1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass eliminates allocas by either converting them into vectors or 10 // by migrating them to local address space. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "GCNSubtarget.h" 16 #include "llvm/Analysis/CaptureTracking.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/CodeGen/TargetPassConfig.h" 19 #include "llvm/IR/IRBuilder.h" 20 #include "llvm/IR/IntrinsicsAMDGPU.h" 21 #include "llvm/IR/IntrinsicsR600.h" 22 #include "llvm/Pass.h" 23 #include "llvm/Target/TargetMachine.h" 24 25 #define DEBUG_TYPE "amdgpu-promote-alloca" 26 27 using namespace llvm; 28 29 namespace { 30 31 static cl::opt<bool> DisablePromoteAllocaToVector( 32 "disable-promote-alloca-to-vector", 33 cl::desc("Disable promote alloca to vector"), 34 cl::init(false)); 35 36 static cl::opt<bool> DisablePromoteAllocaToLDS( 37 "disable-promote-alloca-to-lds", 38 cl::desc("Disable promote alloca to LDS"), 39 cl::init(false)); 40 41 static cl::opt<unsigned> PromoteAllocaToVectorLimit( 42 "amdgpu-promote-alloca-to-vector-limit", 43 cl::desc("Maximum byte size to consider promote alloca to vector"), 44 cl::init(0)); 45 46 // FIXME: This can create globals so should be a module pass. 47 class AMDGPUPromoteAlloca : public FunctionPass { 48 public: 49 static char ID; 50 51 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 52 53 bool runOnFunction(Function &F) override; 54 55 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 56 57 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 58 59 void getAnalysisUsage(AnalysisUsage &AU) const override { 60 AU.setPreservesCFG(); 61 FunctionPass::getAnalysisUsage(AU); 62 } 63 }; 64 65 class AMDGPUPromoteAllocaImpl { 66 private: 67 const TargetMachine &TM; 68 Module *Mod = nullptr; 69 const DataLayout *DL = nullptr; 70 71 // FIXME: This should be per-kernel. 72 uint32_t LocalMemLimit = 0; 73 uint32_t CurrentLocalMemUsage = 0; 74 unsigned MaxVGPRs; 75 76 bool IsAMDGCN = false; 77 bool IsAMDHSA = false; 78 79 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 80 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 81 82 /// BaseAlloca is the alloca root the search started from. 83 /// Val may be that alloca or a recursive user of it. 84 bool collectUsesWithPtrTypes(Value *BaseAlloca, 85 Value *Val, 86 std::vector<Value*> &WorkList) const; 87 88 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 89 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 90 /// Returns true if both operands are derived from the same alloca. Val should 91 /// be the same value as one of the input operands of UseInst. 92 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 93 Instruction *UseInst, 94 int OpIdx0, int OpIdx1) const; 95 96 /// Check whether we have enough local memory for promotion. 97 bool hasSufficientLocalMem(const Function &F); 98 99 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 100 101 public: 102 AMDGPUPromoteAllocaImpl(TargetMachine &TM) : TM(TM) {} 103 bool run(Function &F); 104 }; 105 106 class AMDGPUPromoteAllocaToVector : public FunctionPass { 107 public: 108 static char ID; 109 110 AMDGPUPromoteAllocaToVector() : FunctionPass(ID) {} 111 112 bool runOnFunction(Function &F) override; 113 114 StringRef getPassName() const override { 115 return "AMDGPU Promote Alloca to vector"; 116 } 117 118 void getAnalysisUsage(AnalysisUsage &AU) const override { 119 AU.setPreservesCFG(); 120 FunctionPass::getAnalysisUsage(AU); 121 } 122 }; 123 124 } // end anonymous namespace 125 126 char AMDGPUPromoteAlloca::ID = 0; 127 char AMDGPUPromoteAllocaToVector::ID = 0; 128 129 INITIALIZE_PASS_BEGIN(AMDGPUPromoteAlloca, DEBUG_TYPE, 130 "AMDGPU promote alloca to vector or LDS", false, false) 131 // Move LDS uses from functions to kernels before promote alloca for accurate 132 // estimation of LDS available 133 INITIALIZE_PASS_DEPENDENCY(AMDGPULowerModuleLDS) 134 INITIALIZE_PASS_END(AMDGPUPromoteAlloca, DEBUG_TYPE, 135 "AMDGPU promote alloca to vector or LDS", false, false) 136 137 INITIALIZE_PASS(AMDGPUPromoteAllocaToVector, DEBUG_TYPE "-to-vector", 138 "AMDGPU promote alloca to vector", false, false) 139 140 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 141 char &llvm::AMDGPUPromoteAllocaToVectorID = AMDGPUPromoteAllocaToVector::ID; 142 143 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 144 if (skipFunction(F)) 145 return false; 146 147 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 148 return AMDGPUPromoteAllocaImpl(TPC->getTM<TargetMachine>()).run(F); 149 } 150 return false; 151 } 152 153 PreservedAnalyses AMDGPUPromoteAllocaPass::run(Function &F, 154 FunctionAnalysisManager &AM) { 155 bool Changed = AMDGPUPromoteAllocaImpl(TM).run(F); 