1 //===- AMDGPUPerfHintAnalysis.cpp - analysis of functions memory traffic --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief Analyzes if a function potentially memory bound and if a kernel
12 /// kernel may benefit from limiting number of waves to reduce cache thrashing.
13 ///
14 //===----------------------------------------------------------------------===//
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUPerfHintAnalysis.h"
18 #include "Utils/AMDGPUBaseInfo.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSubtargetInfo.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/IntrinsicInst.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/ValueMap.h"
30 #include "llvm/Support/CommandLine.h"
31 
32 using namespace llvm;
33 
34 #define DEBUG_TYPE "amdgpu-perf-hint"
35 
36 static cl::opt<unsigned>
37     MemBoundThresh("amdgpu-membound-threshold", cl::init(50), cl::Hidden,
38                    cl::desc("Function mem bound threshold in %"));
39 
40 static cl::opt<unsigned>
41     LimitWaveThresh("amdgpu-limit-wave-threshold", cl::init(50), cl::Hidden,
42                     cl::desc("Kernel limit wave threshold in %"));
43 
44 static cl::opt<unsigned>
45     IAWeight("amdgpu-indirect-access-weight", cl::init(1000), cl::Hidden,
46              cl::desc("Indirect access memory instruction weight"));
47 
48 static cl::opt<unsigned>
49     LSWeight("amdgpu-large-stride-weight", cl::init(1000), cl::Hidden,
50              cl::desc("Large stride memory access weight"));
51 
52 static cl::opt<unsigned>
53     LargeStrideThresh("amdgpu-large-stride-threshold", cl::init(64), cl::Hidden,
54                       cl::desc("Large stride memory access threshold"));
55 
56 STATISTIC(NumMemBound, "Number of functions marked as memory bound");
57 STATISTIC(NumLimitWave, "Number of functions marked as needing limit wave");
58 
59 char llvm::AMDGPUPerfHintAnalysis::ID = 0;
60 char &llvm::AMDGPUPerfHintAnalysisID = AMDGPUPerfHintAnalysis::ID;
61 
62 INITIALIZE_PASS(AMDGPUPerfHintAnalysis, DEBUG_TYPE,
63                 "Analysis if a function is memory bound", true, true)
64 
65 namespace {
66 
67 struct AMDGPUPerfHint {
68   friend AMDGPUPerfHintAnalysis;
69 
70 public:
71   AMDGPUPerfHint(AMDGPUPerfHintAnalysis::FuncInfoMap &FIM_,
72                  const TargetLowering *TLI_)
73       : FIM(FIM_), DL(nullptr), TLI(TLI_) {}
74 
75   void runOnFunction(Function &F);
76 
77 private:
78   struct MemAccessInfo {
79     const Value *V;
80     const Value *Base;
81     int64_t Offset;
82     MemAccessInfo() : V(nullptr), Base(nullptr), Offset(0) {}
83     bool isLargeStride(MemAccessInfo &Reference) const;
84 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
85     Printable print() const {
86       return Printable([this](raw_ostream &OS) {
87         OS << "Value: " << *V << '\n'
88            << "Base: " << *Base << " Offset: " << Offset << '\n';
89       });
90     }
91 #endif
92   };
93 
94   MemAccessInfo makeMemAccessInfo(Instruction *) const;
95 
96   MemAccessInfo LastAccess; // Last memory access info
97 
98   AMDGPUPerfHintAnalysis::FuncInfoMap &FIM;
99 
100   const DataLayout *DL;
101 
102   AMDGPUAS AS;
103 
104   const TargetLowering *TLI;
105 
106   void visit(const Function &F);
107   static bool isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &F);
108   static bool needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &F);
109 
110   bool isIndirectAccess(const Instruction *Inst) const;
111 
112   /// Check if the instruction is large stride.
113   /// The purpose is to identify memory access pattern like:
114   /// x = a[i];
115   /// y = a[i+1000];
116   /// z = a[i+2000];
117   /// In the above example, the second and third memory access will be marked
118   /// large stride memory access.
