1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 #define DEBUG_TYPE "amdgpu-promote-alloca" 25 26 using namespace llvm; 27 28 namespace { 29 30 // FIXME: This can create globals so should be a module pass. 31 class AMDGPUPromoteAlloca : public FunctionPass { 32 private: 33 const TargetMachine *TM; 34 Module *Mod; 35 const DataLayout *DL; 36 MDNode *MaxWorkGroupSizeRange; 37 38 // FIXME: This should be per-kernel. 39 uint32_t LocalMemLimit; 40 uint32_t CurrentLocalMemUsage; 41 42 bool IsAMDGCN; 43 bool IsAMDHSA; 44 45 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 46 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 47 48 /// BaseAlloca is the alloca root the search started from. 49 /// Val may be that alloca or a recursive user of it. 50 bool collectUsesWithPtrTypes(Value *BaseAlloca, 51 Value *Val, 52 std::vector<Value*> &WorkList) const; 53 54 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 55 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 56 /// Returns true if both operands are derived from the same alloca. Val should 57 /// be the same value as one of the input operands of UseInst. 58 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 59 Instruction *UseInst, 60 int OpIdx0, int OpIdx1) const; 61 62 public: 63 static char ID; 64 65 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 66 FunctionPass(ID), 67 TM(TM_), 68 Mod(nullptr), 69 DL(nullptr), 70 MaxWorkGroupSizeRange(nullptr), 71 LocalMemLimit(0), 72 CurrentLocalMemUsage(0), 73 IsAMDGCN(false), 74 IsAMDHSA(false) { } 75 76 bool doInitialization(Module &M) override; 77 bool runOnFunction(Function &F) override; 78 79 const char *getPassName() const override { 80 return "AMDGPU Promote Alloca"; 81 } 82 83 void handleAlloca(AllocaInst &I); 84 85 void getAnalysisUsage(AnalysisUsage &AU) const override { 86 AU.setPreservesCFG(); 87 FunctionPass::getAnalysisUsage(AU); 88 } 89 }; 90 91 } // End anonymous namespace 92 93 char AMDGPUPromoteAlloca::ID = 0; 94 95 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 96 "AMDGPU promote alloca to vector or LDS", false, false) 97 98 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 99 100 101 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 102 if (!TM) 103 return false; 104 105 Mod = &M; 106 DL = &Mod->getDataLayout(); 107 108 // The maximum workitem id. 109 // 110 // FIXME: Should get as subtarget property. Usually runtime enforced max is 111 // 256. 112 MDBuilder MDB(Mod->getContext()); 113 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 114 115 const Triple &TT = TM->getTargetTriple(); 116 117 IsAMDGCN = TT.getArch() == Triple::amdgcn; 118 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 119 120 return false; 121 } 122 123 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 124 if (!TM || skipFunction(F)) 125 return false; 126 127 FunctionType *FTy = F.getFunctionType(); 128 129 // If the function has any arguments in the local address space, then it's 130 // possible these arguments require the entire local memory space, so 131 // we cannot use local memory in the pass. 132 for (Type *ParamTy : FTy->params()) { 133 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 134 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 135 LocalMemLimit = 0; 136 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 137 "local memory disabled.\n"); 138 return false; 139 } 140 } 141 142 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 143 144 LocalMemLimit = ST.getLocalMemorySize(); 145 if (LocalMemLimit == 0) 146 return false; 147 148 const DataLayout &DL = Mod->getDataLayout(); 149 150 // Check how much local memory is being used by global objects 151 CurrentLocalMemUsage = 0; 152 for (GlobalVariable &GV : Mod->globals()) { 153 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 154 continue; 155 156 for (const User *U : GV.users()) { 157 const Instruction *Use = dyn_cast<Instruction>(U); 158 if (!Use) 159 continue; 160 161 if (Use->getParent()->getParent() == &F) { 162 unsigned Align = GV.getAlignment(); 163 if (Align == 0) 164 Align = DL.getABITypeAlignment(GV.getValueType()); 165 166 // FIXME: Try to account for padding here. The padding is currently 167 // determined from the inverse order of uses in the function. I'm not 168 // sure if the use list order is in any way connected to this, so the 169 // total reported size is likely incorrect. 170 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 171 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 172 CurrentLocalMemUsage += AllocSize; 173 break; 174 } 175 } 176 } 177 178 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage); 179 180 // Restrict local memory usage so that we don't drastically reduce occupancy, 181 // unless it is already significantly reduced. 182 183 // TODO: Have some sort of hint or other heuristics to guess occupancy based 184 // on other factors.. 185 unsigned OccupancyHint 186 = AMDGPU::getIntegerAttribute(F, "amdgpu-max-waves-per-eu", 0); 187 if (OccupancyHint == 0) 188 OccupancyHint = 7; 189 190 // Clamp to max value. 191 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerCU()); 192 193 // Check the hint but ignore it if it's obviously wrong from the existing LDS 194 // usage. 