1 //===- AMDGPULibCalls.cpp -------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file 10 /// This file does AMD library function optimizations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "AMDGPU.h" 15 #include "AMDGPULibFunc.h" 16 #include "GCNSubtarget.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/IntrinsicsAMDGPU.h" 20 #include "llvm/IR/IRBuilder.h" 21 #include "llvm/InitializePasses.h" 22 #include "llvm/Target/TargetMachine.h" 23 24 #define DEBUG_TYPE "amdgpu-simplifylib" 25 26 using namespace llvm; 27 28 static cl::opt<bool> EnablePreLink("amdgpu-prelink", 29 cl::desc("Enable pre-link mode optimizations"), 30 cl::init(false), 31 cl::Hidden); 32 33 static cl::list<std::string> UseNative("amdgpu-use-native", 34 cl::desc("Comma separated list of functions to replace with native, or all"), 35 cl::CommaSeparated, cl::ValueOptional, 36 cl::Hidden); 37 38 #define MATH_PI numbers::pi 39 #define MATH_E numbers::e 40 #define MATH_SQRT2 numbers::sqrt2 41 #define MATH_SQRT1_2 numbers::inv_sqrt2 42 43 namespace llvm { 44 45 class AMDGPULibCalls { 46 private: 47 48 typedef llvm::AMDGPULibFunc FuncInfo; 49 50 const TargetMachine *TM; 51 52 // -fuse-native. 53 bool AllNative = false; 54 55 bool useNativeFunc(const StringRef F) const; 56 57 // Return a pointer (pointer expr) to the function if function definition with 58 // "FuncName" exists. It may create a new function prototype in pre-link mode. 59 FunctionCallee getFunction(Module *M, const FuncInfo &fInfo); 60 61 bool parseFunctionName(const StringRef &FMangledName, FuncInfo &FInfo); 62 63 bool TDOFold(CallInst *CI, const FuncInfo &FInfo); 64 65 /* Specialized optimizations */ 66 67 // recip (half or native) 68 bool fold_recip(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 69 70 // divide (half or native) 71 bool fold_divide(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 72 73 // pow/powr/pown 74 bool fold_pow(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 75 76 // rootn 77 bool fold_rootn(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 78 79 // fma/mad 80 bool fold_fma_mad(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 81 82 // -fuse-native for sincos 83 bool sincosUseNative(CallInst *aCI, const FuncInfo &FInfo); 84 85 // evaluate calls if calls' arguments are constants. 86 bool evaluateScalarMathFunc(const FuncInfo &FInfo, double& Res0, 87 double& Res1, Constant *copr0, Constant *copr1, Constant *copr2); 88 bool evaluateCall(CallInst *aCI, const FuncInfo &FInfo); 89 90 // exp 91 bool fold_exp(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 92 93 // exp2 94 bool fold_exp2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 95 96 // exp10 97 bool fold_exp10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 98 99 // log 100 bool fold_log(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 101 102 // log2 103 bool fold_log2(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 104 105 // log10 106 bool fold_log10(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 107 108 // sqrt 109 bool fold_sqrt(CallInst *CI, IRBuilder<> &B, const FuncInfo &FInfo); 110 111 // sin/cos 112 bool fold_sincos(CallInst * CI, IRBuilder<> &B, AliasAnalysis * AA); 113 114 // __read_pipe/__write_pipe 115 bool fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 116 const FuncInfo &FInfo); 117 118 // llvm.amdgcn.wavefrontsize 119 bool fold_wavefrontsize(CallInst *CI, IRBuilder<> &B); 120 121 // Get insertion point at entry. 