1 //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief Analyzes if a function potentially memory bound and if a kernel 12 /// kernel may benefit from limiting number of waves to reduce cache thrashing. 13 /// 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPU.h" 17 #include "AMDGPUPerfHintAnalysis.h" 18 #include "Utils/AMDGPUBaseInfo.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/TargetLowering.h" 23 #include "llvm/CodeGen/TargetPassConfig.h" 24 #include "llvm/CodeGen/TargetSubtargetInfo.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/Instructions.h" 27 #include "llvm/IR/IntrinsicInst.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/ValueMap.h" 30 #include "llvm/Support/CommandLine.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "amdgpu-perf-hint" 35 36 static cl::opt<unsigned> 37 MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden, 38 cl::desc("Function mem bound threshold in %")); 39 40 static cl::opt<unsigned> 41 LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden, 42 cl::desc("Kernel limit wave threshold in %")); 43 44 static cl::opt<unsigned> 45 IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden, 46 cl::desc("Indirect access memory instruction weight")); 47 48 static cl::opt<unsigned> 49 LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden, 50 cl::desc("Large stride memory access weight")); 51 52 static cl::opt<unsigned> 53 LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden, 54 cl::desc("Large stride memory access threshold")); 55 56 STATISTIC(NumMemBound, "Number of functions marked as memory bound"); 57 STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave"); 58 59 char llvm::AMDGPUPerfHintAnalysis::ID = 0; 60 char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID; 61 62 INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE, 63 "Analysis if a function is memory bound", true, true) 64 65 namespace { 66 67 struct AMDGPUPerfHint { 68 friend AMDGPUPerfHintAnalysis; 69 70 public: 71 AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_, 72 const TargetLowering *TLI_) 73 : FIM(FIM_), DL(nullptr), TLI(TLI_) {} 74 75 void runOnFunction(Function &F); 76 77 private: 78 struct MemAccessInfo { 79 const Value *V; 80 const Value *Base; 81 int64_t Offset; 82 MemAccessInfo() : V(nullptr), Base(nullptr), Offset(0) {} 83 bool isLargeStride(MemAccessInfo &Reference) const; 84 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 85 Printable print() const { 86 return Printable([this](raw_ostream &OS) { 87 OS << "Value: " << *V << '\n' 88 << "Base: " << *Base << " Offset: " << Offset << '\n'; 89 }); 90 } 91 #endif 92 }; 93 94 MemAccessInfo makeMemAccessInfo(Instruction *) const; 95 96 MemAccessInfo LastAccess; // Last memory access info 97 98 AMDGPUPerfHintAnalysis::FuncInfoMap &FIM; 99 100 const DataLayout *DL; 101 102 const TargetLowering *TLI; 103 104 void visit(const Function &F); 105 static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F); 106 static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F); 107 108 bool isIndirectAccess(const Instruction *Inst) const; 109 110 /// Check if the instruction is large stride. 111 /// The purpose is to identify memory access pattern like: 112 /// x = a[i]; 113 /// y = a[i+1000]; 114 /// z = a[i+2000]; 115 /// In the above example, the second and third memory access will be marked 116 /// large stride memory access. 