1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "Utils/AMDGPUBaseInfo.h" 18 #include "llvm/ADT/APInt.h" 19 #include "llvm/ADT/None.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Analysis/CaptureTracking.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/CodeGen/TargetPassConfig.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GlobalValue.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/LLVMContext.h" 42 #include "llvm/IR/Metadata.h" 43 #include "llvm/IR/Module.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetMachine.h" 54 #include <algorithm> 55 #include <cassert> 56 #include <cstdint> 57 #include <map> 58 #include <tuple> 59 #include <utility> 60 #include <vector> 61 62 #define DEBUG_TYPE "amdgpu-promote-alloca" 63 64 using namespace llvm; 65 66 namespace { 67 68 // FIXME: This can create globals so should be a module pass. 69 class AMDGPUPromoteAlloca : public FunctionPass { 70 private: 71 const TargetMachine *TM; 72 Module *Mod = nullptr; 73 const DataLayout *DL = nullptr; 74 AMDGPUAS AS; 75 76 // FIXME: This should be per-kernel. 77 uint32_t LocalMemLimit = 0; 78 uint32_t CurrentLocalMemUsage = 0; 79 80 bool IsAMDGCN = false; 81 bool IsAMDHSA = false; 82 83 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 84 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 85 86 /// BaseAlloca is the alloca root the search started from. 87 /// Val may be that alloca or a recursive user of it. 88 bool collectUsesWithPtrTypes(Value *BaseAlloca, 89 Value *Val, 90 std::vector<Value*> &WorkList) const; 91 92 /// Val is a derived pointer from Alloca. OpIdx0/OpIdx1 are the operand 93 /// indices to an instruction with 2 pointer inputs (e.g. select, icmp). 94 /// Returns true if both operands are derived from the same alloca. Val should 95 /// be the same value as one of the input operands of UseInst. 96 bool binaryOpIsDerivedFromSameAlloca(Value *Alloca, Value *Val, 97 Instruction *UseInst, 98 int OpIdx0, int OpIdx1) const; 99 100 /// Check whether we have enough local memory for promotion. 101 bool hasSufficientLocalMem(const Function &F); 102 103 public: 104 static char ID; 105 106 AMDGPUPromoteAlloca() : FunctionPass(ID) {} 107 108 bool doInitialization(Module &M) override; 109 bool runOnFunction(Function &F) override; 110 111 StringRef getPassName() const override { return "AMDGPU Promote Alloca"; } 112 113 bool handleAlloca(AllocaInst &I, bool SufficientLDS); 114 115 void getAnalysisUsage(AnalysisUsage &AU) const override { 116 AU.setPreservesCFG(); 117 FunctionPass::getAnalysisUsage(AU); 118 } 119 }; 120 121 } // end anonymous namespace 122 123 char AMDGPUPromoteAlloca::ID = 0; 124 125 INITIALIZE_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 126 "AMDGPU promote alloca to vector or LDS", false, false) 127 128 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 129 130 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 131 Mod = &M; 132 DL = &Mod->getDataLayout(); 133 134 return false; 135 } 136 137 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 138 if (skipFunction(F)) 139 return false; 140 141 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) 142 TM = &TPC->getTM<TargetMachine>(); 143 else 144 return false; 145 146 const Triple &TT = TM->getTargetTriple(); 147 IsAMDGCN = TT.getArch() == Triple::amdgcn; 148 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 149 150 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 151 if (!ST.isPromoteAllocaEnabled()) 152 return false; 153 154 AS = AMDGPU::getAMDGPUAS(*F.getParent()); 155 156 bool SufficientLDS = hasSufficientLocalMem(F); 157 bool Changed = false; 158 BasicBlock &EntryBB = *F.begin(); 159 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 160 AllocaInst *AI = dyn_cast<AllocaInst>(I); 161 162 ++I; 163 if (AI) 164 Changed |= handleAlloca(*AI, SufficientLDS); 165 } 166 167 return Changed; 168 } 169 170 std::pair<Value *, Value *> 171 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 172 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>( 173 *Builder.GetInsertBlock()->getParent()); 174 175 if (!IsAMDHSA) { 176 Function *LocalSizeYFn 177 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 178 Function *LocalSizeZFn 179 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 180 181 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 182 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 183 184 ST.makeLIDRangeMetadata(LocalSizeY); 185 ST.makeLIDRangeMetadata(LocalSizeZ); 186 187 return std::make_pair(LocalSizeY, LocalSizeZ); 188 } 189 190 // We must read the size out of the dispatch pointer. 191 assert(IsAMDGCN); 192 193 // We are indexing into this struct, and want to extract the workgroup_size_* 194 // fields. 195 // 196 // typedef struct hsa_kernel_dispatch_packet_s { 197 // uint16_t header; 198 // uint16_t setup; 199 // uint16_t workgroup_size_x ; 200 // uint16_t workgroup_size_y; 201 // uint16_t workgroup_size_z; 202 // uint16_t reserved0; 203 // uint32_t grid_size_x ; 204 // uint32_t grid_size_y ; 205 // uint32_t grid_size_z; 206 // 207 // uint32_t private_segment_size; 208 // uint32_t group_segment_size; 209 // uint64_t kernel_object; 210 // 211 // #ifdef HSA_LARGE_MODEL 212 // void *kernarg_address; 213 // #elif defined HSA_LITTLE_ENDIAN 214 // void *kernarg_address; 215 // uint32_t reserved1; 216 // #else 217 // uint32_t reserved1; 218 // void *kernarg_address; 219 // #endif 220 // uint64_t reserved2; 221 // hsa_signal_t completion_signal; // uint64_t wrapper 222 // } hsa_kernel_dispatch_packet_t 223 // 224 Function *DispatchPtrFn 225 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 226 227 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 228 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NoAlias); 229 DispatchPtr->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull); 230 231 // Size of the dispatch packet struct. 232 DispatchPtr->addDereferenceableAttr(AttributeList::ReturnIndex, 64); 233 234 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 235 Value *CastDispatchPtr = Builder.CreateBitCast( 236 DispatchPtr, PointerType::get(I32Ty, AS.CONSTANT_ADDRESS)); 237 238 // We could do a single 64-bit load here, but it's likely that the basic 239 // 32-bit and extract sequence is already present, and it is probably easier 240 // to CSE this. The loads should be mergable later anyway. 241 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 242 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 243 244 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 245 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 246 247 MDNode *MD = MDNode::get(Mod->getContext(), None); 248 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 249 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 250 ST.makeLIDRangeMetadata(LoadZU); 251 252 // Extract y component. Upper half of LoadZU should be zero already. 253 Value *Y = Builder.CreateLShr(LoadXY, 16); 254 255 return std::make_pair(Y, LoadZU); 256 } 257 258 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 259 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>( 260 *Builder.GetInsertBlock()->getParent()); 261 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 262 263 switch (N) { 264 case 0: 265 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 266 : Intrinsic::r600_read_tidig_x; 267 break; 268 case 1: 269 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 270 : Intrinsic::r600_read_tidig_y; 271 break; 272 273 case 2: 274 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 275 : Intrinsic::r600_read_tidig_z; 276 break; 277 default: 278 llvm_unreachable("invalid dimension"); 279 } 280 281 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 282 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 283 ST.makeLIDRangeMetadata(CI); 