122 BasicBlock::iterator getEntryIns(CallInst * UI); 123 // Insert an Alloc instruction. 124 AllocaInst* insertAlloca(CallInst * UI, IRBuilder<> &B, const char *prefix); 125 // Get a scalar native builtin single argument FP function 126 FunctionCallee getNativeFunction(Module *M, const FuncInfo &FInfo); 127 128 protected: 129 CallInst *CI; 130 131 bool isUnsafeMath(const CallInst *CI) const; 132 133 void replaceCall(Value *With) { 134 CI->replaceAllUsesWith(With); 135 CI->eraseFromParent(); 136 } 137 138 public: 139 AMDGPULibCalls(const TargetMachine *TM_ = nullptr) : TM(TM_) {} 140 141 bool fold(CallInst *CI, AliasAnalysis *AA = nullptr); 142 143 void initNativeFuncs(); 144 145 // Replace a normal math function call with that native version 146 bool useNative(CallInst *CI); 147 }; 148 149 } // end llvm namespace 150 151 namespace { 152 153 class AMDGPUSimplifyLibCalls : public FunctionPass { 154 155 AMDGPULibCalls Simplifier; 156 157 public: 158 static char ID; // Pass identification 159 160 AMDGPUSimplifyLibCalls(const TargetMachine *TM = nullptr) 161 : FunctionPass(ID), Simplifier(TM) { 162 initializeAMDGPUSimplifyLibCallsPass(*PassRegistry::getPassRegistry()); 163 } 164 165 void getAnalysisUsage(AnalysisUsage &AU) const override { 166 AU.addRequired<AAResultsWrapperPass>(); 167 } 168 169 bool runOnFunction(Function &M) override; 170 }; 171 172 class AMDGPUUseNativeCalls : public FunctionPass { 173 174 AMDGPULibCalls Simplifier; 175 176 public: 177 static char ID; // Pass identification 178 179 AMDGPUUseNativeCalls() : FunctionPass(ID) { 180 initializeAMDGPUUseNativeCallsPass(*PassRegistry::getPassRegistry()); 181 Simplifier.initNativeFuncs(); 182 } 183 184 bool runOnFunction(Function &F) override; 185 }; 186 187 } // end anonymous namespace. 188 189 char AMDGPUSimplifyLibCalls::ID = 0; 190 char AMDGPUUseNativeCalls::ID = 0; 191 192 INITIALIZE_PASS_BEGIN(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 193 "Simplify well-known AMD library calls", false, false) 194 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 195 INITIALIZE_PASS_END(AMDGPUSimplifyLibCalls, "amdgpu-simplifylib", 196 "Simplify well-known AMD library calls", false, false) 197 198 INITIALIZE_PASS(AMDGPUUseNativeCalls, "amdgpu-usenative", 199 "Replace builtin math calls with that native versions.", 200 false, false) 201 202 template <typename IRB> 203 static CallInst *CreateCallEx(IRB &B, FunctionCallee Callee, Value *Arg, 204 const Twine &Name = "") { 205 CallInst *R = B.CreateCall(Callee, Arg, Name); 206 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 207 R->setCallingConv(F->getCallingConv()); 208 return R; 209 } 210 211 template <typename IRB> 212 static CallInst *CreateCallEx2(IRB &B, FunctionCallee Callee, Value *Arg1, 213 Value *Arg2, const Twine &Name = "") { 214 CallInst *R = B.CreateCall(Callee, {Arg1, Arg2}, Name); 215 if (Function *F = dyn_cast<Function>(Callee.getCallee())) 216 R->setCallingConv(F->getCallingConv()); 217 return R; 218 } 219 220 // Data structures for table-driven optimizations. 