1 //===-- AMDGPUPromoteAlloca.cpp - Promote Allocas -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass eliminates allocas by either converting them into vectors or 11 // by migrating them to local address space. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "AMDGPU.h" 16 #include "AMDGPUSubtarget.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/IRBuilder.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/raw_ostream.h" 23 24 #define DEBUG_TYPE "amdgpu-promote-alloca" 25 26 using namespace llvm; 27 28 namespace { 29 30 // FIXME: This can create globals so should be a module pass. 31 class AMDGPUPromoteAlloca : public FunctionPass { 32 private: 33 const TargetMachine *TM; 34 Module *Mod; 35 MDNode *MaxWorkGroupSizeRange; 36 37 // FIXME: This should be per-kernel. 38 int LocalMemAvailable; 39 40 bool IsAMDGCN; 41 bool IsAMDHSA; 42 43 std::pair<Value *, Value *> getLocalSizeYZ(IRBuilder<> &Builder); 44 Value *getWorkitemID(IRBuilder<> &Builder, unsigned N); 45 46 public: 47 static char ID; 48 49 AMDGPUPromoteAlloca(const TargetMachine *TM_ = nullptr) : 50 FunctionPass(ID), 51 TM(TM_), 52 Mod(nullptr), 53 MaxWorkGroupSizeRange(nullptr), 54 LocalMemAvailable(0), 55 IsAMDGCN(false), 56 IsAMDHSA(false) { } 57 58 bool doInitialization(Module &M) override; 59 bool runOnFunction(Function &F) override; 60 61 const char *getPassName() const override { 62 return "AMDGPU Promote Alloca"; 63 } 64 65 void handleAlloca(AllocaInst &I); 66 }; 67 68 } // End anonymous namespace 69 70 char AMDGPUPromoteAlloca::ID = 0; 71 72 INITIALIZE_TM_PASS(AMDGPUPromoteAlloca, DEBUG_TYPE, 73 "AMDGPU promote alloca to vector or LDS", false, false) 74 75 char &llvm::AMDGPUPromoteAllocaID = AMDGPUPromoteAlloca::ID; 76 77 78 bool AMDGPUPromoteAlloca::doInitialization(Module &M) { 79 if (!TM) 80 return false; 81 82 Mod = &M; 83 84 // The maximum workitem id. 85 // 86 // FIXME: Should get as subtarget property. Usually runtime enforced max is 87 // 256. 88 MDBuilder MDB(Mod->getContext()); 89 MaxWorkGroupSizeRange = MDB.createRange(APInt(32, 0), APInt(32, 2048)); 90 91 const Triple &TT = TM->getTargetTriple(); 92 93 IsAMDGCN = TT.getArch() == Triple::amdgcn; 94 IsAMDHSA = TT.getOS() == Triple::AMDHSA; 95 96 return false; 97 } 98 99 bool AMDGPUPromoteAlloca::runOnFunction(Function &F) { 100 if (!TM || F.hasFnAttribute(Attribute::OptimizeNone)) 101 return false; 102 103 FunctionType *FTy = F.getFunctionType(); 104 105 // If the function has any arguments in the local address space, then it's 106 // possible these arguments require the entire local memory space, so 107 // we cannot use local memory in the pass. 108 for (Type *ParamTy : FTy->params()) { 109 PointerType *PtrTy = dyn_cast<PointerType>(ParamTy); 110 if (PtrTy && PtrTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { 111 LocalMemAvailable = 0; 112 DEBUG(dbgs() << "Function has local memory argument. Promoting to " 113 "local memory disabled.\n"); 114 return false; 115 } 116 } 117 118 const AMDGPUSubtarget &ST = TM->getSubtarget<AMDGPUSubtarget>(F); 119 LocalMemAvailable = ST.getLocalMemorySize(); 120 if (LocalMemAvailable == 0) 121 return false; 122 123 // Check how much local memory is being used by global objects 124 for (GlobalVariable &GV : Mod->globals()) { 125 if (GV.getType()->getAddressSpace() != AMDGPUAS::LOCAL_ADDRESS) 126 continue; 127 128 for (Use &U : GV.uses()) { 129 Instruction *Use = dyn_cast<Instruction>(U); 130 if (!Use) 131 continue; 132 133 if (Use->getParent()->getParent() == &F) 134 LocalMemAvailable -= 135 Mod->getDataLayout().getTypeAllocSize(GV.getValueType()); 136 } 137 } 138 139 LocalMemAvailable = std::max(0, LocalMemAvailable); 140 DEBUG(dbgs() << LocalMemAvailable << " bytes free in local memory.