156 if (Changed) { 157 PreservedAnalyses PA; 158 PA.preserveSet<CFGAnalyses>(); 159 return PA; 160 } 161 return PreservedAnalyses::all(); 162 } 163 164 bool AMDGPUPromoteAllocaImpl::run(Function &F) { 165 Mod = F.getParent(); 166 DL = &Mod->getDataLayout(); 167 168 const Triple &TT = TM.getTargetTriple(); 169 IsAMDGCN = TT.getArch() == Triple::amdgcn; 170 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 171 172 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 173 if (!ST.isPromoteAllocaEnabled()) 174 return false; 175 176 if (IsAMDGCN) { 177 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 178 MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 179 } else { 180 MaxVGPRs = 128; 181 } 182 183 bool SufficientLDS = hasSufficientLocalMem(F); 184 bool Changed = false; 185 BasicBlock &EntryBB = *F.begin(); 186 187 SmallVector<AllocaInst *, 16> Allocas; 188 for (Instruction &I : EntryBB) { 189 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 190 Allocas.push_back(AI); 191 } 192 193 for (AllocaInst *AI : Allocas) { 194 if (handleAlloca(*AI, SufficientLDS)) 195 Changed = true; 196 } 197 198 return Changed; 199 } 200 201 std::pair<Value *, Value *> 202 AMDGPUPromoteAllocaImpl::getLocalSizeYZ(IRBuilder<> &Builder) { 203 Function &F = *Builder.GetInsertBlock()->getParent(); 204 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 205 206 if (!IsAMDHSA) { 207 Function *LocalSizeYFn 208 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 209 Function *LocalSizeZFn 210 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 211 212 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 213 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 214 215 ST.makeLIDRangeMetadata(LocalSizeY); 216 ST.makeLIDRangeMetadata(LocalSizeZ); 217 218 return std::make_pair(LocalSizeY, LocalSizeZ); 219 } 220 221 // We must read the size out of the dispatch pointer. 222 assert(IsAMDGCN); 223 224 // We are indexing into this struct, and want to extract the workgroup_size_* 225 // fields. 226 // 227 // typedef struct hsa_kernel_dispatch_packet_s { 228 // uint16_t header; 229 // uint16_t setup; 230 // uint16_t workgroup_size_x ; 231 // uint16_t workgroup_size_y; 232 // uint16_t workgroup_size_z; 233 // uint16_t reserved0; 234 // uint32_t grid_size_x ; 235 // uint32_t grid_size_y ; 236 // uint32_t grid_size_z; 237 // 238 // uint32_t private_segment_size; 239 // uint32_t group_segment_size; 240 // uint64_t kernel_object; 241 // 242 // #ifdef HSA_LARGE_MODEL 243 // void *kernarg_address; 244 // #elif defined HSA_LITTLE_ENDIAN 245 // void *kernarg_address; 246 // uint32_t reserved1; 247 // #else 248 // uint32_t reserved1; 249 // void *kernarg_address; 250 // #endif 251 // uint64_t reserved2; 252 // hsa_signal_t completion_signal; // uint64_t wrapper 253 // } hsa_kernel_dispatch_packet_t 254 // 255 Function *DispatchPtrFn 256 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 257 258 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 259 DispatchPtr->addRetAttr(Attribute::NoAlias); 260 DispatchPtr->addRetAttr(Attribute::NonNull); 261 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 262 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 263 F.removeFnAttr("amdgpu-no-dispatch-ptr"); 264 265 // Size of the dispatch packet struct. 266 DispatchPtr->addDereferenceableRetAttr(64); 267 268 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 269 Value *CastDispatchPtr = Builder.CreateBitCast( 270 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 271 272 // We could do a single 64-bit load here, but it's likely that the basic 273 // 32-bit and extract sequence is already present, and it is probably easier 274 // to CSE this. The loads should be mergable later anyway. 275 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 1); 276 LoadInst *LoadXY = Builder.CreateAlignedLoad(I32Ty, GEPXY, Align(4)); 277 278 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(I32Ty, CastDispatchPtr, 2); 279 LoadInst *LoadZU = Builder.CreateAlignedLoad(I32Ty, GEPZU, Align(4)); 280 281 MDNode *MD = MDNode::get(Mod->getContext(), None); 282 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 283 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 284 ST.makeLIDRangeMetadata(LoadZU); 285 286 // Extract y component. Upper half of LoadZU should be zero already. 