221 // FuncTbl works for both f32 and f64 functions with 1 input argument 222 223 struct TableEntry { 224 double result; 225 double input; 226 }; 227 228 /* a list of {result, input} */ 229 static const TableEntry tbl_acos[] = { 230 {MATH_PI / 2.0, 0.0}, 231 {MATH_PI / 2.0, -0.0}, 232 {0.0, 1.0}, 233 {MATH_PI, -1.0} 234 }; 235 static const TableEntry tbl_acosh[] = { 236 {0.0, 1.0} 237 }; 238 static const TableEntry tbl_acospi[] = { 239 {0.5, 0.0}, 240 {0.5, -0.0}, 241 {0.0, 1.0}, 242 {1.0, -1.0} 243 }; 244 static const TableEntry tbl_asin[] = { 245 {0.0, 0.0}, 246 {-0.0, -0.0}, 247 {MATH_PI / 2.0, 1.0}, 248 {-MATH_PI / 2.0, -1.0} 249 }; 250 static const TableEntry tbl_asinh[] = { 251 {0.0, 0.0}, 252 {-0.0, -0.0} 253 }; 254 static const TableEntry tbl_asinpi[] = { 255 {0.0, 0.0}, 256 {-0.0, -0.0}, 257 {0.5, 1.0}, 258 {-0.5, -1.0} 259 }; 260 static const TableEntry tbl_atan[] = { 261 {0.0, 0.0}, 262 {-0.0, -0.0}, 263 {MATH_PI / 4.0, 1.0}, 264 {-MATH_PI / 4.0, -1.0} 265 }; 266 static const TableEntry tbl_atanh[] = { 267 {0.0, 0.0}, 268 {-0.0, -0.0} 269 }; 270 static const TableEntry tbl_atanpi[] = { 271 {0.0, 0.0}, 272 {-0.0, -0.0}, 273 {0.25, 1.0}, 274 {-0.25, -1.0} 275 }; 276 static const TableEntry tbl_cbrt[] = { 277 {0.0, 0.0}, 278 {-0.0, -0.0}, 279 {1.0, 1.0}, 280 {-1.0, -1.0}, 281 }; 282 static const TableEntry tbl_cos[] = { 283 {1.0, 0.0}, 284 {1.0, -0.0} 285 }; 286 static const TableEntry tbl_cosh[] = { 287 {1.0, 0.0}, 288 {1.0, -0.0} 289 }; 290 static const TableEntry tbl_cospi[] = { 291 {1.0, 0.0}, 292 {1.0, -0.0} 293 }; 294 static const TableEntry tbl_erfc[] = { 295 {1.0, 0.0}, 296 {1.0, -0.0} 297 }; 298 static const TableEntry tbl_erf[] = { 299 {0.0, 0.0}, 300 {-0.0, -0.0} 301 }; 302 static const TableEntry tbl_exp[] = { 303 {1.0, 0.0}, 304 {1.0, -0.0}, 305 {MATH_E, 1.0} 306 }; 307 static const TableEntry tbl_exp2[] = { 308 {1.0, 0.0}, 309 {1.0, -0.0}, 310 {2.0, 1.0} 311 }; 312 static const TableEntry tbl_exp10[] = { 313 {1.0, 0.0}, 314 {1.0, -0.0}, 315 {10.0, 1.0} 316 }; 317 static const TableEntry tbl_expm1[] = { 318 {0.0, 0.0}, 319 {-0.0, -0.0} 320 }; 321 static const TableEntry tbl_log[] = { 322 {0.0, 1.0}, 323 {1.0, MATH_E} 324 }; 325 static const TableEntry tbl_log2[] = { 326 {0.0, 1.0}, 327 {1.0, 2.0} 328 }; 329 static const TableEntry tbl_log10[] = { 330 {0.0, 1.0}, 331 {1.0, 10.0} 332 }; 333 static const TableEntry tbl_rsqrt[] = { 334 {1.0, 1.0}, 335 {MATH_SQRT1_2, 2.0} 336 }; 337 static const TableEntry tbl_sin[] = { 338 {0.0, 0.0}, 339 {-0.0, -0.0} 340 }; 341 static const TableEntry tbl_sinh[] = { 342 {0.0, 0.0}, 343 {-0.0, -0.0} 344 }; 345 static const TableEntry tbl_sinpi[] = { 346 {0.0, 0.0}, 347 {-0.0, -0.0} 348 }; 349 static const TableEntry tbl_sqrt[] = { 350 {0.0, 0.0}, 351 {1.0, 1.0}, 352 {MATH_SQRT2, 2.0} 353 }; 354 static const TableEntry tbl_tan[] = { 355 {0.0, 0.0}, 356 {-0.0, -0.0} 357 }; 358 static const TableEntry tbl_tanh[] = { 359 {0.0, 0.0}, 360 {-0.0, -0.0} 361 }; 362 static const TableEntry tbl_tanpi[] = { 363 {0.0, 0.0}, 364 {-0.0, -0.0} 365 }; 366 static const TableEntry tbl_tgamma[] = { 