1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass eliminates allocas by either converting them into vectors or
11 // by migrating them to local address space.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #include "AMDGPU.h"
16 #include "AMDGPUSubtarget.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/IRBuilder.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/MDBuilder.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/raw_ostream.h"
23 
24 #define DEBUG_TYPE "amdgpu-promote-alloca"
25 
26 using namespace llvm;
27 
28 namespace {
29 
30 // FIXME: This can create globals so should be a module pass.
31 class AMDGPUPromoteAlloca : public FunctionPass {
32 private:
33   const TargetMachine *TM;
34   Module *Mod;
35   const DataLayout *DL;
36   MDNode *MaxWorkGroupSizeRange;
37 
38   // FIXME: This should be per-kernel.
39   uint32_t LocalMemLimit;
40   uint32_t CurrentLocalMemUsage;
41 
42   bool IsAMDGCN;
43   bool IsAMDHSA;
44 
45   std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder);
46   Value *getWorkitemID(IRBuilder<> &Builder, unsigned N);
47 
48   /// BaseAlloca is the alloca root the search started from.
49   /// Val may be that alloca or a recursive user of it.
50   bool collectUsesWithPtrTypes(Value *BaseAlloca,
51                                Value *Val,
52                                std::vector<Value*> &WorkList) const;
53 
54   /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand
55   /// indices to an instruction with 2 pointer inputs (e.g. select, icmp).
56   /// Returns true if both operands are derived from the same alloca. Val should
57   /// be the same value as one of the input operands of UseInst.
58   bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val,
59                                        Instruction *UseInst,
60                                        int OpIdx0, int OpIdx1) const;
61 
62 public:
63   static char ID;
64 
65   AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) :
66     FunctionPass(ID),
67     TM(TM_),
68     Mod(nullptr),
69     DL(nullptr),
70     MaxWorkGroupSizeRange(nullptr),
71     LocalMemLimit(0),
72     CurrentLocalMemUsage(0),
73     IsAMDGCN(false),
74     IsAMDHSA(false) { }
75 
76   bool doInitialization(Module &M) override;
77   bool runOnFunction(Function &F) override;
78 
79   StringRef getPassName() const override { return "AMDGPU Promote Alloca"; }
80 
81   void handleAlloca(AllocaInst &I);
82 
83   void getAnalysisUsage(AnalysisUsage &AU) const override {
84     AU.setPreservesCFG();
85     FunctionPass::getAnalysisUsage(AU);
86   }
87 };
88 
89 } // End anonymous namespace
90 
91 char AMDGPUPromoteAlloca::ID = 0;
92 
93 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE,
94                    "AMDGPU promote alloca to vector or LDS", false, false)
95 
96 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID;
97 
98 
99 bool AMDGPUPromoteAlloca::doInitialization(Module &M) {
100   if (!TM)
101     return false;
102 
103   Mod = &M;
104   DL = &Mod->getDataLayout();
105 
106   // The maximum workitem id.
107   //
108   // FIXME: Should get as subtarget property. Usually runtime enforced max is
109   // 256.
110   MDBuilder MDB(Mod->getContext());
111   MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048));
112 
113   const Triple &TT = TM->getTargetTriple();
114 
115   IsAMDGCN = TT.getArch() == Triple::amdgcn;
116   IsAMDHSA = TT.getOS() == Triple::AMDHSA;
117 
118   return false;
119 }
120 
121 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) {
122   if (!TM || skipFunction(F))
123     return false;
124 
125   const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F);
126   if (!ST.isPromoteAllocaEnabled())
127     return false;
128 
129   FunctionType *FTy = F.getFunctionType();
130 
131   // If the function has any arguments in the local address space, then it's
132   // possible these arguments require the entire local memory space, so
133   // we cannot use local memory in the pass.
