1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "Utils/AMDGPUBaseInfo.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/Constant.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalValue.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <map> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 #define DEBUG_TYPE "amdgpu-promote-alloca" 63 64 using namespace llvm; 65 66 namespace { 67 68 // FIXME: This can create globals so should be a module pass. 69 class AMDGPUPromoteAlloca : public FunctionPass { 70 private: 71 const TargetMachine *TM; 72 Module *Mod = nullptr; 73 const DataLayout *DL = nullptr; 74 MDNode *MaxWorkGroupSizeRange = nullptr; 75 76 // FIXME: This should be per-kernel. 77 uint32_t LocalMemLimit = 0; 78 uint32_t CurrentLocalMemUsage = 0; 79 80 bool IsAMDGCN = false; 81 bool IsAMDHSA = false; 82 83 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 84 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 85 86 /// BaseAlloca is the alloca root the search started from. 87 /// Val may be that alloca or a recursive user of it. 88 bool collectUsesWithPtrTypes(Value *BaseAlloca, 89 Value *Val, 90 std::vector<Value*> &WorkList) const; 91 92 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 93 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 94 /// Returns true if both operands are derived from the same alloca. Val should 95 /// be the same value as one of the input operands of UseInst. 96 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 97 Instruction *UseInst, 98 int OpIdx0, int OpIdx1) const; 99 100 public: 101 static char ID; 102 103 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 104 FunctionPass(ID), TM(TM_) {} 105 106 bool doInitialization(Module &M) override; 107 bool runOnFunction(Function &F) override; 108 109 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 110 111 void handleAlloca(AllocaInst &I); 112 113 void getAnalysisUsage(AnalysisUsage &AU) const override { 114 AU.setPreservesCFG(); 115 FunctionPass::getAnalysisUsage(AU); 116 } 117 }; 118 119 } // end anonymous namespace 120 121 char AMDGPUPromoteAlloca::ID = 0; 122 123 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 124 "AMDGPU promote alloca to vector or LDS", false, false) 125 126 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 127 128 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 129 if (!TM) 130 return false; 131 132 Mod = &M; 133 DL = &Mod->getDataLayout(); 134 135 // The maximum workitem id. 136 // 137 // FIXME: Should get as subtarget property. Usually runtime enforced max is 138 // 256. 139 MDBuilder MDB(Mod->getContext()); 140 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 141 142 const Triple &TT = TM->getTargetTriple(); 143 144 IsAMDGCN = TT.getArch() == Triple::amdgcn; 145 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 146 147 return false; 148 } 149 150 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 151 if (!TM || skipFunction(F)) 152 return false; 153 154 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 155 if (!ST.isPromoteAllocaEnabled()) 156 return false; 157 158 FunctionType *FTy = F.getFunctionType(); 159 160 // If the function has any arguments in the local address space, then it's 161 // possible these arguments require the entire local memory space, so 162 // we cannot use local memory in the pass. 163 for (Type *ParamTy : FTy->params()) { 164 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 165 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 166 LocalMemLimit = 0; 167 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 168 "local memory disabled.\n"); 169 return false; 170 } 171 } 172 173 LocalMemLimit = ST.getLocalMemorySize(); 174 if (LocalMemLimit == 0) 175 return false; 176 177 const DataLayout &DL = Mod->getDataLayout(); 178 179 // Check how much local memory is being used by global objects 180 CurrentLocalMemUsage = 0; 181 for (GlobalVariable &GV : Mod->globals()) { 182 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 183 continue; 184 185 for (const User *U : GV.users()) { 186 const Instruction *Use = dyn_cast<Instruction>(U); 187 if (!Use) 188 continue; 189 190 if (Use->getParent()->getParent() == &F) { 191 unsigned Align = GV.getAlignment(); 192 if (Align == 0) 193 Align = DL.getABITypeAlignment(GV.getValueType()); 194 195 // FIXME: Try to account for padding here. The padding is currently 196 // determined from the inverse order of uses in the function. I'm not 197 // sure if the use list order is in any way connected to this, so the 198 // total reported size is likely incorrect. 199 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 200 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 201 CurrentLocalMemUsage += AllocSize; 202 break; 203 } 204 } 205 } 206 207 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 208 F); 209 210 // Restrict local memory usage so that we don't drastically reduce occupancy, 211 // unless it is already significantly reduced. 212 213 // TODO: Have some sort of hint or other heuristics to guess occupancy based 214 // on other factors.. 215 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 216 if (OccupancyHint == 0) 217 OccupancyHint = 7; 218 219 // Clamp to max value. 