367 {1.0, 1.0}, 368 {1.0, 2.0}, 369 {2.0, 3.0}, 370 {6.0, 4.0} 371 }; 372 373 static bool HasNative(AMDGPULibFunc::EFuncId id) { 374 switch(id) { 375 case AMDGPULibFunc::EI_DIVIDE: 376 case AMDGPULibFunc::EI_COS: 377 case AMDGPULibFunc::EI_EXP: 378 case AMDGPULibFunc::EI_EXP2: 379 case AMDGPULibFunc::EI_EXP10: 380 case AMDGPULibFunc::EI_LOG: 381 case AMDGPULibFunc::EI_LOG2: 382 case AMDGPULibFunc::EI_LOG10: 383 case AMDGPULibFunc::EI_POWR: 384 case AMDGPULibFunc::EI_RECIP: 385 case AMDGPULibFunc::EI_RSQRT: 386 case AMDGPULibFunc::EI_SIN: 387 case AMDGPULibFunc::EI_SINCOS: 388 case AMDGPULibFunc::EI_SQRT: 389 case AMDGPULibFunc::EI_TAN: 390 return true; 391 default:; 392 } 393 return false; 394 } 395 396 struct TableRef { 397 size_t size; 398 const TableEntry *table; // variable size: from 0 to (size - 1) 399 400 TableRef() : size(0), table(nullptr) {} 401 402 template <size_t N> 403 TableRef(const TableEntry (&tbl)[N]) : size(N), table(&tbl[0]) {} 404 }; 405 406 static TableRef getOptTable(AMDGPULibFunc::EFuncId id) { 407 switch(id) { 408 case AMDGPULibFunc::EI_ACOS: return TableRef(tbl_acos); 409 case AMDGPULibFunc::EI_ACOSH: return TableRef(tbl_acosh); 410 case AMDGPULibFunc::EI_ACOSPI: return TableRef(tbl_acospi); 411 case AMDGPULibFunc::EI_ASIN: return TableRef(tbl_asin); 412 case AMDGPULibFunc::EI_ASINH: return TableRef(tbl_asinh); 413 case AMDGPULibFunc::EI_ASINPI: return TableRef(tbl_asinpi); 414 case AMDGPULibFunc::EI_ATAN: return TableRef(tbl_atan); 415 case AMDGPULibFunc::EI_ATANH: return TableRef(tbl_atanh); 416 case AMDGPULibFunc::EI_ATANPI: return TableRef(tbl_atanpi); 417 case AMDGPULibFunc::EI_CBRT: return TableRef(tbl_cbrt); 418 case AMDGPULibFunc::EI_NCOS: 419 case AMDGPULibFunc::EI_COS: return TableRef(tbl_cos); 420 case AMDGPULibFunc::EI_COSH: return TableRef(tbl_cosh); 421 case AMDGPULibFunc::EI_COSPI: return TableRef(tbl_cospi); 422 case AMDGPULibFunc::EI_ERFC: return TableRef(tbl_erfc); 423 case AMDGPULibFunc::EI_ERF: return TableRef(tbl_erf); 424 case AMDGPULibFunc::EI_EXP: return TableRef(tbl_exp); 425 case AMDGPULibFunc::EI_NEXP2: 426 case AMDGPULibFunc::EI_EXP2: return TableRef(tbl_exp2); 427 case AMDGPULibFunc::EI_EXP10: return TableRef(tbl_exp10); 428 case AMDGPULibFunc::EI_EXPM1: return TableRef(tbl_expm1); 429 case AMDGPULibFunc::EI_LOG: return TableRef(tbl_log); 430 case AMDGPULibFunc::EI_NLOG2: 431 case AMDGPULibFunc::EI_LOG2: return TableRef(tbl_log2); 432 case AMDGPULibFunc::EI_LOG10: return TableRef(tbl_log10); 433 case AMDGPULibFunc::EI_NRSQRT: 434 case AMDGPULibFunc::EI_RSQRT: return TableRef(tbl_rsqrt); 435 case AMDGPULibFunc::EI_NSIN: 436 case AMDGPULibFunc::EI_SIN: return TableRef(tbl_sin); 437 case AMDGPULibFunc::EI_SINH: return TableRef(tbl_sinh); 438 case AMDGPULibFunc::EI_SINPI: return TableRef(tbl_sinpi); 439 case AMDGPULibFunc::EI_NSQRT: 440 case AMDGPULibFunc::EI_SQRT: return TableRef(tbl_sqrt); 441 case AMDGPULibFunc::EI_TAN: return TableRef(tbl_tan); 442 case AMDGPULibFunc::EI_TANH: return TableRef(tbl_tanh); 443 case AMDGPULibFunc::EI_TANPI: return TableRef(tbl_tanpi); 444 case AMDGPULibFunc::EI_TGAMMA: return TableRef(tbl_tgamma); 445 default:; 446 } 447 return TableRef(); 448 } 449 450 static inline int getVecSize(const AMDGPULibFunc& FInfo) { 451 return FInfo.getLeads()[0].VectorSize; 452 } 453 454 static inline AMDGPULibFunc::EType getArgType(const AMDGPULibFunc& FInfo) { 455 return (AMDGPULibFunc::EType)FInfo.getLeads()[0].ArgType; 456 } 457 458 FunctionCallee AMDGPULibCalls::getFunction(Module *M, const FuncInfo &fInfo) { 459 // If we are doing PreLinkOpt, the function is external. So it is safe to 460 // use getOrInsertFunction() at this stage. 