117 bool isLargeStride(const Instruction *Inst); 118 119 bool isGlobalAddr(const Value *V) const; 120 bool isLocalAddr(const Value *V) const; 121 bool isConstantAddr(const Value *V) const; 122 }; 123 124 static const Value *getMemoryInstrPtr(const Instruction *Inst) { 125 if (auto LI = dyn_cast<LoadInst>(Inst)) { 126 return LI->getPointerOperand(); 127 } 128 if (auto SI = dyn_cast<StoreInst>(Inst)) { 129 return SI->getPointerOperand(); 130 } 131 if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst)) { 132 return AI->getPointerOperand(); 133 } 134 if (auto AI = dyn_cast<AtomicRMWInst>(Inst)) { 135 return AI->getPointerOperand(); 136 } 137 if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst)) { 138 return MI->getRawDest(); 139 } 140 141 return nullptr; 142 } 143 144 bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const { 145 LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n'); 146 SmallSet<const Value *, 32> WorkSet; 147 SmallSet<const Value *, 32> Visited; 148 if (const Value *MO = getMemoryInstrPtr(Inst)) { 149 if (isGlobalAddr(MO)) 150 WorkSet.insert(MO); 151 } 152 153 while (!WorkSet.empty()) { 154 const Value *V = *WorkSet.begin(); 155 WorkSet.erase(*WorkSet.begin()); 156 if (!Visited.insert(V).second) 157 continue; 158 LLVM_DEBUG(dbgs() << " check: " << *V << '\n'); 159 160 if (auto LD = dyn_cast<LoadInst>(V)) { 161 auto M = LD->getPointerOperand(); 162 if (isGlobalAddr(M) || isLocalAddr(M) || isConstantAddr(M)) { 163 LLVM_DEBUG(dbgs() << " is IA\n"); 164 return true; 165 } 166 continue; 167 } 168 169 if (auto GEP = dyn_cast<GetElementPtrInst>(V)) { 170 auto P = GEP->getPointerOperand(); 171 WorkSet.insert(P); 172 for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I) 173 WorkSet.insert(GEP->getOperand(I)); 174 continue; 175 } 176 177 if (auto U = dyn_cast<UnaryInstruction>(V)) { 178 WorkSet.insert(U->getOperand(0)); 179 continue; 180 } 181 182 if (auto BO = dyn_cast<BinaryOperator>(V)) { 183 WorkSet.insert(BO->getOperand(0)); 184 WorkSet.insert(BO->getOperand(1)); 185 continue; 186 } 187 188 if (auto S = dyn_cast<SelectInst>(V)) { 189 WorkSet.insert(S->getFalseValue()); 190 WorkSet.insert(S->getTrueValue()); 191 continue; 192 } 193 194 if (auto E = dyn_cast<ExtractElementInst>(V)) { 195 WorkSet.insert(E->getVectorOperand()); 196 continue; 197 } 198 199 LLVM_DEBUG(dbgs() << " dropped\n"); 200 } 201 202 LLVM_DEBUG(dbgs() << " is not IA\n"); 203 return false; 204 } 205 206 void AMDGPUPerfHint::visit(const Function &F) { 207 auto FIP = FIM.insert(std::make_pair(&F, AMDGPUPerfHintAnalysis::FuncInfo())); 208 if (!FIP.second) 209 return; 210 211 AMDGPUPerfHintAnalysis::FuncInfo &FI = FIP.first->second; 212 213 LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n'); 214 215 for (auto &B : F) { 216 LastAccess = MemAccessInfo(); 217 for (auto &I : B) { 218 if (getMemoryInstrPtr(&I)) { 219 if (isIndirectAccess(&I)) 220 ++FI.IAMInstCount; 221 if (isLargeStride(&I)) 222 ++FI.LSMInstCount; 223 ++FI.MemInstCount; 224 ++FI.InstCount; 225 continue; 226 } 227 CallSite CS(const_cast<Instruction *>(&I)); 228 if (CS) { 229 Function *Callee = CS.getCalledFunction(); 230 if (!Callee || Callee->isDeclaration()) { 231 ++FI.InstCount; 232 continue; 233 } 234 if (&F == Callee) // Handle immediate recursion 235 continue; 236 237 visit(*Callee); 238 auto Loc = FIM.find(Callee); 239 240 assert(Loc != FIM.end() && "No func info"); 241 FI.MemInstCount += Loc->second.MemInstCount; 242 FI.InstCount += Loc->second.InstCount; 243 FI.IAMInstCount += Loc->second.IAMInstCount; 244 FI.LSMInstCount += Loc->second.LSMInstCount; 245 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { 246 TargetLoweringBase::AddrMode AM; 247 auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL); 248 AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr)); 249 AM.HasBaseReg = !AM.BaseGV; 250 if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(), 251 GEP->getPointerAddressSpace())) 252 // Offset will likely be folded into load or store 253 continue; 254 ++FI.InstCount; 255 } else { 256 ++FI.InstCount; 257 } 258 } 259 } 260 } 261 262 void AMDGPUPerfHint::runOnFunction(Function &F) { 263 if (FIM.find(&F) != FIM.end()) 264 return; 265 266 const Module &M = *F.getParent(); 267 DL = &M.getDataLayout(); 268 269 visit(F); 270 auto Loc = FIM.find(&F); 271 272 assert(Loc != FIM.end() && "No