220 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 221 222 // Check the hint but ignore it if it's obviously wrong from the existing LDS 223 // usage. 224 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 225 226 227 // Round up to the next tier of usage. 228 unsigned MaxSizeWithWaveCount 229 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 230 231 // Program is possibly broken by using more local mem than available. 232 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 233 return false; 234 235 LocalMemLimit = MaxSizeWithWaveCount; 236 237 DEBUG( 238 dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" 239 << " Rounding size to " << MaxSizeWithWaveCount 240 << " with a maximum occupancy of " << MaxOccupancy << '\n' 241 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 242 << " available for promotion\n" 243 ); 244 245 BasicBlock &EntryBB = *F.begin(); 246 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 247 AllocaInst *AI = dyn_cast<AllocaInst>(I); 248 249 ++I; 250 if (AI) 251 handleAlloca(*AI); 252 } 253 254 return true; 255 } 256 257 std::pair<Value *, Value *> 258 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 259 if (!IsAMDHSA) { 260 Function *LocalSizeYFn 261 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 262 Function *LocalSizeZFn 263 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 264 265 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 266 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 267 268 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 269 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 270 271 return std::make_pair(LocalSizeY, LocalSizeZ); 272 } 273 274 // We must read the size out of the dispatch pointer. 275 assert(IsAMDGCN); 276 277 // We are indexing into this struct, and want to extract the workgroup_size_* 278 // fields. 279 // 280 // typedef struct hsa_kernel_dispatch_packet_s { 281 // uint16_t header; 282 // uint16_t setup; 283 // uint16_t workgroup_size_x ; 284 // uint16_t workgroup_size_y; 285 // uint16_t workgroup_size_z; 286 // uint16_t reserved0; 287 // uint32_t grid_size_x ; 288 // uint32_t grid_size_y ; 289 // uint32_t grid_size_z; 290 // 291 // uint32_t private_segment_size; 292 // uint32_t group_segment_size; 293 // uint64_t kernel_object; 294 // 295 // #ifdef HSA_LARGE_MODEL 296 // void *kernarg_address; 297 // #elif defined HSA_LITTLE_ENDIAN 298 // void *kernarg_address; 299 // uint32_t reserved1; 300 // #else 301 // uint32_t reserved1; 302 // void *kernarg_address; 303 // #endif 304 // uint64_t reserved2; 305 // hsa_signal_t completion_signal; // uint64_t wrapper 306 // } hsa_kernel_dispatch_packet_t 307 // 308 Function *DispatchPtrFn 309 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 310 311 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 312 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 313 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 314 315 // Size of the dispatch packet struct. 316 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 317 318 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 319 Value *CastDispatchPtr = Builder.CreateBitCast( 320 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 321 322 // We could do a single 64-bit load here, but it's likely that the basic 323 // 32-bit and extract sequence is already present, and it is probably easier 324 // to CSE this. The loads should be mergable later anyway. 325 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 326 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 327 328 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 329 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 330 331 MDNode *MD = MDNode::get(Mod->getContext(), None); 332 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 333 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 334 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 335 336 // Extract y component. Upper half of LoadZU should be zero already. 337 Value *Y = Builder.CreateLShr(LoadXY, 16); 338 339 return std::make_pair(Y, LoadZU); 340 } 341 342 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 343 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 344 345 switch (N) { 346 case 0: 347 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 348 : Intrinsic::r600_read_tidig_x; 349 break; 350 case 1: 351 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 352 : Intrinsic::r600_read_tidig_y; 353 break; 354 355 case 2: 356 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 357 : Intrinsic::r600_read_tidig_z; 358 break; 359 default: 360 llvm_unreachable("invalid dimension"); 361 } 362 363 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 364 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 365 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 366 367 return CI; 368 } 369 370 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 371 return VectorType::get(ArrayTy->getArrayElementType(), 372 ArrayTy->getArrayNumElements()); 373 } 374 375 static Value * 376 calculateVectorIndex(Value *Ptr, 377 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 378 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 379 380 auto I = GEPIdx.find(GEP); 381 return I == GEPIdx.end() ? nullptr : I->second; 382 } 383 384 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 385 // FIXME we only support simple cases 386 if (GEP->getNumOperands() != 3) 387 return nullptr; 388 389 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 390 if (!I0 || !I0->isZero()) 391 return nullptr; 392 393 return GEP->getOperand(2); 394 } 395 396 // Not an instruction handled below to turn into a vector. 