461 462 return EnablePreLink ? AMDGPULibFunc::getOrInsertFunction(M, fInfo) 463 : AMDGPULibFunc::getFunction(M, fInfo); 464 } 465 466 bool AMDGPULibCalls::parseFunctionName(const StringRef &FMangledName, 467 FuncInfo &FInfo) { 468 return AMDGPULibFunc::parse(FMangledName, FInfo); 469 } 470 471 bool AMDGPULibCalls::isUnsafeMath(const CallInst *CI) const { 472 if (auto Op = dyn_cast<FPMathOperator>(CI)) 473 if (Op->isFast()) 474 return true; 475 const Function *F = CI->getParent()->getParent(); 476 Attribute Attr = F->getFnAttribute("unsafe-fp-math"); 477 return Attr.getValueAsBool(); 478 } 479 480 bool AMDGPULibCalls::useNativeFunc(const StringRef F) const { 481 return AllNative || llvm::is_contained(UseNative, F); 482 } 483 484 void AMDGPULibCalls::initNativeFuncs() { 485 AllNative = useNativeFunc("all") || 486 (UseNative.getNumOccurrences() && UseNative.size() == 1 && 487 UseNative.begin()->empty()); 488 } 489 490 bool AMDGPULibCalls::sincosUseNative(CallInst *aCI, const FuncInfo &FInfo) { 491 bool native_sin = useNativeFunc("sin"); 492 bool native_cos = useNativeFunc("cos"); 493 494 if (native_sin && native_cos) { 495 Module *M = aCI->getModule(); 496 Value *opr0 = aCI->getArgOperand(0); 497 498 AMDGPULibFunc nf; 499 nf.getLeads()[0].ArgType = FInfo.getLeads()[0].ArgType; 500 nf.getLeads()[0].VectorSize = FInfo.getLeads()[0].VectorSize; 501 502 nf.setPrefix(AMDGPULibFunc::NATIVE); 503 nf.setId(AMDGPULibFunc::EI_SIN); 504 FunctionCallee sinExpr = getFunction(M, nf); 505 506 nf.setPrefix(AMDGPULibFunc::NATIVE); 507 nf.setId(AMDGPULibFunc::EI_COS); 508 FunctionCallee cosExpr = getFunction(M, nf); 509 if (sinExpr && cosExpr) { 510 Value *sinval = CallInst::Create(sinExpr, opr0, "splitsin", aCI); 511 Value *cosval = CallInst::Create(cosExpr, opr0, "splitcos", aCI); 512 new StoreInst(cosval, aCI->getArgOperand(1), aCI); 513 514 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 515 << " with native version of sin/cos"); 516 517 replaceCall(sinval); 518 return true; 519 } 520 } 521 return false; 522 } 523 524 bool AMDGPULibCalls::useNative(CallInst *aCI) { 525 CI = aCI; 526 Function *Callee = aCI->getCalledFunction(); 527 528 FuncInfo FInfo; 529 if (!parseFunctionName(Callee->getName(), FInfo) || !FInfo.isMangled() || 530 FInfo.getPrefix() != AMDGPULibFunc::NOPFX || 531 getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId()) || 532 !