CI) { 478 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 479 if (!II) 480 return false; 481 482 switch (II->getIntrinsicID()) { 483 case Intrinsic::memcpy: 484 case Intrinsic::memmove: 485 case Intrinsic::memset: 486 case Intrinsic::lifetime_start: 487 case Intrinsic::lifetime_end: 488 case Intrinsic::invariant_start: 489 case Intrinsic::invariant_end: 490 case Intrinsic::invariant_group_barrier: 491 case Intrinsic::objectsize: 492 return true; 493 default: 494 return false; 495 } 496 } 497 498 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 499 Value *Val, 500 Instruction *Inst, 501 int OpIdx0, 502 int OpIdx1) const { 503 // Figure out which operand is the one we might not be promoting. 504 Value *OtherOp = Inst->getOperand(OpIdx0); 505 if (Val == OtherOp) 506 OtherOp = Inst->getOperand(OpIdx1); 507 508 if (isa<ConstantPointerNull>(OtherOp)) 509 return true; 510 511 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 512 if (!isa<AllocaInst>(OtherObj)) 513 return false; 514 515 // TODO: We should be able to replace undefs with the right pointer type. 516 517 // TODO: If we know the other base object is another promotable 518 // alloca, not necessarily this alloca, we can do this. The 519 // important part is both must have the same address space at 520 // the end. 521 if (OtherObj != BaseAlloca) { 522 DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); 523 return false; 524 } 525 526 return true; 527 } 528 529 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 530 Value *BaseAlloca, 531 Value *Val, 532 std::vector<Value*> &WorkList) const { 533 534 for (User *User : Val->users()) { 535 if (is_contained(WorkList, User)) 536 continue; 537 538 if (CallInst *CI = dyn_cast<CallInst>(User)) { 539 if (!isCallPromotable(CI)) 540 return false; 541 542 WorkList.push_back(User); 543 continue; 544 } 545 546 Instruction *UseInst = cast<Instruction>(User); 547 if (UseInst->getOpcode() == Instruction::PtrToInt) 548 return false; 549 550 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 551 if (LI->isVolatile()) 552 return false; 553 554 continue; 555 } 556 557 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 558 if (SI->isVolatile()) 559 return false; 560 561 // Reject if the stored value is not the pointer operand. 562 if (SI->getPointerOperand() != Val) 563 return false; 564 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 565 if (RMW->isVolatile()) 566 return false; 567 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 568 if (CAS->isVolatile()) 569 return false; 570 } 571 572 // Only promote a select if we know that the other select operand 573 // is from another pointer that will also be promoted. 574 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 575 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 576 return false; 577 578 // May need to rewrite constant operands. 579 WorkList.push_back(ICmp); 580 } 581 582 if (!User->getType()->isPointerTy()) 583 continue; 584 585 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 586 // Be conservative if an address could be computed outside the bounds of 587 // the alloca. 588 if (!GEP->isInBounds()) 589 return false; 590 } 591 592 // Only promote a select if we know that the other select operand is from 593 // another pointer that will also be promoted. 594 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 595 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 596 return false; 597 } 598 599 // Repeat for phis. 600 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 601 // TODO: Handle more complex cases. We should be able to replace loops 602 // over arrays. 603 switch (Phi->getNumIncomingValues()) { 604 case 1: 605 break; 606 case 2: 607 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 608 return false; 609 break; 610 default: 611 return false; 612 } 613 } 614 615 WorkList.push_back(User); 616 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 617 return false; 618 } 619 620 return true; 621 } 622 623 // FIXME: Should try to pick the most likely to be profitable allocas first. 624 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { 625 // Array allocations are probably not worth handling, since an allocation of 626 // the array type is the canonical form. 627 if (!I.isStaticAlloca() || I.isArrayAllocation()) 628 return; 629 630 IRBuilder<> Builder(&I); 631 632 // First try to replace the alloca with a vector 633 Type *AllocaTy = I.getAllocatedType(); 634 635 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 636 637 if (tryPromoteAllocaToVector(&I)) { 638 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 639 return; 640 } 641 642 const Function &ContainingFunction = *I.getParent()->getParent(); 643 644 // Don't promote the alloca to LDS for shader calling conventions as the work 645 // item ID intrinsics are not supported for these calling conventions. 646 // Furthermore not all LDS is available for some of the stages. 647 if (AMDGPU::isShader(ContainingFunction.getCallingConv())) 648 return; 649 650 const AMDGPUSubtarget &ST = 651 TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction); 652 // FIXME: We should also try to get this value from the reqd_work_group_size 653 // function attribute if it is available. 654 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 655 656 const DataLayout &DL = Mod->getDataLayout(); 657 658 unsigned Align = I.getAlignment(); 659 if (Align == 0) 660 Align = DL.getABITypeAlignment(I.getAllocatedType()); 661 662 // FIXME: This computed padding is likely wrong since it depends on inverse 663 // usage order. 