397 // 398 // TODO: Check isTriviallyVectorizable for calls and handle other 399 // instructions. 400 static bool canVectorizeInst(Instruction *Inst, User *User) { 401 switch (Inst->getOpcode()) { 402 case Instruction::Load: 403 case Instruction::BitCast: 404 case Instruction::AddrSpaceCast: 405 return true; 406 case Instruction::Store: { 407 // Must be the stored pointer operand, not a stored value. 408 StoreInst *SI = cast<StoreInst>(Inst); 409 return SI->getPointerOperand() == User; 410 } 411 default: 412 return false; 413 } 414 } 415 416 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 417 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 418 419 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 420 421 // FIXME: There is no reason why we can't support larger arrays, we 422 // are just being conservative for now. 423 if (!AllocaTy || 424 AllocaTy->getElementType()->isVectorTy() || 425 AllocaTy->getNumElements() > 4 || 426 AllocaTy->getNumElements() < 2) { 427 DEBUG(dbgs() << " Cannot convert type to vector\n"); 428 return false; 429 } 430 431 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 432 std::vector<Value*> WorkList; 433 for (User *AllocaUser : Alloca->users()) { 434 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 435 if (!GEP) { 436 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 437 return false; 438 439 WorkList.push_back(AllocaUser); 440 continue; 441 } 442 443 Value *Index = GEPToVectorIndex(GEP); 444 445 // If we can't compute a vector index from this GEP, then we can't 446 // promote this alloca to vector. 447 if (!Index) { 448 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 449 return false; 450 } 451 452 GEPVectorIdx[GEP] = Index; 453 for (User *GEPUser : AllocaUser->users()) { 454 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 455 return false; 456 457 WorkList.push_back(GEPUser); 458 } 459 } 460 461 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 462 463 DEBUG(dbgs() << " Converting alloca to vector " 464 << *AllocaTy << " -> " << *VectorTy << '\n'); 465 466 for (Value *V : WorkList) { 467 Instruction *Inst = cast<Instruction>(V); 468 IRBuilder<> Builder(Inst); 469 switch (Inst->getOpcode()) { 470 case Instruction::Load: { 471 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 472 Value *Ptr = Inst->getOperand(0); 473 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 474 475 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 476 Value *VecValue = Builder.CreateLoad(BitCast); 477 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 478 Inst->replaceAllUsesWith(ExtractElement); 479 Inst->eraseFromParent(); 480 break; 481 } 482 case Instruction::Store: { 483 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 484 485 Value *Ptr = Inst->getOperand(1); 486 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 487 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 488 Value *VecValue = Builder.CreateLoad(BitCast); 489 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 490 Inst->getOperand(0), 491 Index); 492 Builder.CreateStore(NewVecValue, BitCast); 493 Inst->eraseFromParent(); 494 break; 495 } 496 case Instruction::BitCast: 497 case Instruction::AddrSpaceCast: 498 break; 499 500 default: 501 llvm_unreachable("Inconsistency in instructions promotable to vector"); 502 } 503 } 504 return true; 505 } 506 507 static bool isCallPromotable(CallInst *CI) { 508 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 509 if (!II) 510 return false; 511 512 switch (II->getIntrinsicID()) { 513 case Intrinsic::memcpy: 514 case Intrinsic::memmove: 515 case Intrinsic::memset: 516 case Intrinsic::lifetime_start: 517 case Intrinsic::lifetime_end: 518 case Intrinsic::invariant_start: 519 case Intrinsic::invariant_end: 520 case Intrinsic::invariant_group_barrier: 521 case Intrinsic::objectsize: 522 return true; 523 default: 524 return false; 525 } 526 } 527 528 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 529 Value *Val, 530 Instruction *Inst, 531 int OpIdx0, 532 int OpIdx1) const { 533 // Figure out which operand is the one we might not be promoting. 