\n"); 141 142 BasicBlock &EntryBB = *F.begin(); 143 for (auto I = EntryBB.begin(), E = EntryBB.end(); I != E; ) { 144 AllocaInst *AI = dyn_cast<AllocaInst>(I); 145 146 ++I; 147 if (AI) 148 handleAlloca(*AI); 149 } 150 151 return true; 152 } 153 154 std::pair<Value *, Value *> 155 AMDGPUPromoteAlloca::getLocalSizeYZ(IRBuilder<> &Builder) { 156 if (!IsAMDHSA) { 157 Function *LocalSizeYFn 158 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_y); 159 Function *LocalSizeZFn 160 = Intrinsic::getDeclaration(Mod, Intrinsic::r600_read_local_size_z); 161 162 CallInst *LocalSizeY = Builder.CreateCall(LocalSizeYFn, {}); 163 CallInst *LocalSizeZ = Builder.CreateCall(LocalSizeZFn, {}); 164 165 LocalSizeY->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 166 LocalSizeZ->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 167 168 return std::make_pair(LocalSizeY, LocalSizeZ); 169 } 170 171 // We must read the size out of the dispatch pointer. 172 assert(IsAMDGCN); 173 174 // We are indexing into this struct, and want to extract the workgroup_size_* 175 // fields. 176 // 177 // typedef struct hsa_kernel_dispatch_packet_s { 178 // uint16_t header; 179 // uint16_t setup; 180 // uint16_t workgroup_size_x ; 181 // uint16_t workgroup_size_y; 182 // uint16_t workgroup_size_z; 183 // uint16_t reserved0; 184 // uint32_t grid_size_x ; 185 // uint32_t grid_size_y ; 186 // uint32_t grid_size_z; 187 // 188 // uint32_t private_segment_size; 189 // uint32_t group_segment_size; 190 // uint64_t kernel_object; 191 // 192 // #ifdef HSA_LARGE_MODEL 193 // void *kernarg_address; 194 // #elif defined HSA_LITTLE_ENDIAN 195 // void *kernarg_address; 196 // uint32_t reserved1; 197 // #else 198 // uint32_t reserved1; 199 // void *kernarg_address; 200 // #endif 201 // uint64_t reserved2; 202 // hsa_signal_t completion_signal; // uint64_t wrapper 203 // } hsa_kernel_dispatch_packet_t 204 // 205 Function *DispatchPtrFn 206 = Intrinsic::getDeclaration(Mod, Intrinsic::amdgcn_dispatch_ptr); 207 208 CallInst *DispatchPtr = Builder.CreateCall(DispatchPtrFn, {}); 209 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NoAlias); 210 DispatchPtr->addAttribute(AttributeSet::ReturnIndex, Attribute::NonNull); 211 212 // Size of the dispatch packet struct. 213 DispatchPtr->addDereferenceableAttr(AttributeSet::ReturnIndex, 64); 214 215 Type *I32Ty = Type::getInt32Ty(Mod->getContext()); 216 Value *CastDispatchPtr = Builder.CreateBitCast( 217 DispatchPtr, PointerType::get(I32Ty, AMDGPUAS::CONSTANT_ADDRESS)); 218 219 // We could do a single 64-bit load here, but it's likely that the basic 220 // 32-bit and extract sequence is already present, and it is probably easier 221 // to CSE this. The loads should be mergable later anyway. 222 Value *GEPXY = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 1); 223 LoadInst *LoadXY = Builder.CreateAlignedLoad(GEPXY, 4); 224 225 Value *GEPZU = Builder.CreateConstInBoundsGEP1_64(CastDispatchPtr, 2); 226 LoadInst *LoadZU = Builder.CreateAlignedLoad(GEPZU, 4); 227 228 MDNode *MD = llvm::MDNode::get(Mod->getContext(), None); 229 LoadXY->setMetadata(LLVMContext::MD_invariant_load, MD); 230 LoadZU->setMetadata(LLVMContext::MD_invariant_load, MD); 231 LoadZU->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 232 233 // Extract y component. Upper half of LoadZU should be zero already. 