287 Value *Y = Builder.CreateLShr(LoadXY, 16); 288 289 return std::make_pair(Y, LoadZU); 290 } 291 292 Value *AMDGPUPromoteAllocaImpl::getWorkitemID(IRBuilder<> &Builder, 293 unsigned N) { 294 Function *F = Builder.GetInsertBlock()->getParent(); 295 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, *F); 296 Intrinsic::ID IntrID = Intrinsic::not_intrinsic; 297 StringRef AttrName; 298 299 switch (N) { 300 case 0: 301 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_x 302 : (Intrinsic::ID)Intrinsic::r600_read_tidig_x; 303 AttrName = "amdgpu-no-workitem-id-x"; 304 break; 305 case 1: 306 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_y 307 : (Intrinsic::ID)Intrinsic::r600_read_tidig_y; 308 AttrName = "amdgpu-no-workitem-id-y"; 309 break; 310 311 case 2: 312 IntrID = IsAMDGCN ? (Intrinsic::ID)Intrinsic::amdgcn_workitem_id_z 313 : (Intrinsic::ID)Intrinsic::r600_read_tidig_z; 314 AttrName = "amdgpu-no-workitem-id-z"; 315 break; 316 default: 317 llvm_unreachable("invalid dimension"); 318 } 319 320 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 321 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 322 ST.makeLIDRangeMetadata(CI); 323 F->removeFnAttr(AttrName); 324 325 return CI; 326 } 327 328 static FixedVectorType *arrayTypeToVecType(ArrayType *ArrayTy) { 329 return FixedVectorType::get(ArrayTy->getElementType(), 330 ArrayTy->getNumElements()); 331 } 332 333 static Value *stripBitcasts(Value *V) { 334 while (Instruction *I = dyn_cast<Instruction>(V)) { 335 if (I->getOpcode() != Instruction::BitCast) 336 break; 337 V = I->getOperand(0); 338 } 339 return V; 340 } 341 342 static Value * 343 calculateVectorIndex(Value *Ptr, 344 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 345 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(stripBitcasts(Ptr)); 346 if (!GEP) 347 return nullptr; 348 349 auto I = GEPIdx.find(GEP); 350 return I == GEPIdx.end() ? nullptr : I->second; 351 } 352 353 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 354 // FIXME we only support simple cases 355 if (GEP->getNumOperands() != 3) 356 return nullptr; 357 358 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 359 if (!I0 || !I0->isZero()) 360 return nullptr; 361 362 return GEP->getOperand(2); 363 } 364 365 // Not an instruction handled below to turn into a vector. 366 // 367 // TODO: Check isTriviallyVectorizable for calls and handle other 368 // instructions. 369 static bool canVectorizeInst(Instruction *Inst, User *User, 370 const DataLayout &DL) { 371 switch (Inst->getOpcode()) { 372 case Instruction::Load: { 373 // Currently only handle the case where the Pointer Operand is a GEP. 374 // Also we could not vectorize volatile or atomic loads. 375 LoadInst *LI = cast<LoadInst>(Inst); 376 if (isa<AllocaInst>(User) && 377 LI->getPointerOperandType() == User->getType() && 378 isa<VectorType>(LI->getType())) 379 return true; 380 381 Instruction *PtrInst = dyn_cast<Instruction>(LI->getPointerOperand()); 382 if (!PtrInst) 383 return false; 384 385 return (PtrInst->getOpcode() == Instruction::GetElementPtr || 386 PtrInst->getOpcode() == Instruction::BitCast) && 387 LI->isSimple(); 388 } 389 case Instruction::BitCast: 390 return true; 391 case Instruction::Store: { 392 // Must be the stored pointer operand, not a stored value, plus 393 // since it should be canonical form, the User should be a GEP. 394 // Also we could not vectorize volatile or atomic stores. 395 StoreInst *SI = cast<StoreInst>(Inst); 396 if (isa<AllocaInst>(User) && 397 SI->getPointerOperandType() == User->getType() && 398 isa<VectorType>(SI->getValueOperand()->getType())) 399 return true; 400 401 Instruction *UserInst = dyn_cast<Instruction>(User); 402 if (!UserInst) 403 return false; 404 405 return (SI->getPointerOperand() == User) && 406 (UserInst->getOpcode() == Instruction::GetElementPtr || 407 UserInst->getOpcode() == Instruction::BitCast) && 408 SI->isSimple(); 409 } 410 default: 411 return false; 412 } 413 } 414 415 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, const DataLayout &DL, 416 unsigned MaxVGPRs) { 417 418 if (DisablePromoteAllocaToVector) { 419 LLVM_DEBUG(dbgs() << " Promotion alloca to vector is disabled\n"); 420 return false; 421 } 422 423 Type *AllocaTy = Alloca->getAllocatedType(); 424 auto *VectorTy = dyn_cast<FixedVectorType>(AllocaTy); 425 if (auto *ArrayTy = dyn_cast<ArrayType>(AllocaTy)) { 426 if (VectorType::isValidElementType(ArrayTy->getElementType()) && 427 ArrayTy->getNumElements() > 0) 428 VectorTy = arrayTypeToVecType(ArrayTy); 429 } 430 431 // Use up to 1/4 of available register budget for vectorization. 