1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "Utils/AMDGPUBaseInfo.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <map> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 #define DEBUG_TYPE "amdgpu-promote-alloca" 63 64 using namespace llvm; 65 66 namespace { 67 68 // FIXME: This can create globals so should be a module pass. 69 class AMDGPUPromoteAlloca : public FunctionPass { 70 private: 71 const TargetMachine *TM; 72 Module *Mod = nullptr; 73 const DataLayout *DL = nullptr; 74 MDNode *MaxWorkGroupSizeRange = nullptr; 75 AMDGPUAS AS; 76 77 // FIXME: This should be per-kernel. 78 uint32_t LocalMemLimit = 0; 79 uint32_t CurrentLocalMemUsage = 0; 80 81 bool IsAMDGCN = false; 82 bool IsAMDHSA = false; 83 84 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 85 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 86 87 /// BaseAlloca is the alloca root the search started from. 88 /// Val may be that alloca or a recursive user of it. 89 bool collectUsesWithPtrTypes(Value *BaseAlloca, 90 Value *Val, 91 std::vector<Value*> &WorkList) const; 92 93 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 94 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 95 /// Returns true if both operands are derived from the same alloca. Val should 96 /// be the same value as one of the input operands of UseInst. 97 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 98 Instruction *UseInst, 99 int OpIdx0, int OpIdx1) const; 100 101 public: 102 static char ID; 103 104 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 105 FunctionPass(ID), TM(TM_) {} 106 107 bool doInitialization(Module &M) override; 108 bool runOnFunction(Function &F) override; 109 110 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 111 112 void handleAlloca(AllocaInst &I); 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override { 115 AU.setPreservesCFG(); 116 FunctionPass::getAnalysisUsage(AU); 117 } 118 }; 119 120 } // end anonymous namespace 121 122 char AMDGPUPromoteAlloca::ID = 0; 123 124 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 125 "AMDGPU promote alloca to vector or LDS", false, false) 126 127 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 128 129 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 130 if (!TM) 131 return false; 132 133 Mod = &M; 134 DL = &Mod->getDataLayout(); 135 136 // The maximum workitem id. 137 // 138 // FIXME: Should get as subtarget property. Usually runtime enforced max is 139 // 256. 140 MDBuilder MDB(Mod->getContext()); 141 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 142 143 const Triple &TT = TM->getTargetTriple(); 144 145 IsAMDGCN = TT.getArch() == Triple::amdgcn; 146 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 147 148 return false; 149 } 150 151 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 152 if (!TM || skipFunction(F)) 153 return false; 154 155 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 156 if (!ST.isPromoteAllocaEnabled()) 157 return false; 158 AS = AMDGPU::getAMDGPUAS(*F.getParent()); 159 160 FunctionType *FTy = F.getFunctionType(); 161 162 // If the function has any arguments in the local address space, then it's 163 // possible these arguments require the entire local memory space, so 164 // we cannot use local memory in the pass. 165 for (Type *ParamTy : FTy->params()) { 166 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 167 if (PtrTy && PtrTy->getAddressSpace() == AS.LOCAL_ADDRESS) { 168 LocalMemLimit = 0; 169 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 170 "local memory disabled.\n"); 171 return false; 172 } 173 } 174 175 LocalMemLimit = ST.getLocalMemorySize(); 176 if (LocalMemLimit == 0) 177 return false; 178 179 const DataLayout &DL = Mod->getDataLayout(); 180 181 // Check how much local memory is being used by global objects 182 CurrentLocalMemUsage = 0; 183 for (GlobalVariable &GV : Mod->globals()) { 184 if (GV.getType()->getAddressSpace() != AS.LOCAL_ADDRESS) 185 continue; 186 187 for (const User *U : GV.users()) { 188 const Instruction *Use = dyn_cast<Instruction>(U); 189 if (!Use) 190 continue; 191 192 if (Use->getParent()->getParent() == &F) { 193 unsigned Align = GV.getAlignment(); 194 if (Align == 0) 195 Align = DL.getABITypeAlignment(GV.getValueType()); 196 197 // FIXME: Try to account for padding here. The padding is currently 198 // determined from the inverse order of uses in the function. I'm not 199 // sure if the use list order is in any way connected to this, so the 200 // total reported size is likely incorrect. 201 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 202 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 203 CurrentLocalMemUsage += AllocSize; 204 break; 205 } 206 } 207 } 208 209 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 210 F); 211 212 // Restrict local memory usage so that we don't drastically reduce occupancy, 213 // unless it is already significantly reduced. 214 215 // TODO: Have some sort of hint or other heuristics to guess occupancy based 216 // on other factors.. 217 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 218 if (OccupancyHint == 0) 219 OccupancyHint = 7; 220 221 // Clamp to max value. 