234 Value *Y = Builder.CreateLShr(LoadXY, 16); 235 236 return std::make_pair(Y, LoadZU); 237 } 238 239 Value *AMDGPUPromoteAlloca::getWorkitemID(IRBuilder<> &Builder, unsigned N) { 240 Intrinsic::ID IntrID = Intrinsic::ID::not_intrinsic; 241 242 switch (N) { 243 case 0: 244 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_x 245 : Intrinsic::r600_read_tidig_x; 246 break; 247 case 1: 248 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_y 249 : Intrinsic::r600_read_tidig_y; 250 break; 251 252 case 2: 253 IntrID = IsAMDGCN ? Intrinsic::amdgcn_workitem_id_z 254 : Intrinsic::r600_read_tidig_z; 255 break; 256 default: 257 llvm_unreachable("invalid dimension"); 258 } 259 260 Function *WorkitemIdFn = Intrinsic::getDeclaration(Mod, IntrID); 261 CallInst *CI = Builder.CreateCall(WorkitemIdFn); 262 CI->setMetadata(LLVMContext::MD_range, MaxWorkGroupSizeRange); 263 264 return CI; 265 } 266 267 static VectorType *arrayTypeToVecType(Type *ArrayTy) { 268 return VectorType::get(ArrayTy->getArrayElementType(), 269 ArrayTy->getArrayNumElements()); 270 } 271 272 static Value * 273 calculateVectorIndex(Value *Ptr, 274 const std::map<GetElementPtrInst *, Value *> &GEPIdx) { 275 if (isa<AllocaInst>(Ptr)) 276 return Constant::getNullValue(Type::getInt32Ty(Ptr->getContext())); 277 278 GetElementPtrInst *GEP = cast<GetElementPtrInst>(Ptr); 279 280 auto I = GEPIdx.find(GEP); 281 return I == GEPIdx.end() ? nullptr : I->second; 282 } 283 284 static Value* GEPToVectorIndex(GetElementPtrInst *GEP) { 285 // FIXME we only support simple cases 286 if (GEP->getNumOperands() != 3) 287 return NULL; 288 289 ConstantInt *I0 = dyn_cast<ConstantInt>(GEP->getOperand(1)); 290 if (!I0 || !I0->isZero()) 291 return NULL; 292 293 return GEP->getOperand(2); 294 } 295 296 // Not an instruction handled below to turn into a vector. 297 // 298 // TODO: Check isTriviallyVectorizable for calls and handle other 299 // instructions. 300 static bool canVectorizeInst(Instruction *Inst, User *User) { 301 switch (Inst->getOpcode()) { 302 case Instruction::Load: 303 case Instruction::BitCast: 304 case Instruction::AddrSpaceCast: 305 return true; 306 case Instruction::Store: { 307 // Must be the stored pointer operand, not a stored value. 308 StoreInst *SI = cast<StoreInst>(Inst); 309 return SI->getPointerOperand() == User; 310 } 311 default: 312 return false; 313 } 314 } 315 316 static bool tryPromoteAllocaToVector(AllocaInst *Alloca) { 317 ArrayType *AllocaTy = dyn_cast<ArrayType>(Alloca->getAllocatedType()); 318 319 DEBUG(dbgs() << "Alloca candidate for vectorization\n"); 320 321 // FIXME: There is no reason why we can't support larger arrays, we 322 // are just being conservative for now. 323 if (!AllocaTy || 324 AllocaTy->getElementType()->isVectorTy() || 325 AllocaTy->getNumElements() > 4) { 326 DEBUG(dbgs() << " Cannot convert type to vector\n"); 327 return false; 328 } 329 330 std::map<GetElementPtrInst*, Value*> GEPVectorIdx; 331 std::vector<Value*> WorkList; 332 for (User *AllocaUser : Alloca->users()) { 333 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(AllocaUser); 334 if (!GEP) { 335 if (!canVectorizeInst(cast<Instruction>(AllocaUser), Alloca)) 336 return false; 337 338 WorkList.push_back(AllocaUser); 339 continue; 340 } 341 342 Value *Index = GEPToVectorIndex(GEP); 343 344 // If we can't compute a vector index from this GEP, then we can't 345 // promote this alloca to vector. 