432 unsigned Limit = PromoteAllocaToVectorLimit ? PromoteAllocaToVectorLimit * 8 433 : (MaxVGPRs * 32); 434 435 if (DL.getTypeSizeInBits(AllocaTy) * 4 > Limit) { 436 LLVM_DEBUG(dbgs() << " Alloca too big for vectorization with " 437 << MaxVGPRs << " registers available\n"); 438 return false; 439 } 440 441 LLVM_DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 442 443 // FIXME: There is no reason why we can't support larger arrays, we 444 // are just being conservative for now. 445 // FIXME: We also reject alloca's of the form [ 2 x [ 2 x i32 ]] or equivalent. Potentially these 446 // could also be promoted but we don't currently handle this case 447 if (!VectorTy || VectorTy->getNumElements() > 16 || 448 VectorTy->getNumElements() < 2) { 449 LLVM_DEBUG(dbgs() << " Cannot convert type to vector\n"); 450 return false; 451 } 452 453 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 454 std::vector<Value *> WorkList; 455 SmallVector<User *, 8> Users(Alloca->users()); 456 SmallVector<User *, 8> UseUsers(Users.size(), Alloca); 457 Type *VecEltTy = VectorTy->getElementType(); 458 while (!Users.empty()) { 459 User *AllocaUser = Users.pop_back_val(); 460 User *UseUser = UseUsers.pop_back_val(); 461 Instruction *Inst = dyn_cast<Instruction>(AllocaUser); 462 463 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 464 if (!GEP) { 465 if (!canVectorizeInst(Inst, UseUser, DL)) 466 return false; 467 468 if (Inst->getOpcode() == Instruction::BitCast) { 469 Type *FromTy = Inst->getOperand(0)->getType()->getPointerElementType(); 470 Type *ToTy = Inst->getType()->getPointerElementType(); 471 if (FromTy->isAggregateType() || ToTy->isAggregateType() || 472 DL.getTypeSizeInBits(FromTy) != DL.getTypeSizeInBits(ToTy)) 473 continue; 474 475 for (User *CastUser : Inst->users()) { 476 if (isAssumeLikeIntrinsic(cast<Instruction>(CastUser))) 477 continue; 478 Users.push_back(CastUser); 479 UseUsers.push_back(Inst); 480 } 481 482 continue; 483 } 484 485 WorkList.push_back(AllocaUser); 486 continue; 487 } 488 489 Value *Index = GEPToVectorIndex(GEP); 490 491 // If we can't compute a vector index from this GEP, then we can't 492 // promote this alloca to vector. 493 if (!Index) { 494 LLVM_DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP 495 << '\n'); 496 return false; 497 } 498 499 GEPVectorIdx[GEP] = Index; 500 Users.append(GEP->user_begin(), GEP->user_end()); 501 UseUsers.append(GEP->getNumUses(), GEP); 502 } 503 504 LLVM_DEBUG(dbgs() << " Converting alloca to vector " << *AllocaTy << " -> " 505 << *VectorTy << '\n'); 506 507 for (Value *V : WorkList) { 508 Instruction *Inst = cast<Instruction>(V); 509 IRBuilder<> Builder(Inst); 510 switch (Inst->getOpcode()) { 511 case Instruction::Load: { 512 if (Inst->getType() == AllocaTy || Inst->getType()->isVectorTy()) 513 break; 514 515 Value *Ptr = cast<LoadInst>(Inst)->getPointerOperand(); 516 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 517 if (!Index) 518 break; 519 520 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 521 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 522 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 523 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 524 if (Inst->getType() != VecEltTy) 525 ExtractElement = Builder.CreateBitOrPointerCast(ExtractElement, Inst->getType()); 526 Inst->replaceAllUsesWith(ExtractElement); 527 Inst->eraseFromParent(); 528 break; 529 } 530 case Instruction::Store: { 531 StoreInst *SI = cast<StoreInst>(Inst); 532 if (SI->getValueOperand()->getType() == AllocaTy || 533 SI->getValueOperand()->getType()->isVectorTy()) 534 break; 535 536 Value *Ptr = SI->getPointerOperand(); 537 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 538 if (!Index) 539 break; 540 541 Type *VecPtrTy = VectorTy->getPointerTo(AMDGPUAS::PRIVATE_ADDRESS); 542 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 543 Value *VecValue = Builder.CreateLoad(VectorTy, BitCast); 544 Value *Elt = SI->getValueOperand(); 545 if (Elt->getType() != VecEltTy) 546 Elt = Builder.CreateBitOrPointerCast(Elt, VecEltTy); 547 Value *NewVecValue = Builder.CreateInsertElement(VecValue, Elt, Index); 548 Builder.CreateStore(NewVecValue, BitCast); 549 Inst->eraseFromParent(); 550 break; 551 } 552 553 default: 554 llvm_unreachable("Inconsistency in instructions promotable to vector"); 555 } 556 } 557 return true; 558 } 559 560 static bool isCallPromotable(CallInst *CI) { 561 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 562 if (!II) 563 return false; 564 565 switch (II->getIntrinsicID()) { 566 case Intrinsic::memcpy: 567 case Intrinsic::memmove: 568 case Intrinsic::memset: 569 case Intrinsic::lifetime_start: 570 case Intrinsic::lifetime_end: 571 case Intrinsic::invariant_start: 572 case Intrinsic::invariant_end: 573 case Intrinsic::launder_invariant_group: 574 case Intrinsic::strip_invariant_group: 575 case Intrinsic::objectsize: 576 return true; 577 default: 578 return false; 579 } 580 } 581 582 bool AMDGPUPromoteAllocaImpl::binaryOpIsDerivedFromSameAlloca( 583 Value *BaseAlloca, Value *Val, Instruction *Inst, int OpIdx0, 584 int OpIdx1) const { 585 // Figure out which operand is the one we might not be promoting. 