134   for (Type *ParamTy : FTy->params()) {
135     PointerType *PtrTy = dyn_cast<PointerType>(ParamTy);
136     if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
137       LocalMemLimit = 0;
138       DEBUG(dbgs() << "Function has local memory argument. Promoting to "
139                       "local memory disabled.\n");
140       return false;
141     }
142   }
143 
144   LocalMemLimit = ST.getLocalMemorySize();
145   if (LocalMemLimit == 0)
146     return false;
147 
148   const DataLayout &DL = Mod->getDataLayout();
149 
150   // Check how much local memory is being used by global objects
151   CurrentLocalMemUsage = 0;
152   for (GlobalVariable &GV : Mod->globals()) {
153     if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS)
154       continue;
155 
156     for (const User *U : GV.users()) {
157       const Instruction *Use = dyn_cast<Instruction>(U);
158       if (!Use)
159         continue;
160 
161       if (Use->getParent()->getParent() == &F) {
162         unsigned Align = GV.getAlignment();
163         if (Align == 0)
164           Align = DL.getABITypeAlignment(GV.getValueType());
165 
166         // FIXME: Try to account for padding here. The padding is currently
167         // determined from the inverse order of uses in the function. I'm not
168         // sure if the use list order is in any way connected to this, so the
169         // total reported size is likely incorrect.
170         uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType());
171         CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align);
172         CurrentLocalMemUsage += AllocSize;
173         break;
174       }
175     }
176   }
177 
178   unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage);
179 
180   // Restrict local memory usage so that we don't drastically reduce occupancy,
181   // unless it is already significantly reduced.
182 
183   // TODO: Have some sort of hint or other heuristics to guess occupancy based
184   // on other factors..
185   unsigned OccupancyHint = ST.getWavesPerEU(F).second;
186   if (OccupancyHint == 0)
187     OccupancyHint = 7;
188 
189   // Clamp to max value.
190   OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU());
191 
192   // Check the hint but ignore it if it's obviously wrong from the existing LDS
193   // usage.
194   MaxOccupancy = std::min(OccupancyHint, MaxOccupancy);
195 
196 
197   // Round up to the next tier of usage.
198   unsigned MaxSizeWithWaveCount
199     = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy);
200 
201   // Program is possibly broken by using more local mem than available.
202   if (CurrentLocalMemUsage > MaxSizeWithWaveCount)
203     return false;
204 
205   LocalMemLimit = MaxSizeWithWaveCount;
206 
207   DEBUG(
208     dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n"
209     << "  Rounding size to " << MaxSizeWithWaveCount
210     << " with a maximum occupancy of " << MaxOccupancy << '\n'
211     << " and " << (LocalMemLimit - CurrentLocalMemUsage)
212     << " available for promotion\n"
213   );
214 
215   BasicBlock &EntryBB = *F.begin();
216   for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) {
217     AllocaInst *AI = dyn_cast<AllocaInst>(I);
218 
219     ++I;
220     if (AI)
221       handleAlloca(*AI);
222   }
223 
224   return true;
225 }
226 
227 std::pair<Value *, Value *>
228 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) {
229   if (!IsAMDHSA) {
230     Function *LocalSizeYFn
231       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y);
232     Function *LocalSizeZFn
233       = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z);
234 
235     CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {});
236     CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {});
237 
238     LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
239     LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
240 
241     return std::make_pair(LocalSizeY, LocalSizeZ);
242   }
243 
244   // We must read the size out of the dispatch pointer.
245   assert(IsAMDGCN);
246 
247   // We are indexing into this struct, and want to extract the workgroup_size_*
248   // fields.
249   //
250   //   typedef struct hsa_kernel_dispatch_packet_s {
251   //     uint16_t header;
252   //     uint16_t setup;
253   //     uint16_t workgroup_size_x ;
254   //     uint16_t workgroup_size_y;
255   //     uint16_t workgroup_size_z;
256   //     uint16_t reserved0;
257   //     uint32_t grid_size_x ;
258   //     uint32_t grid_size_y ;
259   //     uint32_t grid_size_z;
260   //
261   //     uint32_t private_segment_size;
262   //     uint32_t group_segment_size;
263   //     uint64_t kernel_object;
264   //
265   // #ifdef HSA_LARGE_MODEL
266   //     void *kernarg_address;
267   // #elif defined HSA_LITTLE_ENDIAN
268   //     void *kernarg_address;
269   //     uint32_t reserved1;
270   // #else
271   //     uint32_t reserved1;
272   //     void *kernarg_address;
273   // #endif
274   //     uint64_t reserved2;
275   //     hsa_signal_t completion_signal; // uint64_t wrapper
276   //   } hsa_kernel_dispatch_packet_t
277   //
278   Function *DispatchPtrFn
279     = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr);
280 
281   CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {});
282   DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias);
283   DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull);
284 
285   // Size of the dispatch packet struct.