534 Value *OtherOp = Inst->getOperand(OpIdx0); 535 if (Val == OtherOp) 536 OtherOp = Inst->getOperand(OpIdx1); 537 538 if (isa<ConstantPointerNull>(OtherOp)) 539 return true; 540 541 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 542 if (!isa<AllocaInst>(OtherObj)) 543 return false; 544 545 // TODO: We should be able to replace undefs with the right pointer type. 546 547 // TODO: If we know the other base object is another promotable 548 // alloca, not necessarily this alloca, we can do this. The 549 // important part is both must have the same address space at 550 // the end. 551 if (OtherObj != BaseAlloca) { 552 DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); 553 return false; 554 } 555 556 return true; 557 } 558 559 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 560 Value *BaseAlloca, 561 Value *Val, 562 std::vector<Value*> &WorkList) const { 563 564 for (User *User : Val->users()) { 565 if (is_contained(WorkList, User)) 566 continue; 567 568 if (CallInst *CI = dyn_cast<CallInst>(User)) { 569 if (!isCallPromotable(CI)) 570 return false; 571 572 WorkList.push_back(User); 573 continue; 574 } 575 576 Instruction *UseInst = cast<Instruction>(User); 577 if (UseInst->getOpcode() == Instruction::PtrToInt) 578 return false; 579 580 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 581 if (LI->isVolatile()) 582 return false; 583 584 continue; 585 } 586 587 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 588 if (SI->isVolatile()) 589 return false; 590 591 // Reject if the stored value is not the pointer operand. 592 if (SI->getPointerOperand() != Val) 593 return false; 594 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 595 if (RMW->isVolatile()) 596 return false; 597 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 598 if (CAS->isVolatile()) 599 return false; 600 } 601 602 // Only promote a select if we know that the other select operand 603 // is from another pointer that will also be promoted. 604 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 605 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 606 return false; 607 608 // May need to rewrite constant operands. 609 WorkList.push_back(ICmp); 610 } 611 612 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 613 // Give up if the pointer may be captured. 614 if (PointerMayBeCaptured(UseInst, true, true)) 615 return false; 616 // Don't collect the users of this. 617 WorkList.push_back(User); 618 continue; 619 } 620 621 if (!User->getType()->isPointerTy()) 622 continue; 623 624 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 625 // Be conservative if an address could be computed outside the bounds of 626 // the alloca. 627 if (!GEP->isInBounds()) 628 return false; 629 } 630 631 // Only promote a select if we know that the other select operand is from 632 // another pointer that will also be promoted. 633 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 634 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 635 return false; 636 } 637 638 // Repeat for phis. 639 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 640 // TODO: Handle more complex cases. We should be able to replace loops 641 // over arrays. 642 switch (Phi->getNumIncomingValues()) { 643 case 1: 644 break; 645 case 2: 646 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 647 return false; 648 break; 649 default: 650 return false; 651 } 652 } 653 654 WorkList.push_back(User); 655 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 656 return false; 657 } 658 659 return true; 660 } 661 662 // FIXME: Should try to pick the most likely to be profitable allocas first. 663 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { 664 // Array allocations are probably not worth handling, since an allocation of 665 // the array type is the canonical form. 666 if (!I.isStaticAlloca() || I.isArrayAllocation()) 667 return; 668 669 IRBuilder<> Builder(&I); 670 671 // First try to replace the alloca with a vector 672 Type *AllocaTy = I.getAllocatedType(); 673 674 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 675 676 if (tryPromoteAllocaToVector(&I)) { 677 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 678 return; 679 } 680 681 const Function &ContainingFunction = *I.getParent()->getParent(); 682 683 // Don't promote the alloca to LDS for shader calling conventions as the work 684 // item ID intrinsics are not supported for these calling conventions. 685 // Furthermore not all LDS is available for some of the stages. 686 if (AMDGPU::isShader(ContainingFunction.getCallingConv())) 687 return; 688 689 const AMDGPUSubtarget &ST = 690 TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction); 691 // FIXME: We should also try to get this value from the reqd_work_group_size 692 // function attribute if it is available. 693 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 694 695 const DataLayout &DL = Mod->getDataLayout(); 696 697 unsigned Align = I.getAlignment(); 698 if (Align == 0) 699 Align = DL.getABITypeAlignment(I.getAllocatedType()); 700 701 // FIXME: This computed padding is likely wrong since it depends on inverse 702 // usage order. 703 // 704 // FIXME: It is also possible that if we're allowed to use all of the memory 705 // could could end up using more than the maximum due to alignment padding. 