(AllNative || useNativeFunc(FInfo.getName()))) { 533 return false; 534 } 535 536 if (FInfo.getId() == AMDGPULibFunc::EI_SINCOS) 537 return sincosUseNative(aCI, FInfo); 538 539 FInfo.setPrefix(AMDGPULibFunc::NATIVE); 540 FunctionCallee F = getFunction(aCI->getModule(), FInfo); 541 if (!F) 542 return false; 543 544 aCI->setCalledFunction(F); 545 DEBUG_WITH_TYPE("usenative", dbgs() << "<useNative> replace " << *aCI 546 << " with native version"); 547 return true; 548 } 549 550 // Clang emits call of __read_pipe_2 or __read_pipe_4 for OpenCL read_pipe 551 // builtin, with appended type size and alignment arguments, where 2 or 4 552 // indicates the original number of arguments. The library has optimized version 553 // of __read_pipe_2/__read_pipe_4 when the type size and alignment has the same 554 // power of 2 value. This function transforms __read_pipe_2 to __read_pipe_2_N 555 // for such cases where N is the size in bytes of the type (N = 1, 2, 4, 8, ..., 556 // 128). The same for __read_pipe_4, write_pipe_2, and write_pipe_4. 557 bool AMDGPULibCalls::fold_read_write_pipe(CallInst *CI, IRBuilder<> &B, 558 const FuncInfo &FInfo) { 559 auto *Callee = CI->getCalledFunction(); 560 if (!Callee->isDeclaration()) 561 return false; 562 563 assert(Callee->hasName() && "Invalid read_pipe/write_pipe function"); 564 auto *M = Callee->getParent(); 565 auto &Ctx = M->getContext(); 566 std::string Name = std::string(Callee->getName()); 567 auto NumArg = CI->arg_size(); 568 if (NumArg != 4 && NumArg != 6) 569 return false; 570 auto *PacketSize = CI->getArgOperand(NumArg - 2); 571 auto *PacketAlign = CI->getArgOperand(NumArg - 1); 572 if (!isa<ConstantInt>(PacketSize) || !isa<ConstantInt>(PacketAlign)) 573 return false; 574 unsigned Size = cast<ConstantInt>(PacketSize)->getZExtValue(); 575 Align Alignment = cast<ConstantInt>(PacketAlign)->getAlignValue(); 576 if (Alignment != Size) 577 return false; 578 579 Type *PtrElemTy; 580 if (Size <= 8) 581 PtrElemTy = Type::getIntNTy(Ctx, Size * 8); 582 else 583 PtrElemTy = FixedVectorType::get(Type::getInt64Ty(Ctx), Size / 8); 584 unsigned PtrArgLoc = CI->arg_size() - 3; 585 auto PtrArg = CI->getArgOperand(PtrArgLoc); 586 unsigned PtrArgAS = PtrArg->getType()->getPointerAddressSpace(); 587 auto *PtrTy = llvm::PointerType::get(PtrElemTy, PtrArgAS); 588 589 SmallVector<llvm::Type *, 6> ArgTys; 590 for (unsigned I = 0; I != PtrArgLoc; ++I) 591 ArgTys.push_back(CI->getArgOperand(I)->getType()); 592 ArgTys.push_back(PtrTy); 593 594 Name = Name + "_" + std::to_string(Size); 595 auto *FTy = FunctionType::get(Callee->getReturnType(), 596 ArrayRef<Type *>(ArgTys), false); 597 AMDGPULibFunc NewLibFunc(Name, FTy); 598 FunctionCallee F = AMDGPULibFunc::getOrInsertFunction(M, NewLibFunc); 599 if (!F) 600 return false; 601 602 auto *BCast = B.CreatePointerCast(PtrArg, PtrTy); 603 SmallVector<Value *, 6> Args; 604 for (unsigned I = 0; I != PtrArgLoc; ++I) 605 Args.push_back(CI->getArgOperand(I)); 606 Args.push_back(BCast); 607 608 auto *NCI = B.CreateCall(F, Args); 609 NCI->setAttributes(CI->getAttributes()); 610 CI->replaceAllUsesWith(NCI); 611 CI->dropAllReferences(); 612 CI->eraseFromParent(); 613 614 return true; 615 } 616 617 // This function returns false if no change; return true otherwise. 618 bool AMDGPULibCalls::fold(CallInst *CI, AliasAnalysis *AA) { 619 this->CI = CI; 620 Function *Callee = CI->getCalledFunction(); 621 622 // Ignore indirect calls. 