119   bool isLargeStride(const Instruction *Inst);
120 
121   bool isGlobalAddr(const Value *V) const;
122   bool isLocalAddr(const Value *V) const;
123   bool isConstantAddr(const Value *V) const;
124 };
125 
126 static const Value *getMemoryInstrPtr(const Instruction *Inst) {
127   if (auto LI = dyn_cast<LoadInst>(Inst)) {
128     return LI->getPointerOperand();
129   }
130   if (auto SI = dyn_cast<StoreInst>(Inst)) {
131     return SI->getPointerOperand();
132   }
133   if (auto AI = dyn_cast<AtomicCmpXchgInst>(Inst)) {
134     return AI->getPointerOperand();
135   }
136   if (auto AI = dyn_cast<AtomicRMWInst>(Inst)) {
137     return AI->getPointerOperand();
138   }
139   if (auto MI = dyn_cast<AnyMemIntrinsic>(Inst)) {
140     return MI->getRawDest();
141   }
142 
143   return nullptr;
144 }
145 
146 bool AMDGPUPerfHint::isIndirectAccess(const Instruction *Inst) const {
147   LLVM_DEBUG(dbgs() << "[isIndirectAccess] " << *Inst << '\n');
148   SmallSet<const Value *, 32> WorkSet;
149   SmallSet<const Value *, 32> Visited;
150   if (const Value *MO = getMemoryInstrPtr(Inst)) {
151     if (isGlobalAddr(MO))
152       WorkSet.insert(MO);
153   }
154 
155   while (!WorkSet.empty()) {
156     const Value *V = *WorkSet.begin();
157     WorkSet.erase(*WorkSet.begin());
158     if (!Visited.insert(V).second)
159       continue;
160     LLVM_DEBUG(dbgs() << "  check: " << *V << '\n');
161 
162     if (auto LD = dyn_cast<LoadInst>(V)) {
163       auto M = LD->getPointerOperand();
164       if (isGlobalAddr(M) || isLocalAddr(M) || isConstantAddr(M)) {
165         LLVM_DEBUG(dbgs() << "    is IA\n");
166         return true;
167       }
168       continue;
169     }
170 
171     if (auto GEP = dyn_cast<GetElementPtrInst>(V)) {
172       auto P = GEP->getPointerOperand();
173       WorkSet.insert(P);
174       for (unsigned I = 1, E = GEP->getNumIndices() + 1; I != E; ++I)
175         WorkSet.insert(GEP->getOperand(I));
176       continue;
177     }
178 
179     if (auto U = dyn_cast<UnaryInstruction>(V)) {
180       WorkSet.insert(U->getOperand(0));
181       continue;
182     }
183 
184     if (auto BO = dyn_cast<BinaryOperator>(V)) {
185       WorkSet.insert(BO->getOperand(0));
186       WorkSet.insert(BO->getOperand(1));
187       continue;
188     }
189 
190     if (auto S = dyn_cast<SelectInst>(V)) {
191       WorkSet.insert(S->getFalseValue());
192       WorkSet.insert(S->getTrueValue());
193       continue;
194     }
195 
196     if (auto E = dyn_cast<ExtractElementInst>(V)) {
197       WorkSet.insert(E->getVectorOperand());
198       continue;
199     }
200 
201     if (auto Phi = dyn_cast<PHINode>(V)) {
202       for (unsigned I = 0, E = Phi->getNumIncomingValues(); I != E; ++I)
203         WorkSet.insert(Phi->getIncomingValue(I));
204       continue;
205     }
206 
207     LLVM_DEBUG(dbgs() << "    dropped\n");
208   }
209 
210   LLVM_DEBUG(dbgs() << "  is not IA\n");
211   return false;
212 }
213 
214 void AMDGPUPerfHint::visit(const Function &F) {
215   auto FIP = FIM.insert(std::make_pair(&F, AMDGPUPerfHintAnalysis::FuncInfo()));
216   if (!FIP.second)
217     return;
218 
219   AMDGPUPerfHintAnalysis::FuncInfo &FI = FIP.first->second;
220 
221   LLVM_DEBUG(dbgs() << "[AMDGPUPerfHint] process " << F.getName() << '\n');
222 
223   for (auto &B : F) {
224     LastAccess = MemAccessInfo();