222 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 223 224 // Check the hint but ignore it if it's obviously wrong from the existing LDS 225 // usage. 226 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 227 228 229 // Round up to the next tier of usage. 230 unsigned MaxSizeWithWaveCount 231 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 232 233 // Program is possibly broken by using more local mem than available. 234 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 235 return false; 236 237 LocalMemLimit = MaxSizeWithWaveCount; 238 239 DEBUG( 240 dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" 241 << " Rounding size to " << MaxSizeWithWaveCount 242 << " with a maximum occupancy of " << MaxOccupancy << '\n' 243 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 244 << " available for promotion\n" 245 ); 246 247 BasicBlock &EntryBB = *F.begin(); 248 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 249 AllocaInst *AI = dyn_cast<AllocaInst>(I); 250 251 ++I; 252 if (AI) 253 handleAlloca(*AI); 254 } 255 256 return true; 257 } 258 259 std::pair<Value *, Value *> 260 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 261 if (!IsAMDHSA) { 262 Function *LocalSizeYFn 263 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 264 Function *LocalSizeZFn 265 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 266 267 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 268 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 269 270 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 271 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 272 273 return std::make_pair(LocalSizeY, LocalSizeZ); 274 } 275 276 // We must read the size out of the dispatch pointer. 277 assert(IsAMDGCN); 278 279 // We are indexing into this struct, and want to extract the workgroup_size_* 280 // fields. 281 // 282 // typedef struct hsa_kernel_dispatch_packet_s { 283 // uint16_t header; 284 // uint16_t setup; 285 // uint16_t workgroup_size_x ; 286 // uint16_t workgroup_size_y; 287 // uint16_t workgroup_size_z; 288 // uint16_t reserved0; 289 // uint32_t grid_size_x ; 290 // uint32_t grid_size_y ; 291 // uint32_t grid_size_z; 292 // 293 // uint32_t private_segment_size; 294 // uint32_t group_segment_size; 295 // uint64_t kernel_object; 296 // 297 // #ifdef HSA_LARGE_MODEL 298 // void *kernarg_address; 299 // #elif defined HSA_LITTLE_ENDIAN 300 // void *kernarg_address; 301 // uint32_t reserved1; 302 // #else 303 // uint32_t reserved1; 304 // void *kernarg_address; 305 // #endif 306 // uint64_t reserved2; 307 // hsa_signal_t completion_signal; // uint64_t wrapper 308 // } hsa_kernel_dispatch_packet_t 309 // 310 Function *DispatchPtrFn 311 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 312 313 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 314 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 315 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 316 317 // Size of the dispatch packet struct. 318 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 319 320 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 321 Value *CastDispatchPtr = Builder.CreateBitCast( 322 DispatchPtr, PointerType::get(I32Ty, AS.CONSTANT_ADDRESS)); 323 324 // We could do a single 64-bit load here, but it's likely that the basic 325 // 32-bit and extract sequence is already present, and it is probably easier 326 // to CSE this. The loads should be mergable later anyway. 327 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 328 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 329 330 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 331 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 332 333 MDNode *MD = MDNode::get(Mod->getContext(), None); 334 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 335 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 336 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 337 338 // Extract y component. Upper half of LoadZU should be zero already. 339 Value *Y = Builder.CreateLShr(LoadXY, 16); 340 341 return std::make_pair(Y, LoadZU); 342 } 343 344 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 345 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 346 347 switch (N) { 348 case 0: 349 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 350 : Intrinsic::r600_read_tidig_x; 351 break; 352 case 1: 353 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 354 : Intrinsic::r600_read_tidig_y; 355 break; 356 357 case 2: 358 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 359 : Intrinsic::r600_read_tidig_z; 360 break; 361 default: 362 llvm_unreachable("invalid dimension"); 363 } 364 365 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 366 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 367 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 368 369 return CI; 370 } 371 372 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 373 return VectorType::get(ArrayTy->getArrayElementType(), 374 ArrayTy->getArrayNumElements()); 375 } 376 377 static Value * 378 calculateVectorIndex(Value *Ptr, 379 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 380 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 381 382 auto I = GEPIdx.find(GEP); 383 return I == GEPIdx.end() ? nullptr : I->second; 384 } 385 386 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 387 // FIXME we only support simple cases 388 if (GEP->getNumOperands() != 3) 389 return nullptr; 390 391 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 392 if (!I0 || !I0->isZero()) 393 return nullptr; 394 395 return GEP->getOperand(2); 396 } 397 398 // Not an instruction handled below to turn into a vector. 