623 if (Callee == nullptr) 624 return false; 625 626 BasicBlock *BB = CI->getParent(); 627 LLVMContext &Context = CI->getParent()->getContext(); 628 IRBuilder<> B(Context); 629 630 // Set the builder to the instruction after the call. 631 B.SetInsertPoint(BB, CI->getIterator()); 632 633 // Copy fast flags from the original call. 634 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(CI)) 635 B.setFastMathFlags(FPOp->getFastMathFlags()); 636 637 switch (Callee->getIntrinsicID()) { 638 default: 639 break; 640 case Intrinsic::amdgcn_wavefrontsize: 641 return !EnablePreLink && fold_wavefrontsize(CI, B); 642 } 643 644 FuncInfo FInfo; 645 if (!parseFunctionName(Callee->getName(), FInfo)) 646 return false; 647 648 // Further check the number of arguments to see if they match. 649 if (CI->arg_size() != FInfo.getNumArgs()) 650 return false; 651 652 if (TDOFold(CI, FInfo)) 653 return true; 654 655 // Under unsafe-math, evaluate calls if possible. 656 // According to Brian Sumner, we can do this for all f32 function calls 657 // using host's double function calls. 658 if (isUnsafeMath(CI) && evaluateCall(CI, FInfo)) 659 return true; 660 661 // Specialized optimizations for each function call 662 switch (FInfo.getId()) { 663 case AMDGPULibFunc::EI_RECIP: 664 // skip vector function 665 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 666 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 667 "recip must be an either native or half function"); 668 return (getVecSize(FInfo) != 1) ? false : fold_recip(CI, B, FInfo); 669 670 case AMDGPULibFunc::EI_DIVIDE: 671 // skip vector function 672 assert ((FInfo.getPrefix() == AMDGPULibFunc::NATIVE || 673 FInfo.getPrefix() == AMDGPULibFunc::HALF) && 674 "divide must be an either native or half function"); 675 return (getVecSize(FInfo) != 1) ? false : fold_divide(CI, B, FInfo); 676 677 case AMDGPULibFunc::EI_POW: 678 case AMDGPULibFunc::EI_POWR: 679 case AMDGPULibFunc::EI_POWN: 680 return fold_pow(CI, B, FInfo); 681 682 case AMDGPULibFunc::EI_ROOTN: 683 // skip vector function 684 return (getVecSize(FInfo) != 1) ? false : fold_rootn(CI, B, FInfo); 685 686 case AMDGPULibFunc::EI_FMA: 687 case AMDGPULibFunc::EI_MAD: 688 case AMDGPULibFunc::EI_NFMA: 689 // skip vector function 690 return (getVecSize(FInfo) != 1) ? false : fold_fma_mad(CI, B, FInfo); 691 692 case AMDGPULibFunc::EI_SQRT: 693 return isUnsafeMath(CI) && fold_sqrt(CI, B, FInfo); 694 case AMDGPULibFunc::EI_COS: 695 case AMDGPULibFunc::EI_SIN: 696 if ((getArgType(FInfo) == AMDGPULibFunc::F32 || 697 getArgType(FInfo) == AMDGPULibFunc::F64) 698 && (FInfo.getPrefix() == AMDGPULibFunc::NOPFX)) 699 return fold_sincos(CI, B, AA); 700 701 break; 702 case AMDGPULibFunc::EI_READ_PIPE_2: 703 case AMDGPULibFunc::EI_READ_PIPE_4: 704 case AMDGPULibFunc::EI_WRITE_PIPE_2: 705 case AMDGPULibFunc::EI_WRITE_PIPE_4: 706 return fold_read_write_pipe(CI, B, FInfo); 707 708 default: 709 break; 710 } 711 712 return false; 713 } 714 715 bool AMDGPULibCalls::TDOFold(CallInst *CI, const FuncInfo &FInfo) { 716 // Table-Driven optimization 717 const TableRef tr = getOptTable(FInfo.getId()); 718 if (tr.size==0) 719 return false; 720 721 int const sz = (int)tr.size; 722 const TableEntry * const ftbl = tr.table; 723 Value *opr0 = CI->getArgOperand(0); 724 725 if (getVecSize(FInfo) > 1) { 726 