284 285 return CI; 286 } 287 288 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 289 return VectorType::get(ArrayTy->getArrayElementType(), 290 ArrayTy->getArrayNumElements()); 291 } 292 293 static Value * 294 calculateVectorIndex(Value *Ptr, 295 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 296 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 297 298 auto I = GEPIdx.find(GEP); 299 return I == GEPIdx.end() ? nullptr : I->second; 300 } 301 302 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 303 // FIXME we only support simple cases 304 if (GEP->getNumOperands() != 3) 305 return nullptr; 306 307 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 308 if (!I0 || !I0->isZero()) 309 return nullptr; 310 311 return GEP->getOperand(2); 312 } 313 314 // Not an instruction handled below to turn into a vector. 315 // 316 // TODO: Check isTriviallyVectorizable for calls and handle other 317 // instructions. 318 static bool canVectorizeInst(Instruction *Inst, User *User) { 319 switch (Inst->getOpcode()) { 320 case Instruction::Load: { 321 LoadInst *LI = cast<LoadInst>(Inst); 322 return !LI->isVolatile(); 323 } 324 case Instruction::BitCast: 325 case Instruction::AddrSpaceCast: 326 return true; 327 case Instruction::Store: { 328 // Must be the stored pointer operand, not a stored value. 329 StoreInst *SI = cast<StoreInst>(Inst); 330 return (SI->getPointerOperand() == User) && !SI->isVolatile(); 331 } 332 default: 333 return false; 334 } 335 } 336 337 static bool tryPromoteAllocaToVector(AllocaInst *Alloca, AMDGPUAS AS) { 338 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 339 340 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 341 342 // FIXME: There is no reason why we can't support larger arrays, we 343 // are just being conservative for now. 344 if (!AllocaTy || 345 AllocaTy->getElementType()->isVectorTy() || 346 AllocaTy->getNumElements() > 4 || 347 AllocaTy->getNumElements() < 2) { 348 DEBUG(dbgs() << " Cannot convert type to vector\n"); 349 return false; 350 } 351 352 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 353 std::vector<Value*> WorkList; 354 for (User *AllocaUser : Alloca->users()) { 355 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 356 if (!GEP) { 357 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 358 return false; 359 360 WorkList.push_back(AllocaUser); 361 continue; 362 } 363 364 Value *Index = GEPToVectorIndex(GEP); 365 366 // If we can't compute a vector index from this GEP, then we can't 367 // promote this alloca to vector. 368 if (!Index) { 369 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 370 return false; 371 } 372 373 GEPVectorIdx[GEP] = Index; 374 for (User *GEPUser : AllocaUser->users()) { 375 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 376 return false; 377 378 WorkList.push_back(GEPUser); 379 } 380 } 381 382 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 383 384 DEBUG(dbgs() << " Converting alloca to vector " 385 << *AllocaTy << " -> " << *VectorTy << '\n'); 386 387 for (Value *V : WorkList) { 388 Instruction *Inst = cast<Instruction>(V); 389 IRBuilder<> Builder(Inst); 390 switch (Inst->getOpcode()) { 391 case Instruction::Load: { 392 Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS); 393 Value *Ptr = Inst->getOperand(0); 394 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 395 396 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 397 Value *VecValue = Builder.CreateLoad(BitCast); 398 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 399 Inst->replaceAllUsesWith(ExtractElement); 400 Inst->eraseFromParent(); 401 break; 402 } 403 case Instruction::Store: { 404 Type *VecPtrTy = VectorTy->getPointerTo(AS.PRIVATE_ADDRESS); 405 406 Value *Ptr = Inst->getOperand(1); 407 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 408 Value *BitCast = Builder.CreateBitCast(Alloca, VecPtrTy); 409 Value *VecValue = Builder.CreateLoad(BitCast); 410 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 411 Inst->getOperand(0), 412 Index); 413 Builder.CreateStore(NewVecValue, BitCast); 414 Inst->eraseFromParent(); 415 break; 416 } 417 case Instruction::BitCast: 418 case Instruction::AddrSpaceCast: 419 break; 420 421 default: 422 llvm_unreachable("Inconsistency in instructions promotable to vector"); 423 } 424 } 425 return true; 426 } 427 428 static bool isCallPromotable(CallInst *CI) { 429 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 430 if (!II) 431 return false; 432 433 switch (II->getIntrinsicID()) { 434 case Intrinsic::memcpy: 435 case Intrinsic::memmove: 436 case Intrinsic::memset: 437 case Intrinsic::lifetime_start: 438 case Intrinsic::lifetime_end: 439 case Intrinsic::invariant_start: 440 case Intrinsic::invariant_end: 441 case Intrinsic::invariant_group_barrier: 442 case Intrinsic::objectsize: 443 return true; 444 default: 445 return false; 446 } 447 } 448 449 bool AMDGPUPromoteAlloca::binaryOpIsDerivedFromSameAlloca(Value *BaseAlloca, 450 Value *Val, 451 Instruction *Inst, 452 int OpIdx0, 453 int OpIdx1) const { 454 // Figure out which operand is the one we might not be promoting. 455 Value *OtherOp = Inst->getOperand(OpIdx0); 456 if (Val == OtherOp) 457 OtherOp = Inst->getOperand(OpIdx1); 458 459 if (isa<ConstantPointerNull>(OtherOp)) 460 return true; 461 462 Value *OtherObj = GetUnderlyingObject(OtherOp, *DL); 463 if (!isa<AllocaInst>(OtherObj)) 464 return false; 465 466 // TODO: We should be able to replace undefs with the right pointer type. 467 468 // TODO: If we know the other base object is another promotable 469 // alloca, not necessarily this alloca, we can do this. The 470 // important part is both must have the same address space at 471 // the end. 472 if (OtherObj != BaseAlloca) { 473 DEBUG(dbgs() << "Found a binary instruction with another alloca object\n"); 474 return false; 475 } 476 477 return true; 478 } 479 480 bool AMDGPUPromoteAlloca::collectUsesWithPtrTypes( 481 Value *BaseAlloca, 482 Value *Val, 483 std::vector<Value*> &WorkList) const { 484 485 for (User *User : Val->users()) { 486 if (is_contained(WorkList, User)) 487 continue; 488 489 if (CallInst *CI = dyn_cast<CallInst>(User)) { 490 if (!isCallPromotable(CI)) 491 return false; 492 493 WorkList.push_back(User); 494 continue; 495 } 496 497 Instruction *UseInst = cast<Instruction>(User); 498 if (UseInst->getOpcode() == Instruction::PtrToInt) 499 return false; 500 501 if (LoadInst *LI = dyn_cast<LoadInst>(UseInst)) { 502 if (LI->isVolatile()) 503 return false; 504 505 continue; 506 } 507 508 if (StoreInst *SI = dyn_cast<StoreInst>(UseInst)) { 509 if (SI->isVolatile()) 510 return false; 511 512 // Reject if the stored value is not the pointer operand. 513 if (SI->getPointerOperand() != Val) 514 return false; 515 } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(UseInst)) { 516 if (RMW->isVolatile()) 517 return false; 518 } else if (AtomicCmpXchgInst *CAS = dyn_cast<AtomicCmpXchgInst>(UseInst)) { 519 if (CAS->isVolatile()) 520 return false; 521 } 522 523 // Only promote a select if we know that the other select operand 524 // is from another pointer that will also be promoted. 525 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 526 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, ICmp, 0, 1)) 527 return false; 528 529 // May need to rewrite constant operands. 530 WorkList.push_back(ICmp); 531 } 532 533 if (UseInst->getOpcode() == Instruction::AddrSpaceCast) { 534 // Give up if the pointer may be captured. 535 if (PointerMayBeCaptured(UseInst, true, true)) 536 return false; 537 // Don't collect the users of this. 538 WorkList.push_back(User); 539 continue; 540 } 541 542 if (!User->getType()->isPointerTy()) 543 continue; 544 545 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 546 // Be conservative if an address could be computed outside the bounds of 547 // the alloca. 