346 if (!Index) { 347 DEBUG(dbgs() << " Cannot compute vector index for GEP " << *GEP << '\n'); 348 return false; 349 } 350 351 GEPVectorIdx[GEP] = Index; 352 for (User *GEPUser : AllocaUser->users()) { 353 if (!canVectorizeInst(cast<Instruction>(GEPUser), AllocaUser)) 354 return false; 355 356 WorkList.push_back(GEPUser); 357 } 358 } 359 360 VectorType *VectorTy = arrayTypeToVecType(AllocaTy); 361 362 DEBUG(dbgs() << " Converting alloca to vector " 363 << *AllocaTy << " -> " << *VectorTy << '\n'); 364 365 for (Value *V : WorkList) { 366 Instruction *Inst = cast<Instruction>(V); 367 IRBuilder<> Builder(Inst); 368 switch (Inst->getOpcode()) { 369 case Instruction::Load: { 370 Value *Ptr = Inst->getOperand(0); 371 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 372 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); 373 Value *VecValue = Builder.CreateLoad(BitCast); 374 Value *ExtractElement = Builder.CreateExtractElement(VecValue, Index); 375 Inst->replaceAllUsesWith(ExtractElement); 376 Inst->eraseFromParent(); 377 break; 378 } 379 case Instruction::Store: { 380 Value *Ptr = Inst->getOperand(1); 381 Value *Index = calculateVectorIndex(Ptr, GEPVectorIdx); 382 Value *BitCast = Builder.CreateBitCast(Alloca, VectorTy->getPointerTo(0)); 383 Value *VecValue = Builder.CreateLoad(BitCast); 384 Value *NewVecValue = Builder.CreateInsertElement(VecValue, 385 Inst->getOperand(0), 386 Index); 387 Builder.CreateStore(NewVecValue, BitCast); 388 Inst->eraseFromParent(); 389 break; 390 } 391 case Instruction::BitCast: 392 case Instruction::AddrSpaceCast: 393 break; 394 395 default: 396 Inst->dump(); 397 llvm_unreachable("Inconsistency in instructions promotable to vector"); 398 } 399 } 400 return true; 401 } 402 403 static bool isCallPromotable(CallInst *CI) { 404 // TODO: We might be able to handle some cases where the callee is a 405 // constantexpr bitcast of a function. 406 if (!CI->getCalledFunction()) 407 return false; 408 409 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); 410 if (!II) 411 return false; 412 413 switch (II->getIntrinsicID()) { 414 case Intrinsic::memcpy: 415 case Intrinsic::memmove: 416 case Intrinsic::memset: 417 case Intrinsic::lifetime_start: 418 case Intrinsic::lifetime_end: 419 case Intrinsic::invariant_start: 420 case Intrinsic::invariant_end: 421 case Intrinsic::invariant_group_barrier: 422 case Intrinsic::objectsize: 423 return true; 424 default: 425 return false; 426 } 427 } 428 429 static bool collectUsesWithPtrTypes(Value *Val, std::vector<Value*> &WorkList) { 430 for (User *User : Val->users()) { 431 if (std::find(WorkList.begin(), WorkList.end(), User) != WorkList.end()) 432 continue; 433 434 if (CallInst *CI = dyn_cast<CallInst>(User)) { 435 if (!isCallPromotable(CI)) 436 return false; 437 438 WorkList.push_back(User); 439 continue; 440 } 441 442 Instruction *UseInst = dyn_cast<Instruction>(User); 443 if (UseInst && UseInst->getOpcode() == Instruction::PtrToInt) 444 return false; 445 446 if (StoreInst *SI = dyn_cast_or_null<StoreInst>(UseInst)) { 447 if (SI->isVolatile()) 448 return false; 449 450 // Reject if the stored value is not the pointer operand. 