func info"); 273 LLVM_DEBUG(dbgs() << F.getName() << " MemInst: " << Loc->second.MemInstCount 274 << '\n' 275 << " IAMInst: " << Loc->second.IAMInstCount << '\n' 276 << " LSMInst: " << Loc->second.LSMInstCount << '\n' 277 << " TotalInst: " << Loc->second.InstCount << '\n'); 278 279 auto &FI = Loc->second; 280 281 if (isMemBound(FI)) { 282 LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n"); 283 NumMemBound++; 284 } 285 286 if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(FI)) { 287 LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n"); 288 NumLimitWave++; 289 } 290 } 291 292 bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) { 293 return FI.MemInstCount * 100 / FI.InstCount > MemBoundThresh; 294 } 295 296 bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) { 297 return ((FI.MemInstCount + FI.IAMInstCount * IAWeight + 298 FI.LSMInstCount * LSWeight) * 299 100 / FI.InstCount) > LimitWaveThresh; 300 } 301 302 bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const { 303 if (auto PT = dyn_cast<PointerType>(V->getType())) { 304 unsigned As = PT->getAddressSpace(); 305 // Flat likely points to global too. 306 return As == AMDGPUAS::GLOBAL_ADDRESS || As == AMDGPUAS::FLAT_ADDRESS; 307 } 308 return false; 309 } 310 311 bool AMDGPUPerfHint::isLocalAddr(const Value *V) const { 312 if (auto PT = dyn_cast<PointerType>(V->getType())) 313 return PT->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS; 314 return false; 315 } 316 317 bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) { 318 LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n'); 319 320 MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst)); 321 bool IsLargeStride = MAI.isLargeStride(LastAccess); 322 if (MAI.Base) 323 LastAccess = std::move(MAI); 324 325 return IsLargeStride; 326 } 327 328 AMDGPUPerfHint::MemAccessInfo 329 AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const { 330 MemAccessInfo MAI; 331 const Value *MO = getMemoryInstrPtr(Inst); 332 333 LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n'); 334 // Do not treat local-addr memory access as large stride. 335 if (isLocalAddr(MO)) 336 return MAI; 337 338 MAI.V = MO; 339 MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL); 340 return MAI; 341 } 342 343 bool AMDGPUPerfHint::isConstantAddr(const Value *V) const { 344 if (auto PT = dyn_cast<PointerType>(V->getType())) { 345 unsigned As = PT->getAddressSpace(); 346 return As == AMDGPUAS::CONSTANT_ADDRESS || 347 As == AMDGPUAS::CONSTANT_ADDRESS_32BIT; 348 } 349 return false; 350 } 351 352 bool AMDGPUPerfHint::MemAccessInfo::isLargeStride( 353 MemAccessInfo &Reference) const { 354 355 if (!Base || !Reference.Base || Base != Reference.Base) 356 return false; 357 358 uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset 359 : Reference.Offset - Offset; 360 bool Result = Diff > LargeStrideThresh; 361 LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n" 362 << print() << "<=>\n" 363 << Reference.print() << "Result:" << Result << '\n'); 364 return Result; 365 } 366 } // namespace 367 368 bool AMDGPUPerfHintAnalysis::runOnFunction(Function &F) { 369 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>(); 370 if (!TPC) 371 return false; 372 373 const TargetMachine &TM = TPC->getTM<TargetMachine>(); 374 const TargetSubtargetInfo *ST = TM.getSubtargetImpl(F); 375 376 AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering()); 377 Analyzer.runOnFunction(F); 378 return false; 379 } 380 381 bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const { 382 auto FI = FIM.find(F); 383 if (FI == FIM.end()) 384 return false; 385 386 return AMDGPUPerfHint::isMemBound(FI->second); 387 } 388 389 bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const { 390 auto FI = FIM.find(F); 391 if (FI == FIM.end()) 392 return false; 393 394 return AMDGPUPerfHint::needLimitWave(FI->second); 395 } 396