664 // 665 // FIXME: It is also possible that if we're allowed to use all of the memory 666 // could could end up using more than the maximum due to alignment padding. 667 668 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 669 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 670 NewSize += AllocSize; 671 672 if (NewSize > LocalMemLimit) { 673 DEBUG(dbgs() << " " << AllocSize 674 << " bytes of local memory not available to promote\n"); 675 return; 676 } 677 678 CurrentLocalMemUsage = NewSize; 679 680 std::vector<Value*> WorkList; 681 682 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 683 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 684 return; 685 } 686 687 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 688 689 Function *F = I.getParent()->getParent(); 690 691 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 692 GlobalVariable *GV = new GlobalVariable( 693 *Mod, GVTy, false, GlobalValue::InternalLinkage, 694 UndefValue::get(GVTy), 695 Twine(F->getName()) + Twine('.') + I.getName(), 696 nullptr, 697 GlobalVariable::NotThreadLocal, 698 AMDGPUAS::LOCAL_ADDRESS); 699 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 700 GV->setAlignment(I.getAlignment()); 701 702 Value *TCntY, *TCntZ; 703 704 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 705 Value *TIdX = getWorkitemID(Builder, 0); 706 Value *TIdY = getWorkitemID(Builder, 1); 707 Value *TIdZ = getWorkitemID(Builder, 2); 708 709 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 710 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 711 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 712 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 713 TID = Builder.CreateAdd(TID, TIdZ); 714 715 Value *Indices[] = { 716 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 717 TID 718 }; 719 720 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 721 I.mutateType(Offset->getType()); 722 I.replaceAllUsesWith(Offset); 723 I.eraseFromParent(); 724 725 for (Value *V : WorkList) { 726 CallInst *Call = dyn_cast<CallInst>(V); 727 if (!Call) { 728 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 729 Value *Src0 = CI->getOperand(0); 730 Type *EltTy = Src0->getType()->getPointerElementType(); 731 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 732 733 if (isa<ConstantPointerNull>(CI->getOperand(0))) 734 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 735 736 if (isa<ConstantPointerNull>(CI->getOperand(1))) 737 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 738 739 continue; 740 } 741 742 // The operand's value should be corrected on its own. 743 if (isa<AddrSpaceCastInst>(V)) 744 continue; 745 746 Type *EltTy = V->getType()->getPointerElementType(); 747 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 748 749 // FIXME: It doesn't really make sense to try to do this for all 750 // instructions. 751 V->mutateType(NewTy); 752 753 // Adjust the types of any constant operands. 754 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 755 if (isa<ConstantPointerNull>(SI->getOperand(1))) 756 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 757 758 if (isa<ConstantPointerNull>(SI->getOperand(2))) 759 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 760 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 761 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 762 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 763 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 764 } 765 } 766 767 continue; 768 } 769 770 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 771 Builder.SetInsertPoint(Intr); 772 switch (Intr->getIntrinsicID()) { 773 case Intrinsic::lifetime_start: 774 case Intrinsic::lifetime_end: 775 // These intrinsics are for address space 0 only 776 Intr->eraseFromParent(); 777 continue; 778 case Intrinsic::memcpy: { 779 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 780 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 781 MemCpy->getLength(), MemCpy->getAlignment(), 782 MemCpy->isVolatile()); 783 Intr->eraseFromParent(); 784 continue; 785 } 786 case Intrinsic::memmove: { 787 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 788 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 789 MemMove->getLength(), MemMove->getAlignment(), 790 MemMove->isVolatile()); 791 Intr->eraseFromParent(); 792 continue; 793 } 794 case Intrinsic::memset: { 795 MemSetInst *MemSet = cast<MemSetInst>(Intr); 796 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 797 MemSet->getLength(), MemSet->getAlignment(), 798 MemSet->isVolatile()); 799 Intr->eraseFromParent(); 800 continue; 801 } 802 case Intrinsic::invariant_start: 803 case Intrinsic::invariant_end: 804 case Intrinsic::invariant_group_barrier: 805 Intr->eraseFromParent(); 806 // FIXME: I think the invariant marker should still theoretically apply, 807 // but the intrinsics need to be changed to accept pointers with any 808 // address space. 809 continue; 810 case Intrinsic::objectsize: { 811 Value *Src = Intr->getOperand(0); 812 Type *SrcTy = Src->getType()->getPointerElementType(); 813 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 814 Intrinsic::objectsize, 815 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 816 ); 817 818 CallInst *NewCall 819 = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) }); 820 Intr->replaceAllUsesWith(NewCall); 821 Intr->eraseFromParent(); 822 continue; 823 } 824 default: 825 Intr->dump(); 826 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 827 } 828 } 829 } 830 831 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 832 return new AMDGPUPromoteAlloca(TM); 833 } 834