399 // 400 // TODO: Check isTriviallyVectorizable for calls and handle other 401 // instructions. 402 static bool canVectorizeInst(Instruction *Inst, User *User) { 403 switch (Inst->getOpcode()) { 404 case Instruction::Load: 405 case Instruction::BitCast: 406 case Instruction::AddrSpaceCast: 407 return true; 408 case Instruction::Store: { 409 // Must be the stored pointer operand, not a stored value. 410 StoreInst *SI = cast<StoreInst>(Inst); 411 return SI->getPointerOperand() == User; 412 } 413 default: 414 return false; 415 } 416 } 417 418 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, AMDGPUAS AS) { 419 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 420 421 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 422 423 // FIXME: There is no reason why we can't support larger arrays, we 424 // are just being conservative for now. 425 if (!AllocaTy || 426 AllocaTy->getElementType()->isVectorTy() || 427 AllocaTy->getNumElements() > 4 || 428 AllocaTy->getNumElements() < 2) { 429 DEBUG(dbgs() << " Cannot convert type to vector\n"); 430 return false; 431 } 432 433 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 434 std::vector<Value*> WorkList; 435 for (User *AllocaUser : Alloca->users()) { 436 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 437 if (!GEP) { 438 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 439 return false; 440 441 WorkList.push_back(AllocaUser); 442 continue; 443 } 444 445 Value *Index = GEPToVectorIndex(GEP); 446 447 // If we can't compute a vector index from this GEP, then we can't 448 // promote this alloca to vector. 449 if (!Index) { 450 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 451 return false; 452 } 453 454 GEPVectorIdx[GEP] = Index; 455 for (User *GEPUser : AllocaUser->users()) { 456 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 457 return false; 458 459 WorkList.push_back(GEPUser); 460 } 461 } 462 463 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 464 465 DEBUG(dbgs() << " Converting alloca to vector " 466 << *AllocaTy << " -> " << *VectorTy << '\n'); 467 468 for (Value *V : WorkList) { 469 Instruction *Inst = cast<Instruction>(V); 470 IRBuilder<> Builder(Inst); 471 switch (Inst->getOpcode()) { 472 case Instruction::Load: { 473 Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS); 474 Value *Ptr = Inst->getOperand(0); 475 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 476 477 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 478 Value *VecValue = Builder.CreateLoad(BitCast); 479 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 480 Inst->replaceAllUsesWith(ExtractElement); 481 Inst->eraseFromParent(); 482 break; 483 } 484 case Instruction::Store: { 485 Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS); 486 487 Value *Ptr = Inst->getOperand(1); 488 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 489 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 490 Value *VecValue = Builder.CreateLoad(BitCast); 491 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 492 Inst->getOperand(0), 493 Index); 494 Builder.CreateStore(NewVecValue, BitCast); 495 Inst->eraseFromParent(); 496 break; 497 } 498 case Instruction::BitCast: 499 case Instruction::AddrSpaceCast: 500 break; 501 502 default: 503 llvm_unreachable("Inconsistency in instructions promotable to vector"); 504 } 505 } 506 return true; 507 } 508 509 static bool isCallPromotable(CallInst *CI) { 510 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 511 if (!II) 512 return false; 513 514 switch (II->getIntrinsicID()) { 515 case Intrinsic::memcpy: 516 case Intrinsic::memmove: 517 case Intrinsic::memset: 518 case Intrinsic::lifetime_start: 519 case Intrinsic::lifetime_end: 520 case Intrinsic::invariant_start: 521 case Intrinsic::invariant_end: 522 case Intrinsic::invariant_group_barrier: 523 case Intrinsic::objectsize: 524 return true; 525 default: 526 return false; 527 } 528 } 529 530 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 531 Value *Val, 532 Instruction *Inst, 533 int OpIdx0, 534 int OpIdx1) const { 535 // Figure out which operand is the one we might not be promoting. 