225     for (auto &I : B) {
226       if (getMemoryInstrPtr(&I)) {
227         if (isIndirectAccess(&I))
228           ++FI.IAMInstCount;
229         if (isLargeStride(&I))
230           ++FI.LSMInstCount;
231         ++FI.MemInstCount;
232         ++FI.InstCount;
233         continue;
234       }
235       CallSite CS(const_cast<Instruction *>(&I));
236       if (CS) {
237         Function *Callee = CS.getCalledFunction();
238         if (!Callee || Callee->isDeclaration()) {
239           ++FI.InstCount;
240           continue;
241         }
242         if (&F == Callee) // Handle immediate recursion
243           continue;
244 
245         visit(*Callee);
246         auto Loc = FIM.find(Callee);
247 
248         assert(Loc != FIM.end() && "No func info");
249         FI.MemInstCount += Loc->second.MemInstCount;
250         FI.InstCount += Loc->second.InstCount;
251         FI.IAMInstCount += Loc->second.IAMInstCount;
252         FI.LSMInstCount += Loc->second.LSMInstCount;
253       } else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
254         TargetLoweringBase::AddrMode AM;
255         auto *Ptr = GetPointerBaseWithConstantOffset(GEP, AM.BaseOffs, *DL);
256         AM.BaseGV = dyn_cast_or_null<GlobalValue>(const_cast<Value *>(Ptr));
257         AM.HasBaseReg = !AM.BaseGV;
258         if (TLI->isLegalAddressingMode(*DL, AM, GEP->getResultElementType(),
259                                        GEP->getPointerAddressSpace()))
260           // Offset will likely be folded into load or store
261           continue;
262         ++FI.InstCount;
263       } else {
264         ++FI.InstCount;
265       }
266     }
267   }
268 }
269 
270 void AMDGPUPerfHint::runOnFunction(Function &F) {
271   if (FIM.find(&F) != FIM.end())
272     return;
273 
274   const Module &M = *F.getParent();
275   DL = &M.getDataLayout();
276   AS = AMDGPU::getAMDGPUAS(M);
277 
278   visit(F);
279   auto Loc = FIM.find(&F);
280 
281   assert(Loc != FIM.end() && "No func info");
282   LLVM_DEBUG(dbgs() << F.getName() << " MemInst: " << Loc->second.MemInstCount
283                     << '\n'
284                     << " IAMInst: " << Loc->second.IAMInstCount << '\n'
285                     << " LSMInst: " << Loc->second.LSMInstCount << '\n'
286                     << " TotalInst: " << Loc->second.InstCount << '\n');
287 
288   auto &FI = Loc->second;
289 
290   if (isMemBound(FI)) {
291     LLVM_DEBUG(dbgs() << F.getName() << " is memory bound\n");
292     NumMemBound++;
293   }
294 
295   if (AMDGPU::isEntryFunctionCC(F.getCallingConv()) && needLimitWave(FI)) {
296     LLVM_DEBUG(dbgs() << F.getName() << " needs limit wave\n");
297     NumLimitWave++;
298   }
299 }
300 
301 bool AMDGPUPerfHint::isMemBound(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
302   return FI.MemInstCount * 100 / FI.InstCount > MemBoundThresh;
303 }
304 
305 bool AMDGPUPerfHint::needLimitWave(const AMDGPUPerfHintAnalysis::FuncInfo &FI) {
306   return ((FI.MemInstCount + FI.IAMInstCount * IAWeight +
307            FI.LSMInstCount * LSWeight) *
308           100 / FI.InstCount) > LimitWaveThresh;
309 }
310 
311 bool AMDGPUPerfHint::isGlobalAddr(const Value *V) const {
312   if (auto PT = dyn_cast<PointerType>(V->getType())) {
313     unsigned As = PT->getAddressSpace();
314     // Flat likely points to global too.