548 if (!GEP->isInBounds()) 549 return false; 550 } 551 552 // Only promote a select if we know that the other select operand is from 553 // another pointer that will also be promoted. 554 if (SelectInst *SI = dyn_cast<SelectInst>(UseInst)) { 555 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, SI, 1, 2)) 556 return false; 557 } 558 559 // Repeat for phis. 560 if (PHINode *Phi = dyn_cast<PHINode>(UseInst)) { 561 // TODO: Handle more complex cases. We should be able to replace loops 562 // over arrays. 563 switch (Phi->getNumIncomingValues()) { 564 case 1: 565 break; 566 case 2: 567 if (!binaryOpIsDerivedFromSameAlloca(BaseAlloca, Val, Phi, 0, 1)) 568 return false; 569 break; 570 default: 571 return false; 572 } 573 } 574 575 WorkList.push_back(User); 576 if (!collectUsesWithPtrTypes(BaseAlloca, User, WorkList)) 577 return false; 578 } 579 580 return true; 581 } 582 583 bool AMDGPUPromoteAlloca::hasSufficientLocalMem(const Function &F) { 584 585 FunctionType *FTy = F.getFunctionType(); 586 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 587 588 // If the function has any arguments in the local address space, then it's 589 // possible these arguments require the entire local memory space, so 590 // we cannot use local memory in the pass. 591 for (Type *ParamTy : FTy->params()) { 592 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 593 if (PtrTy && PtrTy->getAddressSpace() == AS.LOCAL_ADDRESS) { 594 LocalMemLimit = 0; 595 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 596 "local memory disabled.\n"); 597 return false; 598 } 599 } 600 601 LocalMemLimit = ST.getLocalMemorySize(); 602 if (LocalMemLimit == 0) 603 return false; 604 605 const DataLayout &DL = Mod->getDataLayout(); 606 607 // Check how much local memory is being used by global objects 608 CurrentLocalMemUsage = 0; 609 for (GlobalVariable &GV : Mod->globals()) { 610 if (GV.getType()->getAddressSpace() != AS.LOCAL_ADDRESS) 611 continue; 612 613 for (const User *U : GV.users()) { 614 const Instruction *Use = dyn_cast<Instruction>(U); 615 if (!Use) 616 continue; 617 618 if (Use->getParent()->getParent() == &F) { 619 unsigned Align = GV.getAlignment(); 620 if (Align == 0) 621 Align = DL.getABITypeAlignment(GV.getValueType()); 622 623 // FIXME: Try to account for padding here. The padding is currently 624 // determined from the inverse order of uses in the function. I'm not 625 // sure if the use list order is in any way connected to this, so the 626 // total reported size is likely incorrect. 627 uint64_t AllocSize = DL.getTypeAllocSize(GV.getValueType()); 628 CurrentLocalMemUsage = alignTo(CurrentLocalMemUsage, Align); 629 CurrentLocalMemUsage += AllocSize; 630 break; 631 } 632 } 633 } 634 635 unsigned MaxOccupancy = ST.getOccupancyWithLocalMemSize(CurrentLocalMemUsage, 636 F); 637 638 // Restrict local memory usage so that we don't drastically reduce occupancy, 639 // unless it is already significantly reduced. 640 641 // TODO: Have some sort of hint or other heuristics to guess occupancy based 642 // on other factors.. 643 unsigned OccupancyHint = ST.getWavesPerEU(F).second; 644 if (OccupancyHint == 0) 645 OccupancyHint = 7; 646 647 // Clamp to max value. 648 OccupancyHint = std::min(OccupancyHint, ST.getMaxWavesPerEU()); 649 650 // Check the hint but ignore it if it's obviously wrong from the existing LDS 651 // usage. 652 MaxOccupancy = std::min(OccupancyHint, MaxOccupancy); 653 654 655 // Round up to the next tier of usage. 656 unsigned MaxSizeWithWaveCount 657 = ST.getMaxLocalMemSizeWithWaveCount(MaxOccupancy, F); 658 659 // Program is possibly broken by using more local mem than available. 