195 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 196 197 198 // Round up to the next tier of usage. 199 unsigned MaxSizeWithWaveCount 200 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy); 201 202 // Program is possibly broken by using more local mem than available. 203 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 204 return false; 205 206 LocalMemLimit = MaxSizeWithWaveCount; 207 208 DEBUG( 209 dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" 210 << " Rounding size to " << MaxSizeWithWaveCount 211 << " with a maximum occupancy of " << MaxOccupancy << '\n' 212 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 213 << " available for promotion\n" 214 ); 215 216 BasicBlock &EntryBB = *F.begin(); 217 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 218 AllocaInst *AI = dyn_cast<AllocaInst>(I); 219 220 ++I; 221 if (AI) 222 handleAlloca(*AI); 223 } 224 225 return true; 226 } 227 228 std::pair<Value *, Value *> 229 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 230 if (!IsAMDHSA) { 231 Function *LocalSizeYFn 232 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 233 Function *LocalSizeZFn 234 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 235 236 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 237 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 238 239 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 240 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 241 242 return std::make_pair(LocalSizeY, LocalSizeZ); 243 } 244 245 // We must read the size out of the dispatch pointer. 246 assert(IsAMDGCN); 247 248 // We are indexing into this struct, and want to extract the workgroup_size_* 249 // fields. 250 // 251 // typedef struct hsa_kernel_dispatch_packet_s { 252 // uint16_t header; 253 // uint16_t setup; 254 // uint16_t workgroup_size_x ; 255 // uint16_t workgroup_size_y; 256 // uint16_t workgroup_size_z; 257 // uint16_t reserved0; 258 // uint32_t grid_size_x ; 259 // uint32_t grid_size_y ; 260 // uint32_t grid_size_z; 261 // 262 // uint32_t private_segment_size; 263 // uint32_t group_segment_size; 264 // uint64_t kernel_object; 265 // 266 // #ifdef HSA_LARGE_MODEL 267 // void *kernarg_address; 268 // #elif defined HSA_LITTLE_ENDIAN 269 // void *kernarg_address; 270 // uint32_t reserved1; 271 // #else 272 // uint32_t reserved1; 273 // void *kernarg_address; 274 // #endif 275 // uint64_t reserved2; 276 // hsa_signal_t completion_signal; // uint64_t wrapper 277 // } hsa_kernel_dispatch_packet_t 278 // 279 Function *DispatchPtrFn 280 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 281 282 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 283 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); 284 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 285 286 // Size of the dispatch packet struct. 287 DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); 288 289 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 290 Value *CastDispatchPtr = Builder.CreateBitCast( 291 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 292 293 // We could do a single 64-bit load here, but it's likely that the basic 294 // 32-bit and extract sequence is already present, and it is probably easier 295 // to CSE this. The loads should be mergable later anyway. 296 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 297 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 298 299 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 300 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 301 302 MDNode *MD = llvm::MDNode::get(Mod->getContext(), None); 303 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 304 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 305 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 306 307 // Extract y component. Upper half of LoadZU should be zero already. 308 Value *Y = Builder.CreateLShr(LoadXY, 16); 309 310 return std::make_pair(Y, LoadZU); 311 } 312 313 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 314 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 315 316 switch (N) { 317 case 0: 318 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 319 : Intrinsic::r600_read_tidig_x; 320 break; 321 case 1: 322 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 323 : Intrinsic::r600_read_tidig_y; 324 break; 325 326 case 2: 327 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 328 : Intrinsic::r600_read_tidig_z; 329 break; 330 default: 331 llvm_unreachable("invalid dimension"); 332 } 333 334 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 335 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 336 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 337 338 return CI; 339 } 340 341 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 342 return VectorType::get(ArrayTy->getArrayElementType(), 343 ArrayTy->getArrayNumElements()); 344 } 345 346 static Value * 347 calculateVectorIndex(Value *Ptr, 348 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 349 if (isa<AllocaInst>(Ptr)) 350 return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext())); 351 352 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 353 354 auto I = GEPIdx.find(GEP); 355 return I == GEPIdx.end() ? nullptr : I->second; 356 } 357 358 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 359 // FIXME we only support simple cases 360 if (GEP->getNumOperands() != 3) 361 return NULL; 362 363 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 364 if (!I0 || !I0->isZero()) 365 return NULL; 366 367 return GEP->getOperand(2); 368 } 369 370 // Not an instruction handled below to turn into a vector. 