586 Value *OtherOp = Inst->getOperand(OpIdx0); 587 if (Val == OtherOp) 588 OtherOp = Inst->getOperand(OpIdx1); 589 590 if (isa<ConstantPointerNull>(OtherOp)) 591 return true; 592 593 Value *OtherObj = getUnderlyingObject(OtherOp); 594 if (!isa<AllocaInst>(OtherObj)) 595 return false; 596 597 // TODO: We should be able to replace undefs with the right pointer type. 598 599 // TODO: If we know the other base object is another promotable 600 // alloca, not necessarily this alloca, we can do this. The 601 // important part is both must have the same address space at 602 // the end. 603 if (OtherObj != BaseAlloca) { 604 LLVM_DEBUG( 605 dbgs() << "Found a binary instruction with another alloca object\n"); 606 return false; 607 } 608 609 return true; 610 } 611 612 bool AMDGPUPromoteAllocaImpl::collectUsesWithPtrTypes( 613 Value *BaseAlloca, Value *Val, std::vector<Value *> &WorkList) const { 614 615 for (User *User : Val->users()) { 616 if (is_contained(WorkList, User)) 617 continue; 618 619 if (CallInst *CI = dyn_cast<CallInst>(User)) { 620 if (!isCallPromotable(CI)) 621 return false; 622 623 WorkList.push_back(User); 624 continue; 625 } 626 627 Instruction *UseInst = cast<Instruction>(User); 628 if (UseInst->getOpcode() == Instruction::PtrToInt) 629 return false; 630 631 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 632 if (LI->isVolatile()) 633 return false; 634 635 continue; 636 } 637 638 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 639 if (SI->isVolatile()) 640 return false; 641 642 // Reject if the stored value is not the pointer operand. 643 if (SI->getPointerOperand() != Val) 644 return false; 645 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 646 if (RMW->isVolatile()) 647 return false; 648 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 649 if (CAS->isVolatile()) 650 return false; 651 } 652 653 // Only promote a select if we know that the other select operand 654 // is from another pointer that will also be promoted. 655 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 656 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 657 return false; 658 659 // May need to rewrite constant operands. 660 WorkList.push_back(ICmp); 661 } 662 663 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 664 // Give up if the pointer may be captured. 665 if (PointerMayBeCaptured(UseInst, true, true)) 666 return false; 667 // Don't collect the users of this. 668 WorkList.push_back(User); 669 continue; 670 } 671 672 // Do not promote vector/aggregate type instructions. It is hard to track 673 // their users. 674 if (isa<InsertValueInst>(User) || isa<InsertElementInst>(User)) 675 return false; 676 677 if (!User->getType()->isPointerTy()) 678 continue; 679 680 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 681 // Be conservative if an address could be computed outside the bounds of 682 // the alloca. 683 if (!GEP->isInBounds()) 684 return false; 685 } 686 687 // Only promote a select if we know that the other select operand is from 688 // another pointer that will also be promoted. 689 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 690 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 691 return false; 692 } 693 694 // Repeat for phis. 695 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 696 // TODO: Handle more complex cases. We should be able to replace loops 697 // over arrays. 698 switch (Phi->getNumIncomingValues()) { 699 case 1: 700 break; 701 case 2: 702 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 703 return false; 704 break; 705 default: 706 return false; 707 } 708 } 709 710 WorkList.push_back(User); 711 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 712 return false; 713 } 714 715 return true; 716 } 717 718 bool AMDGPUPromoteAllocaImpl::hasSufficientLocalMem(const Function &F) { 719 720 FunctionType *FTy = F.getFunctionType(); 721 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 722 723 // If the function has any arguments in the local address space, then it's 724 // possible these arguments require the entire local memory space, so 725 // we cannot use local memory in the pass. 726 for (Type *ParamTy : FTy->params()) { 727 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 728 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 729 LocalMemLimit = 0; 730 LLVM_DEBUG(dbgs() << "Function has local memory argument. Promoting to " 731 "local memory disabled.