536 Value *OtherOp = Inst->getOperand(OpIdx0); 537 if (Val == OtherOp) 538 OtherOp = Inst->getOperand(OpIdx1); 539 540 if (isa<ConstantPointerNull>(OtherOp)) 541 return true; 542 543 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 544 if (!isa<AllocaInst>(OtherObj)) 545 return false; 546 547 // TODO: We should be able to replace undefs with the right pointer type. 548 549 // TODO: If we know the other base object is another promotable 550 // alloca, not necessarily this alloca, we can do this. The 551 // important part is both must have the same address space at 552 // the end. 553 if (OtherObj != BaseAlloca) { 554 DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); 555 return false; 556 } 557 558 return true; 559 } 560 561 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 562 Value *BaseAlloca, 563 Value *Val, 564 std::vector<Value*> &WorkList) const { 565 566 for (User *User : Val->users()) { 567 if (is_contained(WorkList, User)) 568 continue; 569 570 if (CallInst *CI = dyn_cast<CallInst>(User)) { 571 if (!isCallPromotable(CI)) 572 return false; 573 574 WorkList.push_back(User); 575 continue; 576 } 577 578 Instruction *UseInst = cast<Instruction>(User); 579 if (UseInst->getOpcode() == Instruction::PtrToInt) 580 return false; 581 582 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 583 if (LI->isVolatile()) 584 return false; 585 586 continue; 587 } 588 589 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 590 if (SI->isVolatile()) 591 return false; 592 593 // Reject if the stored value is not the pointer operand. 594 if (SI->getPointerOperand() != Val) 595 return false; 596 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 597 if (RMW->isVolatile()) 598 return false; 599 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 600 if (CAS->isVolatile()) 601 return false; 602 } 603 604 // Only promote a select if we know that the other select operand 605 // is from another pointer that will also be promoted. 606 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 607 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 608 return false; 609 610 // May need to rewrite constant operands. 611 WorkList.push_back(ICmp); 612 } 613 614 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 615 // Give up if the pointer may be captured. 616 if (PointerMayBeCaptured(UseInst, true, true)) 617 return false; 618 // Don't collect the users of this. 619 WorkList.push_back(User); 620 continue; 621 } 622 623 if (!User->getType()->isPointerTy()) 624 continue; 625 626 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 627 // Be conservative if an address could be computed outside the bounds of 628 // the alloca. 629 if (!GEP->isInBounds()) 630 return false; 631 } 632 633 // Only promote a select if we know that the other select operand is from 634 // another pointer that will also be promoted. 635 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 636 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 637 return false; 638 } 639 640 // Repeat for phis. 641 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 642 // TODO: Handle more complex cases. We should be able to replace loops 643 // over arrays. 644 switch (Phi->getNumIncomingValues()) { 645 case 1: 646 break; 647 case 2: 648 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 649 return false; 650 break; 651 default: 652 return false; 653 } 654 } 655 656 WorkList.push_back(User); 657 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 658 return false; 659 } 660 661 return true; 662 } 663 664 // FIXME: Should try to pick the most likely to be profitable allocas first. 665 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { 666 // Array allocations are probably not worth handling, since an allocation of 667 // the array type is the canonical form. 668 if (!I.isStaticAlloca() || I.isArrayAllocation()) 669 return; 670 671 IRBuilder<> Builder(&I); 672 673 // First try to replace the alloca with a vector 674 Type *AllocaTy = I.getAllocatedType(); 675 676 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 677 678 if (tryPromoteAllocaToVector(&I, AS)) { 679 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 680 return; 681 } 682 683 const Function &ContainingFunction = *I.getParent()->getParent(); 684 685 // Don't promote the alloca to LDS for shader calling conventions as the work 686 // item ID intrinsics are not supported for these calling conventions. 687 // Furthermore not all LDS is available for some of the stages. 688 if (AMDGPU::isShader(ContainingFunction.getCallingConv())) 689 return; 690 691 const AMDGPUSubtarget &ST = 692 TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction); 693 // FIXME: We should also try to get this value from the reqd_work_group_size 694 // function attribute if it is available. 695 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 696 697 const DataLayout &DL = Mod->getDataLayout(); 698 699 unsigned Align = I.getAlignment(); 700 if (Align == 0) 701 Align = DL.getABITypeAlignment(I.getAllocatedType()); 702 703 // FIXME: This computed padding is likely wrong since it depends on inverse 704 // usage order. 705 // 706 // FIXME: It is also possible that if we're allowed to use all of the memory 707 // could could end up using more than the maximum due to alignment padding. 