371 // 372 // TODO: Check isTriviallyVectorizable for calls and handle other 373 // instructions. 374 static bool canVectorizeInst(Instruction *Inst, User *User) { 375 switch (Inst->getOpcode()) { 376 case Instruction::Load: 377 case Instruction::BitCast: 378 case Instruction::AddrSpaceCast: 379 return true; 380 case Instruction::Store: { 381 // Must be the stored pointer operand, not a stored value. 382 StoreInst *SI = cast<StoreInst>(Inst); 383 return SI->getPointerOperand() == User; 384 } 385 default: 386 return false; 387 } 388 } 389 390 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 391 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 392 393 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 394 395 // FIXME: There is no reason why we can't support larger arrays, we 396 // are just being conservative for now. 397 if (!AllocaTy || 398 AllocaTy->getElementType()->isVectorTy() || 399 AllocaTy->getNumElements() > 4) { 400 DEBUG(dbgs() << " Cannot convert type to vector\n"); 401 return false; 402 } 403 404 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 405 std::vector<Value*> WorkList; 406 for (User *AllocaUser : Alloca->users()) { 407 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 408 if (!GEP) { 409 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 410 return false; 411 412 WorkList.push_back(AllocaUser); 413 continue; 414 } 415 416 Value *Index = GEPToVectorIndex(GEP); 417 418 // If we can't compute a vector index from this GEP, then we can't 419 // promote this alloca to vector. 420 if (!Index) { 421 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 422 return false; 423 } 424 425 GEPVectorIdx[GEP] = Index; 426 for (User *GEPUser : AllocaUser->users()) { 427 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 428 return false; 429 430 WorkList.push_back(GEPUser); 431 } 432 } 433 434 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 435 436 DEBUG(dbgs() << " Converting alloca to vector " 437 << *AllocaTy << " -> " << *VectorTy << '\n'); 438 439 for (Value *V : WorkList) { 440 Instruction *Inst = cast<Instruction>(V); 441 IRBuilder<> Builder(Inst); 442 switch (Inst->getOpcode()) { 443 case Instruction::Load: { 444 Value *Ptr = Inst->getOperand(0); 445 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 446 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); 447 Value *VecValue = Builder.CreateLoad(BitCast); 448 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 449 Inst->replaceAllUsesWith(ExtractElement); 450 Inst->eraseFromParent(); 451 break; 452 } 453 case Instruction::Store: { 454 Value *Ptr = Inst->getOperand(1); 455 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 456 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); 457 Value *VecValue = Builder.CreateLoad(BitCast); 458 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 459 Inst->getOperand(0), 460 Index); 461 Builder.CreateStore(NewVecValue, BitCast); 462 Inst->eraseFromParent(); 463 break; 464 } 465 case Instruction::BitCast: 466 case Instruction::AddrSpaceCast: 467 break; 468 469 default: 470 Inst->dump(); 471 llvm_unreachable("Inconsistency in instructions promotable to vector"); 472 } 473 } 474 return true; 475 } 476 477 static bool isCallPromotable(CallInst *CI) { 478 // TODO: We might be able to handle some cases where the callee is a 479 // constantexpr bitcast of a function. 480 if (!CI->getCalledFunction()) 481 return false; 482 483 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 484 if (!II) 485 return false; 486 487 switch (II->getIntrinsicID()) { 488 case Intrinsic::memcpy: 489 case Intrinsic::memmove: 490 case Intrinsic::memset: 491 case Intrinsic::lifetime_start: 492 case Intrinsic::lifetime_end: 493 case Intrinsic::invariant_start: 494 case Intrinsic::invariant_end: 495 case Intrinsic::invariant_group_barrier: 496 case Intrinsic::objectsize: 497 return true; 498 default: 499 return false; 500 } 501 } 502 503 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 504 Value *Val, 505 Instruction *Inst, 506 int OpIdx0, 507 int OpIdx1) const { 508 // Figure out which operand is the one we might not be promoting. 