286   DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64);
287 
288   Type *I32Ty = Type::getInt32Ty(Mod->getContext());
289   Value *CastDispatchPtr = Builder.CreateBitCast(
290     DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS));
291 
292   // We could do a single 64-bit load here, but it's likely that the basic
293   // 32-bit and extract sequence is already present, and it is probably easier
294   // to CSE this. The loads should be mergable later anyway.
295   Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1);
296   LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4);
297 
298   Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2);
299   LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4);
300 
301   MDNode *MD = llvm::MDNode::get(Mod->getContext(), None);
302   LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD);
303   LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD);
304   LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
305 
306   // Extract y component. Upper half of LoadZU should be zero already.
307   Value *Y = Builder.CreateLShr(LoadXY, 16);
308 
309   return std::make_pair(Y, LoadZU);
310 }
311 
312 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) {
313   Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic;
314 
315   switch (N) {
316   case 0:
317     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x
318       : Intrinsic::r600_read_tidig_x;
319     break;
320   case 1:
321     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y
322       : Intrinsic::r600_read_tidig_y;
323     break;
324 
325   case 2:
326     IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z
327       : Intrinsic::r600_read_tidig_z;
328     break;
329   default:
330     llvm_unreachable("invalid dimension");
331   }
332 
333   Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID);
334   CallInst *CI = Builder.CreateCall(WorkitemIdFn);
335   CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange);
336 
337   return CI;
338 }
339 
340 static VectorType *arrayTypeToVecType(Type *ArrayTy) {
341   return VectorType::get(ArrayTy->getArrayElementType(),
342                          ArrayTy->getArrayNumElements());
343 }
344 
345 static Value *
346 calculateVectorIndex(Value *Ptr,
347                      const std::map<GetElementPtrInst *, Value *> &GEPIdx) {
348   GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr);
349 
350   auto I = GEPIdx.find(GEP);
351   return I == GEPIdx.end() ? nullptr : I->second;
352 }
353 
354 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) {
355   // FIXME we only support simple cases
356   if (GEP->getNumOperands() != 3)
357     return nullptr;
358 
359   ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1));
360   if (!I0 || !I0->isZero())
361     return nullptr;
362 
363   return GEP->getOperand(2);
364 }
365 
366 // Not an instruction handled below to turn into a vector.
367 //
368 // TODO: Check isTriviallyVectorizable for calls and handle other
369 // instructions.
370 static bool canVectorizeInst(Instruction *Inst, User *User) {
371   switch (Inst->getOpcode()) {
372   case Instruction::Load:
373   case Instruction::BitCast:
374   case Instruction::AddrSpaceCast:
375     return true;
376   case Instruction::Store: {
377     // Must be the stored pointer operand, not a stored value.
378     StoreInst *SI = cast<StoreInst>(Inst);
379     return SI->getPointerOperand() == User;
380   }
381   default:
382     return false;
383   }
384 }
385 
386 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) {
387   ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType());
388 
389   DEBUG(dbgs() << "Alloca candidate for vectorization\n");
390 
391   // FIXME: There is no reason why we can't support larger arrays, we
392   // are just being conservative for now.
393   if (!AllocaTy ||
394       AllocaTy->getElementType()->isVectorTy() ||
395       AllocaTy->getNumElements() > 4 ||
396       AllocaTy->getNumElements() < 2) {
397     DEBUG(dbgs() << "  Cannot convert type to vector\n");
398     return false;
399   }
400 
401   std::map<GetElementPtrInst*, Value*> GEPVectorIdx;
402   std::vector<Value*> WorkList;
403   for (User *AllocaUser : Alloca->users()) {
404     GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser);
405     if (!GEP) {
406       if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca))
407         return false;
408 
409       WorkList.push_back(AllocaUser);
410       continue;
411     }
412 
413     Value *Index = GEPToVectorIndex(GEP);
414 
415     // If we can't compute a vector index from this GEP, then we can't
416     // promote this alloca to vector.