451 if (SI->getPointerOperand() != Val) 452 return false; 453 } else if (LoadInst *LI = dyn_cast_or_null<LoadInst>(UseInst)) { 454 if (LI->isVolatile()) 455 return false; 456 } else if (AtomicRMWInst *RMW = dyn_cast_or_null<AtomicRMWInst>(UseInst)) { 457 if (RMW->isVolatile()) 458 return false; 459 } else if (AtomicCmpXchgInst *CAS 460 = dyn_cast_or_null<AtomicCmpXchgInst>(UseInst)) { 461 if (CAS->isVolatile()) 462 return false; 463 } 464 465 if (!User->getType()->isPointerTy()) 466 continue; 467 468 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UseInst)) { 469 // Be conservative if an address could be computed outside the bounds of 470 // the alloca. 471 if (!GEP->isInBounds()) 472 return false; 473 } 474 475 WorkList.push_back(User); 476 if (!collectUsesWithPtrTypes(User, WorkList)) 477 return false; 478 } 479 480 return true; 481 } 482 483 void AMDGPUPromoteAlloca::handleAlloca(AllocaInst &I) { 484 if (!I.isStaticAlloca()) 485 return; 486 487 IRBuilder<> Builder(&I); 488 489 // First try to replace the alloca with a vector 490 Type *AllocaTy = I.getAllocatedType(); 491 492 DEBUG(dbgs() << "Trying to promote " << I << '\n'); 493 494 if (tryPromoteAllocaToVector(&I)) 495 return; 496 497 DEBUG(dbgs() << " alloca is not a candidate for vectorization.\n"); 498 499 const Function &ContainingFunction = *I.getParent()->getParent(); 500 501 // FIXME: We should also try to get this value from the reqd_work_group_size 502 // function attribute if it is available. 503 unsigned WorkGroupSize = AMDGPU::getMaximumWorkGroupSize(ContainingFunction); 504 505 int AllocaSize = 506 WorkGroupSize * Mod->getDataLayout().getTypeAllocSize(AllocaTy); 507 508 if (AllocaSize > LocalMemAvailable) { 509 DEBUG(dbgs() << " Not enough local memory to promote alloca.\n"); 510 return; 511 } 512 513 std::vector<Value*> WorkList; 514 515 if (!collectUsesWithPtrTypes(&I, WorkList)) { 516 DEBUG(dbgs() << " Do not know how to convert all uses\n"); 517 return; 518 } 519 520 DEBUG(dbgs() << "Promoting alloca to local memory\n"); 521 LocalMemAvailable -= AllocaSize; 522 523 Function *F = I.getParent()->getParent(); 524 525 Type *GVTy = ArrayType::get(I.getAllocatedType(), WorkGroupSize); 526 GlobalVariable *GV = new GlobalVariable( 527 *Mod, GVTy, false, GlobalValue::InternalLinkage, 528 UndefValue::get(GVTy), 529 Twine(F->getName()) + Twine('.') + I.getName(), 530 nullptr, 531 GlobalVariable::NotThreadLocal, 532 AMDGPUAS::LOCAL_ADDRESS); 533 GV->setUnnamedAddr(true); 534 GV->setAlignment(I.getAlignment()); 535 536 Value *TCntY, *TCntZ; 537 538 std::tie(TCntY, TCntZ) = getLocalSizeYZ(Builder); 539 Value *TIdX = getWorkitemID(Builder, 0); 540 Value *TIdY = getWorkitemID(Builder, 1); 541 Value *TIdZ = getWorkitemID(Builder, 2); 542 543 Value *Tmp0 = Builder.CreateMul(TCntY, TCntZ, "", true, true); 544 Tmp0 = Builder.CreateMul(Tmp0, TIdX); 545 Value *Tmp1 = Builder.CreateMul(TIdY, TCntZ, "", true, true); 546 Value *TID = Builder.CreateAdd(Tmp0, Tmp1); 547 TID = Builder.CreateAdd(TID, TIdZ); 548 549 Value *Indices[] = { 550 Constant::getNullValue(Type::getInt32Ty(Mod->getContext())), 551 TID 552 }; 553 554 Value *Offset = Builder.CreateInBoundsGEP(GVTy, GV, Indices); 555 I.mutateType(Offset->getType()); 556 I.replaceAllUsesWith(Offset); 557 I.eraseFromParent(); 558 559 for (Value *V : WorkList) { 560 CallInst *Call = dyn_cast<CallInst>(V); 561 if (!Call) { 562 Type *EltTy = V->getType()->getPointerElementType(); 563 PointerType *NewTy = PointerType::get(EltTy, AMDGPUAS::LOCAL_ADDRESS); 564 565 // The operand's value should be corrected on its own. 566 if (isa<AddrSpaceCastInst>(V)) 567 continue; 568 569 // FIXME: It doesn't really make sense to try to do this for all 570 // instructions. 