509 Value *OtherOp = Inst->getOperand(OpIdx0); 510 if (Val == OtherOp) 511 OtherOp = Inst->getOperand(OpIdx1); 512 513 if (isa<ConstantPointerNull>(OtherOp)) 514 return true; 515 516 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 517 if (!isa<AllocaInst>(OtherObj)) 518 return false; 519 520 // TODO: We should be able to replace undefs with the right pointer type. 521 522 // TODO: If we know the other base object is another promotable 523 // alloca, not necessarily this alloca, we can do this. The 524 // important part is both must have the same address space at 525 // the end. 526 if (OtherObj != BaseAlloca) { 527 DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); 528 return false; 529 } 530 531 return true; 532 } 533 534 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 535 Value *BaseAlloca, 536 Value *Val, 537 std::vector<Value*> &WorkList) const { 538 539 for (User *User : Val->users()) { 540 if (std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end()) 541 continue; 542 543 if (CallInst *CI = dyn_cast<CallInst>(User)) { 544 if (!isCallPromotable(CI)) 545 return false; 546 547 WorkList.push_back(User); 548 continue; 549 } 550 551 Instruction *UseInst = cast<Instruction>(User); 552 if (UseInst->getOpcode() == Instruction::PtrToInt) 553 return false; 554 555 if (LoadInst *LI = dyn_cast_or_null<LoadInst>(UseInst)) { 556 if (LI->isVolatile()) 557 return false; 558 559 continue; 560 } 561 562 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 563 if (SI->isVolatile()) 564 return false; 565 566 // Reject if the stored value is not the pointer operand. 567 if (SI->getPointerOperand() != Val) 568 return false; 569 } else if (AtomicRMWInst *RMW = dyn_cast_or_null<AtomicRMWInst>(UseInst)) { 570 if (RMW->isVolatile()) 571 return false; 572 } else if (AtomicCmpXchgInst *CAS 573 = dyn_cast_or_null<AtomicCmpXchgInst>(UseInst)) { 574 if (CAS->isVolatile()) 575 return false; 576 } 577 578 // Only promote a select if we know that the other select operand 579 // is from another pointer that will also be promoted. 580 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 581 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 582 return false; 583 584 // May need to rewrite constant operands. 585 WorkList.push_back(ICmp); 586 } 587 588 if (!User->getType()->isPointerTy()) 589 continue; 590 591 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 592 // Be conservative if an address could be computed outside the bounds of 593 // the alloca. 594 if (!GEP->isInBounds()) 595 return false; 596 } 597 598 // Only promote a select if we know that the other select operand is from 599 // another pointer that will also be promoted. 600 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 601 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 602 return false; 603 } 604 605 // Repeat for phis. 606 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 607 // TODO: Handle more complex cases. We should be able to replace loops 608 // over arrays. 609 switch (Phi->getNumIncomingValues()) { 610 case 1: 611 break; 612 case 2: 613 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 614 return false; 615 break; 616 default: 617 return false; 618 } 619 } 620 621 WorkList.push_back(User); 622 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 623 return false; 624 } 625 626 return true; 627 } 628 629 // FIXME: Should try to pick the most likely to be profitable allocas first. 630 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { 631 // Array allocations are probably not worth handling, since an allocation of 632 // the array type is the canonical form. 633 if (!I.isStaticAlloca() || I.isArrayAllocation()) 634 return; 635 636 IRBuilder<> Builder(&I); 637 638 // First try to replace the alloca with a vector 639 Type *AllocaTy = I.getAllocatedType(); 640 641 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 642 643 if (tryPromoteAllocaToVector(&I)) { 644 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 645 return; 646 } 647 648 const Function &ContainingFunction = *I.getParent()->getParent(); 649 650 // FIXME: We should also try to get this value from the reqd_work_group_size 651 // function attribute if it is available. 652 unsigned WorkGroupSize = AMDGPU::getMaximumWorkGroupSize(ContainingFunction); 653 654 const DataLayout &DL = Mod->getDataLayout(); 655 656 unsigned Align = I.getAlignment(); 657 if (Align == 0) 658 Align = DL.getABITypeAlignment(I.getAllocatedType()); 659 660 // FIXME: This computed padding is likely wrong since it depends on inverse 661 // usage order. 662 // 663 // FIXME: It is also possible that if we're allowed to use all of the memory 664 // could could end up using more than the maximum due to alignment padding. 665 666 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 667 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 668 NewSize += AllocSize; 669 670 if (NewSize > LocalMemLimit) { 671 DEBUG(dbgs() << " " << AllocSize 672 << " bytes of local memory not available to promote\n"); 673 return; 674 } 675 676 CurrentLocalMemUsage = NewSize; 677 678 std::vector<Value*> WorkList; 679 680 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 681 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 682 return; 683 } 684 685 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 686 687 Function *F = I.getParent()->getParent(); 688 689 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 690 GlobalVariable *GV = new GlobalVariable( 691 *Mod, GVTy, false, GlobalValue::InternalLinkage, 692 UndefValue::get(GVTy), 693 Twine(F->getName()) + Twine('.') + I.getName(), 694 nullptr, 695 GlobalVariable::NotThreadLocal, 696 AMDGPUAS::LOCAL_ADDRESS); 697 GV->setUnnamedAddr(true); 698 GV->setAlignment(I.getAlignment()); 699 700 Value *TCntY, *TCntZ; 