417     if (!Index) {
418       DEBUG(dbgs() << "  Cannot compute vector index for GEP " << *GEP << '\n');
419       return false;
420     }
421 
422     GEPVectorIdx[GEP] = Index;
423     for (User *GEPUser : AllocaUser->users()) {
424       if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser))
425         return false;
426 
427       WorkList.push_back(GEPUser);
428     }
429   }
430 
431   VectorType *VectorTy = arrayTypeToVecType(AllocaTy);
432 
433   DEBUG(dbgs() << "  Converting alloca to vector "
434         << *AllocaTy << " -> " << *VectorTy << '\n');
435 
436   for (Value *V : WorkList) {
437     Instruction *Inst = cast<Instruction>(V);
438     IRBuilder<> Builder(Inst);
439     switch (Inst->getOpcode()) {
440     case Instruction::Load: {
441       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
442       Value *Ptr = Inst->getOperand(0);
443       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
444 
445       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
446       Value *VecValue = Builder.CreateLoad(BitCast);
447       Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index);
448       Inst->replaceAllUsesWith(ExtractElement);
449       Inst->eraseFromParent();
450       break;
451     }
452     case Instruction::Store: {
453       Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS);
454 
455       Value *Ptr = Inst->getOperand(1);
456       Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx);
457       Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy);
458       Value *VecValue = Builder.CreateLoad(BitCast);
459       Value *NewVecValue = Builder.CreateInsertElement(VecValue,
460                                                        Inst->getOperand(0),
461                                                        Index);
462       Builder.CreateStore(NewVecValue, BitCast);
463       Inst->eraseFromParent();
464       break;
465     }
466     case Instruction::BitCast:
467     case Instruction::AddrSpaceCast:
468       break;
469 
470     default:
471       llvm_unreachable("Inconsistency in instructions promotable to vector");
472     }
473   }
474   return true;
475 }
476 
477 static bool isCallPromotable(CallInst *CI) {
478   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
479   if (!II)
480     return false;
481 
482   switch (II->getIntrinsicID()) {
483   case Intrinsic::memcpy:
484   case Intrinsic::memmove:
485   case Intrinsic::memset:
486   case Intrinsic::lifetime_start:
487   case Intrinsic::lifetime_end:
488   case Intrinsic::invariant_start:
489   case Intrinsic::invariant_end:
490   case Intrinsic::invariant_group_barrier:
491   case Intrinsic::objectsize:
492     return true;
493   default:
494     return false;
495   }
496 }
497 
498 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca,
499                                                           Value *Val,
500                                                           Instruction *Inst,
501                                                           int OpIdx0,
502                                                           int OpIdx1) const {
503   // Figure out which operand is the one we might not be promoting.
504   Value *OtherOp = Inst->getOperand(OpIdx0);
505   if (Val == OtherOp)
506     OtherOp = Inst->getOperand(OpIdx1);
507 
508   if (isa<ConstantPointerNull>(OtherOp))
509     return true;
510 
511   Value *OtherObj = GetUnderlyingObject(OtherOp, *DL);
512   if (!isa<AllocaInst>(OtherObj))
513     return false;
514 
515   // TODO: We should be able to replace undefs with the right pointer type.
516 
517   // TODO: If we know the other base object is another promotable
518   // alloca, not necessarily this alloca, we can do this. The
519   // important part is both must have the same address space at
520   // the end.
521   if (OtherObj != BaseAlloca) {
522     DEBUG(dbgs() << "Found a binary instruction with another alloca object\n");
523     return false;
524   }
525 
526   return true;
527 }
528 
529 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes(
530   Value *BaseAlloca,
531   Value *Val,
532   std::vector<Value*> &WorkList) const {
533 
534   for (User *User : Val->users()) {
535     if (is_contained(WorkList, User))
536       continue;
537 
538     if (CallInst *CI = dyn_cast<CallInst>(User)) {
539       if (!isCallPromotable(CI))
540         return false;
541 
542       WorkList.push_back(User);
543       continue;
544     }
545 
546     Instruction *UseInst = cast<Instruction>(User);
547     if (UseInst->getOpcode() == Instruction::PtrToInt)
548       return false;
549 
550     if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) {
551       if (LI->isVolatile())
552         return false;
553 
554       continue;
555     }
556 
557     if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) {
558       if (SI->isVolatile())
559         return false;
560 
561       // Reject if the stored value is not the pointer operand.
562       if (SI->getPointerOperand() != Val)
563         return false;
564     } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) {
565       if (RMW->isVolatile())
566         return false;
567     } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) {
568       if (CAS->isVolatile())
569         return false;
570     }
571 
572     // Only promote a select if we know that the other select operand
573     // is from another pointer that will also be promoted.