\n"); 732 return false; 733 } 734 } 735 736 LocalMemLimit = ST.getLocalMemorySize(); 737 if (LocalMemLimit == 0) 738 return false; 739 740 SmallVector<const Constant *, 16> Stack; 741 SmallPtrSet<const Constant *, 8> VisitedConstants; 742 SmallPtrSet<const GlobalVariable *, 8> UsedLDS; 743 744 auto visitUsers = [&](const GlobalVariable *GV, const Constant *Val) -> bool { 745 for (const User *U : Val->users()) { 746 if (const Instruction *Use = dyn_cast<Instruction>(U)) { 747 if (Use->getParent()->getParent() == &F) 748 return true; 749 } else { 750 const Constant *C = cast<Constant>(U); 751 if (VisitedConstants.insert(C).second) 752 Stack.push_back(C); 753 } 754 } 755 756 return false; 757 }; 758 759 for (GlobalVariable &GV : Mod->globals()) { 760 if (GV.getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 761 continue; 762 763 if (visitUsers(&GV, &GV)) { 764 UsedLDS.insert(&GV); 765 Stack.clear(); 766 continue; 767 } 768 769 // For any ConstantExpr uses, we need to recursively search the users until 770 // we see a function. 771 while (!Stack.empty()) { 772 const Constant *C = Stack.pop_back_val(); 773 if (visitUsers(&GV, C)) { 774 UsedLDS.insert(&GV); 775 Stack.clear(); 776 break; 777 } 778 } 779 } 780 781 const DataLayout &DL = Mod->getDataLayout(); 782 SmallVector<std::pair<uint64_t, Align>, 16> AllocatedSizes; 783 AllocatedSizes.reserve(UsedLDS.size()); 784 785 for (const GlobalVariable *GV : UsedLDS) { 786 Align Alignment = 787 DL.getValueOrABITypeAlignment(GV->getAlign(), GV->getValueType()); 788 uint64_t AllocSize = DL.getTypeAllocSize(GV->getValueType()); 789 AllocatedSizes.emplace_back(AllocSize, Alignment); 790 } 791 792 // Sort to try to estimate the worst case alignment padding 793 // 794 // FIXME: We should really do something to fix the addresses to a more optimal 795 // value instead 796 llvm::sort(AllocatedSizes, [](std::pair<uint64_t, Align> LHS, 797 std::pair<uint64_t, Align> RHS) { 798 return LHS.second < RHS.second; 799 }); 800 801 // Check how much local memory is being used by global objects 802 CurrentLocalMemUsage = 0; 803 804 // FIXME: Try to account for padding here. The real padding and address is 805 // currently determined from the inverse order of uses in the function when 806 // legalizing, which could also potentially change. We try to estimate the 807 // worst case here, but we probably should fix the addresses earlier. 808 for (auto Alloc : AllocatedSizes) { 809 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Alloc.second); 810 CurrentLocalMemUsage += Alloc.first; 811 } 812 813 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 814 F); 815 816 // Restrict local memory usage so that we don't drastically reduce occupancy, 817 // unless it is already significantly reduced. 818 819 // TODO: Have some sort of hint or other heuristics to guess occupancy based 820 // on other factors.. 821 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 822 if (OccupancyHint == 0) 823 OccupancyHint = 7; 824 825 // Clamp to max value. 826 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 827 828 // Check the hint but ignore it if it's obviously wrong from the existing LDS 829 // usage. 830 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 831 832 833 // Round up to the next tier of usage. 834 unsigned MaxSizeWithWaveCount 835 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 836 837 // Program is possibly broken by using more local mem than available. 838 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 839 return false; 840 841 LocalMemLimit = MaxSizeWithWaveCount; 842 843 LLVM_DEBUG(dbgs() << F.getName() << " uses " << CurrentLocalMemUsage 844 << " bytes of LDS\n" 845 << " Rounding size to " << MaxSizeWithWaveCount 846 << " with a maximum occupancy of " << MaxOccupancy << '\n' 847 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 848 << " available for promotion\n"); 849 850 return true; 851 } 852 853 // FIXME: Should try to pick the most likely to be profitable allocas first. 854 bool AMDGPUPromoteAllocaImpl::handleAlloca(AllocaInst &I, bool SufficientLDS) { 855 // Array allocations are probably not worth handling, since an allocation of 856 // the array type is the canonical form. 857 if (!I.isStaticAlloca() || I.isArrayAllocation()) 858 return false; 859 860 const DataLayout &DL = Mod->getDataLayout(); 861 IRBuilder<> Builder(&I); 862 863 // First try to replace the alloca with a vector 864 Type *AllocaTy = I.getAllocatedType(); 865 866 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 867 868 if (tryPromoteAllocaToVector(&I, DL, MaxVGPRs)) 869 return true; // Promoted to vector. 870 871 if (DisablePromoteAllocaToLDS) 872 return false; 873 874 const Function &ContainingFunction = *I.getParent()->getParent(); 875 CallingConv::ID CC = ContainingFunction.getCallingConv(); 876 877 // Don't promote the alloca to LDS for shader calling conventions as the work 878 // item ID intrinsics are not supported for these calling conventions. 