315     return As == AS.GLOBAL_ADDRESS || As == AS.FLAT_ADDRESS;
316   }
317   return false;
318 }
319 
320 bool AMDGPUPerfHint::isLocalAddr(const Value *V) const {
321   if (auto PT = dyn_cast<PointerType>(V->getType()))
322     return PT->getAddressSpace() == AS.LOCAL_ADDRESS;
323   return false;
324 }
325 
326 bool AMDGPUPerfHint::isLargeStride(const Instruction *Inst) {
327   LLVM_DEBUG(dbgs() << "[isLargeStride] " << *Inst << '\n');
328 
329   MemAccessInfo MAI = makeMemAccessInfo(const_cast<Instruction *>(Inst));
330   bool IsLargeStride = MAI.isLargeStride(LastAccess);
331   if (MAI.Base)
332     LastAccess = std::move(MAI);
333 
334   return IsLargeStride;
335 }
336 
337 AMDGPUPerfHint::MemAccessInfo
338 AMDGPUPerfHint::makeMemAccessInfo(Instruction *Inst) const {
339   MemAccessInfo MAI;
340   const Value *MO = getMemoryInstrPtr(Inst);
341 
342   LLVM_DEBUG(dbgs() << "[isLargeStride] MO: " << *MO << '\n');
343   // Do not treat local-addr memory access as large stride.
344   if (isLocalAddr(MO))
345     return MAI;
346 
347   MAI.V = MO;
348   MAI.Base = GetPointerBaseWithConstantOffset(MO, MAI.Offset, *DL);
349   return MAI;
350 }
351 
352 bool AMDGPUPerfHint::isConstantAddr(const Value *V) const {
353   if (auto PT = dyn_cast<PointerType>(V->getType())) {
354     unsigned As = PT->getAddressSpace();
355     return As == AS.CONSTANT_ADDRESS || As == AS.CONSTANT_ADDRESS_32BIT;
356   }
357   return false;
358 }
359 
360 bool AMDGPUPerfHint::MemAccessInfo::isLargeStride(
361     MemAccessInfo &Reference) const {
362 
363   if (!Base || !Reference.Base || Base != Reference.Base)
364     return false;
365 
366   uint64_t Diff = Offset > Reference.Offset ? Offset - Reference.Offset
367                                             : Reference.Offset - Offset;
368   bool Result = Diff > LargeStrideThresh;
369   LLVM_DEBUG(dbgs() << "[isLargeStride compare]\n"
370                << print() << "<=>\n"
371                << Reference.print() << "Result:" << Result << '\n');
372   return Result;
373 }
374 } // namespace
375 
376 bool AMDGPUPerfHintAnalysis::runOnFunction(Function &F) {
377   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
378   if (!TPC)
379     return false;
380 
381   const TargetMachine &TM = TPC->getTM<TargetMachine>();
382   const TargetSubtargetInfo *ST = TM.getSubtargetImpl(F);
383 
384   AMDGPUPerfHint Analyzer(FIM, ST->getTargetLowering());
385   Analyzer.runOnFunction(F);
386   return false;
387 }
388 
389 bool AMDGPUPerfHintAnalysis::isMemoryBound(const Function *F) const {
390   auto FI = FIM.find(F);
391   if (FI == FIM.end())
392     return false;
393 
394   return AMDGPUPerfHint::isMemBound(FI->second);
395 }
396 
397 bool AMDGPUPerfHintAnalysis::needsWaveLimiter(const Function *F) const {
398   auto FI = FIM.find(F);
399   if (FI == FIM.end())
400     return false;
401 
402   return AMDGPUPerfHint::needLimitWave(FI->second);
403 }
404