574     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
575       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1))
576         return false;
577 
578       // May need to rewrite constant operands.
579       WorkList.push_back(ICmp);
580     }
581 
582     if (!User->getType()->isPointerTy())
583       continue;
584 
585     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) {
586       // Be conservative if an address could be computed outside the bounds of
587       // the alloca.
588       if (!GEP->isInBounds())
589         return false;
590     }
591 
592     // Only promote a select if we know that the other select operand is from
593     // another pointer that will also be promoted.
594     if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) {
595       if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2))
596         return false;
597     }
598 
599     // Repeat for phis.
600     if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) {
601       // TODO: Handle more complex cases. We should be able to replace loops
602       // over arrays.
603       switch (Phi->getNumIncomingValues()) {
604       case 1:
605         break;
606       case 2:
607         if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1))
608           return false;
609         break;
610       default:
611         return false;
612       }
613     }
614 
615     WorkList.push_back(User);
616     if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList))
617       return false;
618   }
619 
620   return true;
621 }
622 
623 // FIXME: Should try to pick the most likely to be profitable allocas first.
624 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) {
625   // Array allocations are probably not worth handling, since an allocation of
626   // the array type is the canonical form.
627   if (!I.isStaticAlloca() || I.isArrayAllocation())
628     return;
629 
630   IRBuilder<> Builder(&I);
631 
632   // First try to replace the alloca with a vector
633   Type *AllocaTy = I.getAllocatedType();
634 
635   DEBUG(dbgs() << "Trying to promote " << I << '\n');
636 
637   if (tryPromoteAllocaToVector(&I)) {
638     DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n");
639     return;
640   }
641 
642   const Function &ContainingFunction = *I.getParent()->getParent();
643 
644   // Don't promote the alloca to LDS for shader calling conventions as the work
645   // item ID intrinsics are not supported for these calling conventions.
646   // Furthermore not all LDS is available for some of the stages.
647   if (AMDGPU::isShader(ContainingFunction.getCallingConv()))
648     return;
649 
650   const AMDGPUSubtarget &ST =
651     TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction);
652   // FIXME: We should also try to get this value from the reqd_work_group_size
653   // function attribute if it is available.
654   unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second;
655 
656   const DataLayout &DL = Mod->getDataLayout();
657 
658   unsigned Align = I.getAlignment();
659   if (Align == 0)
660     Align = DL.getABITypeAlignment(I.getAllocatedType());
661 
662   // FIXME: This computed padding is likely wrong since it depends on inverse
663   // usage order.
664   //
665   // FIXME: It is also possible that if we're allowed to use all of the memory
666   // could could end up using more than the maximum due to alignment padding.
667 
668   uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align);
669   uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy);
670   NewSize += AllocSize;
671 
672   if (NewSize > LocalMemLimit) {
673     DEBUG(dbgs() << "  " << AllocSize
674           << " bytes of local memory not available to promote\n");
675     return;
676   }
677 
678   CurrentLocalMemUsage = NewSize;
679 
680   std::vector<Value*> WorkList;
681 
682   if (!collectUsesWithPtrTypes(&I, &I, WorkList)) {
683     DEBUG(dbgs() << " Do not know how to convert all uses\n");
684     return;
685   }
686 
687   DEBUG(dbgs() << "Promoting alloca to local memory\n");
688 
689   Function *F = I.getParent()->getParent();
690 
691   Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize);
692   GlobalVariable *GV = new GlobalVariable(
693       *Mod, GVTy, false, GlobalValue::InternalLinkage,
694       UndefValue::get(GVTy),
695       Twine(F->getName()) + Twine('.') + I.getName(),
696       nullptr,
697       GlobalVariable::NotThreadLocal,
698       AMDGPUAS::LOCAL_ADDRESS);
699   GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
700   GV->setAlignment(I.getAlignment());
701 
702   Value *TCntY, *TCntZ;
703 
704   std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder);
705   Value *TIdX = getWorkitemID(Builder, 0);
706   Value *TIdY = getWorkitemID(Builder, 1);
707   Value *TIdZ = getWorkitemID(Builder, 2);
708 
709   Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true);
710   Tmp0 = Builder.CreateMul(Tmp0, TIdX);
711   Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true);
712   Value *TID = Builder.CreateAdd(Tmp0, Tmp1);
713   TID = Builder.CreateAdd(TID, TIdZ);
714 
715   Value *Indices[] = {
716     Constant::getNullValue(Type::getInt32Ty(Mod->getContext())),
717     TID
718   };
719 
720   Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices);
721   I.mutateType(Offset->getType());
722   I.replaceAllUsesWith(Offset);
723   I.eraseFromParent();
724 
725   for (Value *V : WorkList) {
726     CallInst *Call = dyn_cast<CallInst>(V);
727     if (!Call) {
728       if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) {
729         Value *Src0 = CI->getOperand(0);
730         Type *EltTy = Src0->getType()->getPointerElementType();
731         PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
732 
733         if (isa<ConstantPointerNull>(CI->getOperand(0)))
734           CI->setOperand(0, ConstantPointerNull::get(NewTy));
735 
736         if (isa<ConstantPointerNull>(CI->getOperand(1)))
737           CI->setOperand(1, ConstantPointerNull::get(NewTy));
738 
739         continue;
740       }
741 
742       // The operand's value should be corrected on its own.