879 // Furthermore not all LDS is available for some of the stages. 880 switch (CC) { 881 case CallingConv::AMDGPU_KERNEL: 882 case CallingConv::SPIR_KERNEL: 883 break; 884 default: 885 LLVM_DEBUG( 886 dbgs() 887 << " promote alloca to LDS not supported with calling convention.\n"); 888 return false; 889 } 890 891 // Not likely to have sufficient local memory for promotion. 892 if (!SufficientLDS) 893 return false; 894 895 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, ContainingFunction); 896 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 897 898 Align Alignment = 899 DL.getValueOrABITypeAlignment(I.getAlign(), I.getAllocatedType()); 900 901 // FIXME: This computed padding is likely wrong since it depends on inverse 902 // usage order. 903 // 904 // FIXME: It is also possible that if we're allowed to use all of the memory 905 // could could end up using more than the maximum due to alignment padding. 906 907 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Alignment); 908 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 909 NewSize += AllocSize; 910 911 if (NewSize > LocalMemLimit) { 912 LLVM_DEBUG(dbgs() << " " << AllocSize 913 << " bytes of local memory not available to promote\n"); 914 return false; 915 } 916 917 CurrentLocalMemUsage = NewSize; 918 919 std::vector<Value*> WorkList; 920 921 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 922 LLVM_DEBUG(dbgs() << " Do not know how to convert all uses\n"); 923 return false; 924 } 925 926 LLVM_DEBUG(dbgs() << "Promoting alloca to local memory\n"); 927 928 Function *F = I.getParent()->getParent(); 929 930 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 931 GlobalVariable *GV = new GlobalVariable( 932 *Mod, GVTy, false, GlobalValue::InternalLinkage, 933 UndefValue::get(GVTy), 934 Twine(F->getName()) + Twine('.') + I.getName(), 935 nullptr, 936 GlobalVariable::NotThreadLocal, 937 AMDGPUAS::LOCAL_ADDRESS); 938 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 939 GV->setAlignment(MaybeAlign(I.getAlignment())); 940 941 Value *TCntY, *TCntZ; 942 943 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 944 Value *TIdX = getWorkitemID(Builder, 0); 945 Value *TIdY = getWorkitemID(Builder, 1); 946 Value *TIdZ = getWorkitemID(Builder, 2); 947 948 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 949 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 950 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 951 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 952 TID = Builder.CreateAdd(TID, TIdZ); 953 954 Value *Indices[] = { 955 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 956 TID 957 }; 958 959 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 960 I.mutateType(Offset->getType()); 961 I.replaceAllUsesWith(Offset); 962 I.eraseFromParent(); 963 964 SmallVector<IntrinsicInst *> DeferredIntrs; 965 966 for (Value *V : WorkList) { 967 CallInst *Call = dyn_cast<CallInst>(V); 968 if (!Call) { 969 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 970 Value *Src0 = CI->getOperand(0); 971 PointerType *NewTy = PointerType::getWithSamePointeeType( 972 cast<PointerType>(Src0->getType()), AMDGPUAS::LOCAL_ADDRESS); 973 974 if (isa<ConstantPointerNull>(CI->getOperand(0))) 975 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 976 977 if (isa<ConstantPointerNull>(CI->getOperand(1))) 978 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 979 980 continue; 981 } 982 983 // The operand's value should be corrected on its own and we don't want to 984 // touch the users. 985 if (isa<AddrSpaceCastInst>(V)) 986 continue; 987 988 PointerType *NewTy = PointerType::getWithSamePointeeType( 989 cast<PointerType>(V->getType()), AMDGPUAS::LOCAL_ADDRESS); 990 991 // FIXME: It doesn't really make sense to try to do this for all 992 // instructions. 993 V->mutateType(NewTy); 994 995 // Adjust the types of any constant operands. 996 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 997 if (isa<ConstantPointerNull>(SI->getOperand(1))) 998 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 999 1000 if (isa<ConstantPointerNull>(SI->getOperand(2))) 1001 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 1002 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 1003 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 1004 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 1005 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 1006 } 1007 } 1008 1009 continue; 1010 } 1011 1012 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 1013 Builder.SetInsertPoint(Intr); 1014 switch (Intr->getIntrinsicID()) { 1015 case Intrinsic::lifetime_start: 1016 case Intrinsic::lifetime_end: 1017 // These intrinsics are for address space 0 only 1018 Intr->eraseFromParent(); 1019 continue; 1020 case Intrinsic::memcpy: 1021 case Intrinsic::memmove: 1022 // These have 2 pointer operands. In case if second pointer also needs 1023 // to be replaced we defer processing of these intrinsics until all 1024 // other values are processed. 