708 709 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 710 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 711 NewSize += AllocSize; 712 713 if (NewSize > LocalMemLimit) { 714 DEBUG(dbgs() << " " << AllocSize 715 << " bytes of local memory not available to promote\n"); 716 return; 717 } 718 719 CurrentLocalMemUsage = NewSize; 720 721 std::vector<Value*> WorkList; 722 723 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 724 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 725 return; 726 } 727 728 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 729 730 Function *F = I.getParent()->getParent(); 731 732 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 733 GlobalVariable *GV = new GlobalVariable( 734 *Mod, GVTy, false, GlobalValue::InternalLinkage, 735 UndefValue::get(GVTy), 736 Twine(F->getName()) + Twine('.') + I.getName(), 737 nullptr, 738 GlobalVariable::NotThreadLocal, 739 AS.LOCAL_ADDRESS); 740 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 741 GV->setAlignment(I.getAlignment()); 742 743 Value *TCntY, *TCntZ; 744 745 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 746 Value *TIdX = getWorkitemID(Builder, 0); 747 Value *TIdY = getWorkitemID(Builder, 1); 748 Value *TIdZ = getWorkitemID(Builder, 2); 749 750 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 751 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 752 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 753 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 754 TID = Builder.CreateAdd(TID, TIdZ); 755 756 Value *Indices[] = { 757 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 758 TID 759 }; 760 761 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 762 I.mutateType(Offset->getType()); 763 I.replaceAllUsesWith(Offset); 764 I.eraseFromParent(); 765 766 for (Value *V : WorkList) { 767 CallInst *Call = dyn_cast<CallInst>(V); 768 if (!Call) { 769 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 770 Value *Src0 = CI->getOperand(0); 771 Type *EltTy = Src0->getType()->getPointerElementType(); 772 PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS); 773 774 if (isa<ConstantPointerNull>(CI->getOperand(0))) 775 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 776 777 if (isa<ConstantPointerNull>(CI->getOperand(1))) 778 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 779 780 continue; 781 } 782 783 // The operand's value should be corrected on its own and we don't want to 784 // touch the users. 785 if (isa<AddrSpaceCastInst>(V)) 786 continue; 787 788 Type *EltTy = V->getType()->getPointerElementType(); 789 PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS); 790 791 // FIXME: It doesn't really make sense to try to do this for all 792 // instructions. 793 V->mutateType(NewTy); 794 795 // Adjust the types of any constant operands. 796 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 797 if (isa<ConstantPointerNull>(SI->getOperand(1))) 798 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 799 800 if (isa<ConstantPointerNull>(SI->getOperand(2))) 801 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 802 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 803 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 804 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 805 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 806 } 807 } 808 809 continue; 810 } 811 812 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 813 Builder.SetInsertPoint(Intr); 814 switch (Intr->getIntrinsicID()) { 815 case Intrinsic::lifetime_start: 816 case Intrinsic::lifetime_end: 817 // These intrinsics are for address space 0 only 818 Intr->eraseFromParent(); 819 continue; 820 case Intrinsic::memcpy: { 821 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 822 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 823 MemCpy->getLength(), MemCpy->getAlignment(), 824 MemCpy->isVolatile()); 825 Intr->eraseFromParent(); 826 continue; 827 } 828 case Intrinsic::memmove: { 829 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 830 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 831 MemMove->getLength(), MemMove->getAlignment(), 832 MemMove->isVolatile()); 833 Intr->eraseFromParent(); 834 continue; 835 } 836 case Intrinsic::memset: { 837 MemSetInst *MemSet = cast<MemSetInst>(Intr); 838 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 839 MemSet->getLength(), MemSet->getAlignment(), 840 MemSet->isVolatile()); 841 Intr->eraseFromParent(); 842 continue; 843 } 844 case Intrinsic::invariant_start: 845 case Intrinsic::invariant_end: 846 case Intrinsic::invariant_group_barrier: 847 Intr->eraseFromParent(); 848 // FIXME: I think the invariant marker should still theoretically apply, 849 // but the intrinsics need to be changed to accept pointers with any 850 // address space. 851 continue; 852 case Intrinsic::objectsize: { 853 Value *Src = Intr->getOperand(0); 854 Type *SrcTy = Src->getType()->getPointerElementType(); 855 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 856 Intrinsic::objectsize, 857 { Intr->getType(), PointerType::get(SrcTy, AS.LOCAL_ADDRESS) } 858 ); 859 860 CallInst *NewCall = Builder.CreateCall( 861 ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)}); 862 Intr->replaceAllUsesWith(NewCall); 863 Intr->eraseFromParent(); 864 continue; 865 } 866 default: 867 Intr->print(errs()); 868 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 869 } 870 } 871 } 872 873 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 874 return new AMDGPUPromoteAlloca(TM); 875 } 876