743       if (isa<AddrSpaceCastInst>(V))
744         continue;
745 
746       Type *EltTy = V->getType()->getPointerElementType();
747       PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS);
748 
749       // FIXME: It doesn't really make sense to try to do this for all
750       // instructions.
751       V->mutateType(NewTy);
752 
753       // Adjust the types of any constant operands.
754       if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
755         if (isa<ConstantPointerNull>(SI->getOperand(1)))
756           SI->setOperand(1, ConstantPointerNull::get(NewTy));
757 
758         if (isa<ConstantPointerNull>(SI->getOperand(2)))
759           SI->setOperand(2, ConstantPointerNull::get(NewTy));
760       } else if (PHINode *Phi = dyn_cast<PHINode>(V)) {
761         for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) {
762           if (isa<ConstantPointerNull>(Phi->getIncomingValue(I)))
763             Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy));
764         }
765       }
766 
767       continue;
768     }
769 
770     IntrinsicInst *Intr = cast<IntrinsicInst>(Call);
771     Builder.SetInsertPoint(Intr);
772     switch (Intr->getIntrinsicID()) {
773     case Intrinsic::lifetime_start:
774     case Intrinsic::lifetime_end:
775       // These intrinsics are for address space 0 only
776       Intr->eraseFromParent();
777       continue;
778     case Intrinsic::memcpy: {
779       MemCpyInst *MemCpy = cast<MemCpyInst>(Intr);
780       Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(),
781                            MemCpy->getLength(), MemCpy->getAlignment(),
782                            MemCpy->isVolatile());
783       Intr->eraseFromParent();
784       continue;
785     }
786     case Intrinsic::memmove: {
787       MemMoveInst *MemMove = cast<MemMoveInst>(Intr);
788       Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(),
789                             MemMove->getLength(), MemMove->getAlignment(),
790                             MemMove->isVolatile());
791       Intr->eraseFromParent();
792       continue;
793     }
794     case Intrinsic::memset: {
795       MemSetInst *MemSet = cast<MemSetInst>(Intr);
796       Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(),
797                            MemSet->getLength(), MemSet->getAlignment(),
798                            MemSet->isVolatile());
799       Intr->eraseFromParent();
800       continue;
801     }
802     case Intrinsic::invariant_start:
803     case Intrinsic::invariant_end:
804     case Intrinsic::invariant_group_barrier:
805       Intr->eraseFromParent();
806       // FIXME: I think the invariant marker should still theoretically apply,
807       // but the intrinsics need to be changed to accept pointers with any
808       // address space.
809       continue;
810     case Intrinsic::objectsize: {
811       Value *Src = Intr->getOperand(0);
812       Type *SrcTy = Src->getType()->getPointerElementType();
813       Function *ObjectSize = Intrinsic::getDeclaration(Mod,
814         Intrinsic::objectsize,
815         { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) }
816       );
817 
818       CallInst *NewCall
819         = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) });
820       Intr->replaceAllUsesWith(NewCall);
821       Intr->eraseFromParent();
822       continue;
823     }
824     default:
825       Intr->dump();
826       llvm_unreachable("Don't know how to promote alloca intrinsic use.");
827     }
828   }
829 }
830 
831 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) {
832   return new AMDGPUPromoteAlloca(TM);
833 }
834