660 if (CurrentLocalMemUsage > MaxSizeWithWaveCount) 661 return false; 662 663 LocalMemLimit = MaxSizeWithWaveCount; 664 665 DEBUG( 666 dbgs() << F.getName() << " uses " << CurrentLocalMemUsage << " bytes of LDS\n" 667 << " Rounding size to " << MaxSizeWithWaveCount 668 << " with a maximum occupancy of " << MaxOccupancy << '\n' 669 << " and " << (LocalMemLimit - CurrentLocalMemUsage) 670 << " available for promotion\n" 671 ); 672 673 return true; 674 } 675 676 // FIXME: Should try to pick the most likely to be profitable allocas first. 677 bool AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I, bool SufficientLDS) { 678 // Array allocations are probably not worth handling, since an allocation of 679 // the array type is the canonical form. 680 if (!I.isStaticAlloca() || I.isArrayAllocation()) 681 return false; 682 683 IRBuilder<> Builder(&I); 684 685 // First try to replace the alloca with a vector 686 Type *AllocaTy = I.getAllocatedType(); 687 688 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 689 690 if (tryPromoteAllocaToVector(&I, AS)) 691 return true; // Promoted to vector. 692 693 const Function &ContainingFunction = *I.getParent()->getParent(); 694 CallingConv::ID CC = ContainingFunction.getCallingConv(); 695 696 // Don't promote the alloca to LDS for shader calling conventions as the work 697 // item ID intrinsics are not supported for these calling conventions. 698 // Furthermore not all LDS is available for some of the stages. 699 switch (CC) { 700 case CallingConv::AMDGPU_KERNEL: 701 case CallingConv::SPIR_KERNEL: 702 break; 703 default: 704 DEBUG(dbgs() << " promote alloca to LDS not supported with calling convention.\n"); 705 return false; 706 } 707 708 // Not likely to have sufficient local memory for promotion. 709 if (!SufficientLDS) 710 return false; 711 712 const AMDGPUSubtarget &ST = 713 TM->getSubtarget<AMDGPUSubtarget>(ContainingFunction); 714 unsigned WorkGroupSize = ST.getFlatWorkGroupSizes(ContainingFunction).second; 715 716 const DataLayout &DL = Mod->getDataLayout(); 717 718 unsigned Align = I.getAlignment(); 719 if (Align == 0) 720 Align = DL.getABITypeAlignment(I.getAllocatedType()); 721 722 // FIXME: This computed padding is likely wrong since it depends on inverse 723 // usage order. 724 // 725 // FIXME: It is also possible that if we're allowed to use all of the memory 726 // could could end up using more than the maximum due to alignment padding. 727 728 uint32_t NewSize = alignTo(CurrentLocalMemUsage, Align); 729 uint32_t AllocSize = WorkGroupSize * DL.getTypeAllocSize(AllocaTy); 730 NewSize += AllocSize; 731 732 if (NewSize > LocalMemLimit) { 733 DEBUG(dbgs() << " " << AllocSize 734 << " bytes of local memory not available to promote\n"); 735 return false; 736 } 737 738 CurrentLocalMemUsage = NewSize; 739 740 std::vector<Value*> WorkList; 741 742 if (!collectUsesWithPtrTypes(&I, &I, WorkList)) { 743 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 744 return false; 745 } 746 747 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 748 749 Function *F = I.getParent()->getParent(); 750 751 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 752 GlobalVariable *GV = new GlobalVariable( 753 *Mod, GVTy, false, GlobalValue::InternalLinkage, 754 UndefValue::get(GVTy), 755 Twine(F->getName()) + Twine('.') + I.getName(), 756 nullptr, 757 GlobalVariable::NotThreadLocal, 758 AS.LOCAL_ADDRESS); 759 GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); 760 GV->setAlignment(I.getAlignment()); 761 762 Value *TCntY, *TCntZ; 763 764 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 765 Value *TIdX = getWorkitemID(Builder, 0); 766 Value *TIdY = getWorkitemID(Builder, 1); 767 Value *TIdZ = getWorkitemID(Builder, 2); 768 769 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 770 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 771 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 772 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 773 TID = Builder.CreateAdd(TID, TIdZ); 774 775 Value *Indices[] = { 776 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 777 TID 