701 702 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 703 Value *TIdX = getWorkitemID(Builder, 0); 704 Value *TIdY = getWorkitemID(Builder, 1); 705 Value *TIdZ = getWorkitemID(Builder, 2); 706 707 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 708 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 709 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 710 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 711 TID = Builder.CreateAdd(TID, TIdZ); 712 713 Value *Indices[] = { 714 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 715 TID 716 }; 717 718 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 719 I.mutateType(Offset->getType()); 720 I.replaceAllUsesWith(Offset); 721 I.eraseFromParent(); 722 723 for (Value *V : WorkList) { 724 CallInst *Call = dyn_cast<CallInst>(V); 725 if (!Call) { 726 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 727 Value *Src0 = CI->getOperand(0); 728 Type *EltTy = Src0->getType()->getPointerElementType(); 729 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 730 731 if (isa<ConstantPointerNull>(CI->getOperand(0))) 732 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 733 734 if (isa<ConstantPointerNull>(CI->getOperand(1))) 735 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 736 737 continue; 738 } 739 740 // The operand's value should be corrected on its own. 741 if (isa<AddrSpaceCastInst>(V)) 742 continue; 743 744 Type *EltTy = V->getType()->getPointerElementType(); 745 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 746 747 // FIXME: It doesn't really make sense to try to do this for all 748 // instructions. 749 V->mutateType(NewTy); 750 751 // Adjust the types of any constant operands. 752 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 753 if (isa<ConstantPointerNull>(SI->getOperand(1))) 754 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 755 756 if (isa<ConstantPointerNull>(SI->getOperand(2))) 757 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 758 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 759 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 760 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 761 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 762 } 763 } 764 765 continue; 766 } 767 768 IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call); 769 if (!Intr) { 770 // FIXME: What is this for? It doesn't make sense to promote arbitrary 771 // function calls. If the call is to a defined function that can also be 772 // promoted, we should be able to do this once that function is also 773 // rewritten. 774 775 std::vector<Type*> ArgTypes; 776 for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands(); 777 ArgIdx != ArgEnd; ++ArgIdx) { 778 ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType()); 779 } 780 Function *F = Call->getCalledFunction(); 781 FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes, 782 F->isVarArg()); 783 Constant *C = Mod->getOrInsertFunction((F->getName() + ".local").str(), 784 NewType, F->getAttributes()); 785 Function *NewF = cast<Function>(C); 786 Call->setCalledFunction(NewF); 787 continue; 788 } 789 790 Builder.SetInsertPoint(Intr); 791 switch (Intr->getIntrinsicID()) { 792 case Intrinsic::lifetime_start: 793 case Intrinsic::lifetime_end: 794 // These intrinsics are for address space 0 only 795 Intr->eraseFromParent(); 796 continue; 797 case Intrinsic::memcpy: { 798 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 799 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 800 MemCpy->getLength(), MemCpy->getAlignment(), 801 MemCpy->isVolatile()); 802 Intr->eraseFromParent(); 803 continue; 804 } 805 case Intrinsic::memmove: { 806 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 807 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 808 MemMove->getLength(), MemMove->getAlignment(), 809 MemMove->isVolatile()); 810 Intr->eraseFromParent(); 811 continue; 812 } 813 case Intrinsic::memset: { 814 MemSetInst *MemSet = cast<MemSetInst>(Intr); 815 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 816 MemSet->getLength(), MemSet->getAlignment(), 817 MemSet->isVolatile()); 818 Intr->eraseFromParent(); 819 continue; 820 } 821 case Intrinsic::invariant_start: 822 case Intrinsic::invariant_end: 823 case Intrinsic::invariant_group_barrier: 824 Intr->eraseFromParent(); 825 // FIXME: I think the invariant marker should still theoretically apply, 826 // but the intrinsics need to be changed to accept pointers with any 827 // address space. 828 continue; 829 case Intrinsic::objectsize: { 830 Value *Src = Intr->getOperand(0); 831 Type *SrcTy = Src->getType()->getPointerElementType(); 832 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 833 Intrinsic::objectsize, 834 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 835 ); 836 837 CallInst *NewCall 838 = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) }); 839 Intr->replaceAllUsesWith(NewCall); 840 Intr->eraseFromParent(); 841 continue; 842 } 843 default: 844 Intr->dump(); 845 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 846 } 847 } 848 } 849 850 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 851 return new AMDGPUPromoteAlloca(TM); 852 } 853