1025 DeferredIntrs.push_back(Intr); 1026 continue; 1027 case Intrinsic::memset: { 1028 MemSetInst *MemSet = cast<MemSetInst>(Intr); 1029 Builder.CreateMemSet( 1030 MemSet->getRawDest(), MemSet->getValue(), MemSet->getLength(), 1031 MaybeAlign(MemSet->getDestAlignment()), MemSet->isVolatile()); 1032 Intr->eraseFromParent(); 1033 continue; 1034 } 1035 case Intrinsic::invariant_start: 1036 case Intrinsic::invariant_end: 1037 case Intrinsic::launder_invariant_group: 1038 case Intrinsic::strip_invariant_group: 1039 Intr->eraseFromParent(); 1040 // FIXME: I think the invariant marker should still theoretically apply, 1041 // but the intrinsics need to be changed to accept pointers with any 1042 // address space. 1043 continue; 1044 case Intrinsic::objectsize: { 1045 Value *Src = Intr->getOperand(0); 1046 Function *ObjectSize = Intrinsic::getDeclaration( 1047 Mod, Intrinsic::objectsize, 1048 {Intr->getType(), 1049 PointerType::getWithSamePointeeType( 1050 cast<PointerType>(Src->getType()), AMDGPUAS::LOCAL_ADDRESS)}); 1051 1052 CallInst *NewCall = Builder.CreateCall( 1053 ObjectSize, 1054 {Src, Intr->getOperand(1), Intr->getOperand(2), Intr->getOperand(3)}); 1055 Intr->replaceAllUsesWith(NewCall); 1056 Intr->eraseFromParent(); 1057 continue; 1058 } 1059 default: 1060 Intr->print(errs()); 1061 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 1062 } 1063 } 1064 1065 for (IntrinsicInst *Intr : DeferredIntrs) { 1066 Builder.SetInsertPoint(Intr); 1067 Intrinsic::ID ID = Intr->getIntrinsicID(); 1068 assert(ID == Intrinsic::memcpy || ID == Intrinsic::memmove); 1069 1070 MemTransferInst *MI = cast<MemTransferInst>(Intr); 1071 auto *B = 1072 Builder.CreateMemTransferInst(ID, MI->getRawDest(), MI->getDestAlign(), 1073 MI->getRawSource(), MI->getSourceAlign(), 1074 MI->getLength(), MI->isVolatile()); 1075 1076 for (unsigned I = 0; I != 2; ++I) { 1077 if (uint64_t Bytes = Intr->getParamDereferenceableBytes(I)) { 1078 B->addDereferenceableParamAttr(I, Bytes); 1079 } 1080 } 1081 1082 Intr->eraseFromParent(); 1083 } 1084 1085 return true; 1086 } 1087 1088 bool handlePromoteAllocaToVector(AllocaInst &I, unsigned MaxVGPRs) { 1089 // Array allocations are probably not worth handling, since an allocation of 1090 // the array type is the canonical form. 1091 if (!I.isStaticAlloca() || I.isArrayAllocation()) 1092 return false; 1093 1094 LLVM_DEBUG(dbgs() << "Trying to promote " << I << '\n'); 1095 1096 Module *Mod = I.getParent()->getParent()->getParent(); 1097 return tryPromoteAllocaToVector(&I, Mod->getDataLayout(), MaxVGPRs); 1098 } 1099 1100 bool promoteAllocasToVector(Function &F, TargetMachine &TM) { 1101 if (DisablePromoteAllocaToVector) 1102 return false; 1103 1104 const AMDGPUSubtarget &ST = AMDGPUSubtarget::get(TM, F); 1105 if (!ST.isPromoteAllocaEnabled()) 1106 return false; 1107 1108 unsigned MaxVGPRs; 1109 if (TM.getTargetTriple().getArch() == Triple::amdgcn) { 1110 const GCNSubtarget &ST = TM.getSubtarget<GCNSubtarget>(F); 1111 MaxVGPRs = ST.getMaxNumVGPRs(ST.getWavesPerEU(F).first); 1112 } else { 1113 MaxVGPRs = 128; 1114 } 1115 1116 bool Changed = false; 1117 BasicBlock &EntryBB = *F.begin(); 1118 1119 SmallVector<AllocaInst *, 16> Allocas; 1120 for (Instruction &I : EntryBB) { 1121 if (AllocaInst *AI = dyn_cast<AllocaInst>(&I)) 1122 Allocas.push_back(AI); 1123 } 1124 1125 for (AllocaInst *AI : Allocas) { 1126 if (handlePromoteAllocaToVector(*AI, MaxVGPRs)) 1127 Changed = true; 1128 } 1129 1130 return Changed; 1131 } 1132 1133 bool AMDGPUPromoteAllocaToVector::runOnFunction(Function &F) { 1134 if (skipFunction(F)) 1135 return false; 1136 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) { 1137 return promoteAllocasToVector(F, TPC->getTM<TargetMachine>()); 1138 } 1139 return false; 1140 } 1141 1142 PreservedAnalyses 1143 AMDGPUPromoteAllocaToVectorPass::run(Function &F, FunctionAnalysisManager &AM) { 1144 bool Changed = promoteAllocasToVector(F, TM); 1145 if (Changed) { 1146 PreservedAnalyses PA; 1147 PA.preserveSet<CFGAnalyses>(); 1148 return PA; 1149 } 1150 return PreservedAnalyses::all(); 1151 } 1152 1153 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 1154 return new AMDGPUPromoteAlloca(); 1155 } 1156 1157 FunctionPass *llvm::createAMDGPUPromoteAllocaToVector() { 1158 return new AMDGPUPromoteAllocaToVector(); 1159 } 1160