571 V->mutateType(NewTy); 572 continue; 573 } 574 575 IntrinsicInst *Intr = dyn_cast<IntrinsicInst>(Call); 576 if (!Intr) { 577 // FIXME: What is this for? It doesn't make sense to promote arbitrary 578 // function calls. If the call is to a defined function that can also be 579 // promoted, we should be able to do this once that function is also 580 // rewritten. 581 582 std::vector<Type*> ArgTypes; 583 for (unsigned ArgIdx = 0, ArgEnd = Call->getNumArgOperands(); 584 ArgIdx != ArgEnd; ++ArgIdx) { 585 ArgTypes.push_back(Call->getArgOperand(ArgIdx)->getType()); 586 } 587 Function *F = Call->getCalledFunction(); 588 FunctionType *NewType = FunctionType::get(Call->getType(), ArgTypes, 589 F->isVarArg()); 590 Constant *C = Mod->getOrInsertFunction((F->getName() + ".local").str(), 591 NewType, F->getAttributes()); 592 Function *NewF = cast<Function>(C); 593 Call->setCalledFunction(NewF); 594 continue; 595 } 596 597 Builder.SetInsertPoint(Intr); 598 switch (Intr->getIntrinsicID()) { 599 case Intrinsic::lifetime_start: 600 case Intrinsic::lifetime_end: 601 // These intrinsics are for address space 0 only 602 Intr->eraseFromParent(); 603 continue; 604 case Intrinsic::memcpy: { 605 MemCpyInst *MemCpy = cast<MemCpyInst>(Intr); 606 Builder.CreateMemCpy(MemCpy->getRawDest(), MemCpy->getRawSource(), 607 MemCpy->getLength(), MemCpy->getAlignment(), 608 MemCpy->isVolatile()); 609 Intr->eraseFromParent(); 610 continue; 611 } 612 case Intrinsic::memmove: { 613 MemMoveInst *MemMove = cast<MemMoveInst>(Intr); 614 Builder.CreateMemMove(MemMove->getRawDest(), MemMove->getRawSource(), 615 MemMove->getLength(), MemMove->getAlignment(), 616 MemMove->isVolatile()); 617 Intr->eraseFromParent(); 618 continue; 619 } 620 case Intrinsic::memset: { 621 MemSetInst *MemSet = cast<MemSetInst>(Intr); 622 Builder.CreateMemSet(MemSet->getRawDest(), MemSet->getValue(), 623 MemSet->getLength(), MemSet->getAlignment(), 624 MemSet->isVolatile()); 625 Intr->eraseFromParent(); 626 continue; 627 } 628 case Intrinsic::invariant_start: 629 case Intrinsic::invariant_end: 630 case Intrinsic::invariant_group_barrier: 631 Intr->eraseFromParent(); 632 // FIXME: I think the invariant marker should still theoretically apply, 633 // but the intrinsics need to be changed to accept pointers with any 634 // address space. 635 continue; 636 case Intrinsic::objectsize: { 637 Value *Src = Intr->getOperand(0); 638 Type *SrcTy = Src->getType()->getPointerElementType(); 639 Function *ObjectSize = Intrinsic::getDeclaration(Mod, 640 Intrinsic::objectsize, 641 { Intr->getType(), PointerType::get(SrcTy, AMDGPUAS::LOCAL_ADDRESS) } 642 ); 643 644 CallInst *NewCall 645 = Builder.CreateCall(ObjectSize, { Src, Intr->getOperand(1) }); 646 Intr->replaceAllUsesWith(NewCall); 647 Intr->eraseFromParent(); 648 continue; 649 } 650 default: 651 Intr->dump(); 652 llvm_unreachable("Don't know how to promote alloca intrinsic use."); 653 } 654 } 655 } 656 657 FunctionPass *llvm::createAMDGPUPromoteAlloca(const TargetMachine *TM) { 658 return new AMDGPUPromoteAlloca(TM); 659 } 660