778 }; 779 780 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 781 I.mutateType(Offset->getType()); 782 I.replaceAllUsesWith(Offset); 783 I.eraseFromParent(); 784 785 for (Value *V : WorkList) { 786 CallInst *Call = dyn_cast<CallInst>(V); 787 if (!Call) { 788 if (ICmpInst *CI = dyn_cast<ICmpInst>(V)) { 789 Value *Src0 = CI->getOperand(0); 790 Type *EltTy = Src0->getType()->getPointerElementType(); 791 PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS); 792 793 if (isa<ConstantPointerNull>(CI->getOperand(0))) 794 CI->setOperand(0, ConstantPointerNull::get(NewTy)); 795 796 if (isa<ConstantPointerNull>(CI->getOperand(1))) 797 CI->setOperand(1, ConstantPointerNull::get(NewTy)); 798 799 continue; 800 } 801 802 // The operand's value should be corrected on its own and we don't want to 803 // touch the users. 804 if (isa<AddrSpaceCastInst>(V)) 805 continue; 806 807 Type *EltTy = V->getType()->getPointerElementType(); 808 PointerType *NewTy = PointerType::get(EltTy, AS.LOCAL_ADDRESS); 809 810 // FIXME: It doesn't really make sense to try to do this for all 811 // instructions. 812 V->mutateType(NewTy); 813 814 // Adjust the types of any constant operands. 815 if (SelectInst *SI = dyn_cast<SelectInst>(V)) { 816 if (isa<ConstantPointerNull>(SI->getOperand(1))) 817 SI->setOperand(1, ConstantPointerNull::get(NewTy)); 818 819 if (isa<ConstantPointerNull>(SI->getOperand(2))) 820 SI->setOperand(2, ConstantPointerNull::get(NewTy)); 821 } else if (PHINode *Phi = dyn_cast<PHINode>(V)) { 822 for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I) { 823 if (isa<ConstantPointerNull>(Phi->getIncomingValue(I))) 824 Phi->setIncomingValue(I, ConstantPointerNull::get(NewTy)); 825 } 826 } 827 828 continue; 829 } 830 831 IntrinsicInst *Intr = cast<IntrinsicInst>(Call); 832 Builder.SetInsertPoint(Intr); 833 switch (Intr->getIntrinsicID()) { 834 case Intrinsic::lifetime_start: 835 case Intrinsic::lifetime_end: 836 // These intrinsics are for address space 0 only 837 Intr->eraseFromParent(); 838 continue; 839 case Intrinsic::memcpy: { 840 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 841 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 842 MemCpy->getLength(), MemCpy->getAlignment(), 843 MemCpy->isVolatile()); 844 Intr->eraseFromParent(); 845 continue; 846 } 847 case Intrinsic::memmove: { 848 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 849 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 850 MemMove->getLength(), MemMove->getAlignment(), 851 MemMove->isVolatile()); 852 Intr->eraseFromParent(); 853 continue; 854 } 855 case Intrinsic::memset: { 856 MemSetInst *MemSet = cast<MemSetInst>(Intr); 857 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 858 MemSet->getLength(), MemSet->getAlignment(), 859 MemSet->isVolatile()); 860 Intr->eraseFromParent(); 861 continue; 862 } 863 case Intrinsic::invariant_start: 864 case Intrinsic::invariant_end: 865 case Intrinsic::invariant_group_barrier: 866 Intr->eraseFromParent(); 867 // FIXME: I think the invariant marker should still theoretically apply, 868 // but the intrinsics need to be changed to accept pointers with any 869 // address space. 870 continue; 871 case Intrinsic::objectsize: { 872 Value *Src = Intr->getOperand(0); 873 Type *SrcTy = Src->getType()->getPointerElementType(); 874 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 875 Intrinsic::objectsize, 876 { Intr->getType(), PointerType::get(SrcTy, AS.LOCAL_ADDRESS) } 877 ); 878 879 CallInst *NewCall = Builder.CreateCall( 880 ObjectSize, {Src, Intr->getOperand(1), Intr->getOperand(2)}); 881 Intr->replaceAllUsesWith(NewCall); 882 Intr->eraseFromParent(); 883 continue; 884 } 885 default: 886 Intr->print(errs()); 887 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 888 } 889 } 890 return true; 891 } 892 893 FunctionPass *llvm::createAMDGPUPromoteAlloca() { 894 return new AMDGPUPromoteAlloca(); 895 } 896