706 707 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 708 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 709 NewSize += AllocSize; 710 711 if (NewSize > LocalMemLimit) { 712 DEBUG(dbgs() << " " << AllocSize 713 << " bytes of local memory not available to promote\n"); 714 return; 715 } 716 717 CurrentLocalMemUsage = NewSize; 718 719 std::vector<Value*> WorkList; 720 721 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 722 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 723 return; 724 } 725 726 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 727 728 Function *F = I.getParent()->getParent(); 729 730 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 731 GlobalVariable *GV = new GlobalVariable( 732 *Mod, GVTy, false, GlobalValue::InternalLinkage, 733 UndefValue::get(GVTy), 734 Twine(F->getName()) + Twine('.') + I.getName(), 735 nullptr, 736 GlobalVariable::NotThreadLocal, 737 AMDGPUAS::LOCAL_ADDRESS); 738 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 739 GV->setAlignment(I.getAlignment()); 740 741 Value *TCntY, *TCntZ; 742 743 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 744 Value *TIdX = getWorkitemID(Builder, 0); 745 Value *TIdY = getWorkitemID(Builder, 1); 746 Value *TIdZ = getWorkitemID(Builder, 2); 747 748 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 749 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 750 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 751 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 752 TID = Builder.CreateAdd(TID, TIdZ); 753 754 Value *Indices[] = { 755 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 756 TID 757 }; 758 759 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 760 I.mutateType(Offset->getType()); 761 I.replaceAllUsesWith(Offset); 762 I.eraseFromParent(); 763 764 for (Value *V : WorkList) { 765 CallInst *Call = dyn_cast<CallInst>(V); 766 if (!Call) { 767 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 768 Value *Src0 = CI->getOperand(0); 769 Type *EltTy = Src0->getType()->getPointerElementType(); 770 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 771 772 if (isa<ConstantPointerNull>(CI->getOperand(0))) 773 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 774 775 if (isa<ConstantPointerNull>(CI->getOperand(1))) 776 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 777 778 continue; 779 } 780 781 // The operand's value should be corrected on its own and we don't want to 782 // touch the users. 783 if (isa<AddrSpaceCastInst>(V)) 784 continue; 785 786 Type *EltTy = V->getType()->getPointerElementType(); 787 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 788 789 // FIXME: It doesn't really make sense to try to do this for all 790 // instructions. 791 V->mutateType(NewTy); 792 793 // Adjust the types of any constant operands. 794 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 795 if (isa<ConstantPointerNull>(SI->getOperand(1))) 796 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 797 798 if (isa<ConstantPointerNull>(SI->getOperand(2))) 799 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 800 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 801 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 802 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 803 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 804 } 805 } 806 807 continue; 808 } 809 810 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 811 Builder.SetInsertPoint(Intr); 812 switch (Intr->getIntrinsicID()) { 813 case Intrinsic::lifetime_start: 814 case Intrinsic::lifetime_end: 815 // These intrinsics are for address space 0 only 816 Intr->eraseFromParent(); 817 continue; 818 case Intrinsic::memcpy: { 819 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 820 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 821 MemCpy->getLength(), MemCpy->getAlignment(), 822 MemCpy->isVolatile()); 823 Intr->eraseFromParent(); 824 continue; 825 } 826 case Intrinsic::memmove: { 827 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 828 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 829 MemMove->getLength(), MemMove->getAlignment(), 830 MemMove->isVolatile()); 831 Intr->eraseFromParent(); 832 continue; 833 } 834 case Intrinsic::memset: { 835 MemSetInst *MemSet = cast<MemSetInst>(Intr); 836 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 837 MemSet->getLength(), MemSet->getAlignment(), 838 MemSet->isVolatile()); 839 Intr->eraseFromParent(); 840 continue; 841 } 842 case Intrinsic::invariant_start: 843 case Intrinsic::invariant_end: 844 case Intrinsic::invariant_group_barrier: 845 Intr->eraseFromParent(); 846 // FIXME: I think the invariant marker should still theoretically apply, 847 // but the intrinsics need to be changed to accept pointers with any 848 // address space. 849 continue; 850 case Intrinsic::objectsize: { 851 Value *Src = Intr->getOperand(0); 852 Type *SrcTy = Src->getType()->getPointerElementType(); 853 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 854 Intrinsic::objectsize, 855 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 856 ); 857 858 CallInst *NewCall = Builder.CreateCall( 859 ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)}); 860 Intr->replaceAllUsesWith(NewCall); 861 Intr->eraseFromParent(); 862 continue; 863 } 864 default: 865 Intr->print(errs()); 866 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 867 } 868 } 869 } 870 871 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 872 return new AMDGPUPromoteAlloca(TM); 873 } 874