if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(opr0)) { 727 SmallVector<double, 0> DVal; 728 for (int eltNo = 0; eltNo < getVecSize(FInfo); ++eltNo) { 729 ConstantFP *eltval = dyn_cast<ConstantFP>( 730 CV->getElementAsConstant((unsigned)eltNo)); 731 assert(eltval && "Non-FP arguments in math function!"); 732 bool found = false; 733 for (int i=0; i < sz; ++i) { 734 if (eltval->isExactlyValue(ftbl[i].input)) { 735 DVal.push_back(ftbl[i].result); 736 found = true; 737 break; 738 } 739 } 740 if (!found) { 741 // This vector constants not handled yet. 742 return false; 743 } 744 } 745 LLVMContext &context = CI->getParent()->getParent()->getContext(); 746 Constant *nval; 747 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 748 SmallVector<float, 0> FVal; 749 for (unsigned i = 0; i < DVal.size(); ++i) { 750 FVal.push_back((float)DVal[i]); 751 } 752 ArrayRef<float> tmp(FVal); 753 nval = ConstantDataVector::get(context, tmp); 754 } else { // F64 755 ArrayRef<double> tmp(DVal); 756 nval = ConstantDataVector::get(context, tmp); 757 } 758 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 759 replaceCall(nval); 760 return true; 761 } 762 } else { 763 // Scalar version 764 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 765 for (int i = 0; i < sz; ++i) { 766 if (CF->isExactlyValue(ftbl[i].input)) { 767 Value *nval = ConstantFP::get(CF->getType(), ftbl[i].result); 768 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 769 replaceCall(nval); 770 return true; 771 } 772 } 773 } 774 } 775 776 return false; 777 } 778 779 // [native_]half_recip(c) ==> 1.0/c 780 bool AMDGPULibCalls::fold_recip(CallInst *CI, IRBuilder<> &B, 781 const FuncInfo &FInfo) { 782 Value *opr0 = CI->getArgOperand(0); 783 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr0)) { 784 // Just create a normal div. Later, InstCombine will be able 785 // to compute the divide into a constant (avoid check float infinity 786 // or subnormal at this point). 787 Value *nval = B.CreateFDiv(ConstantFP::get(CF->getType(), 1.0), 788 opr0, 789 "recip2div"); 790 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *nval << "\n"); 791 replaceCall(nval); 792 return true; 793 } 794 return false; 795 } 796 797 // [native_]half_divide(x, c) ==> x/c 798 bool AMDGPULibCalls::fold_divide(CallInst *CI, IRBuilder<> &B, 799 const FuncInfo &FInfo) { 800 Value *opr0 = CI->getArgOperand(0); 801 Value *opr1 = CI->getArgOperand(1); 802 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 803 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 804 805 if ((CF0 && CF1) || // both are constants 806 (CF1 && (getArgType(FInfo) == AMDGPULibFunc::F32))) 807 // CF1 is constant && f32 divide 808 { 809 Value *nval1 = B.CreateFDiv(ConstantFP::get(opr1->getType(), 1.0), 810 opr1, "__div2recip"); 811 Value *nval = B.CreateFMul(opr0, nval1, "__div2mul"); 812 replaceCall(nval); 813 return true; 814 } 815 return false; 816 } 817 818 namespace llvm { 819 static double log2(double V) { 820 #if _XOPEN_SOURCE >= 600 || defined(_ISOC99_SOURCE) || _POSIX_C_SOURCE >= 200112L 821 return ::log2(V); 822 #else 823 return log(V) / numbers::ln2; 824 #endif 825 } 826 } 827 828 bool AMDGPULibCalls::fold_pow(CallInst *CI, IRBuilder<> &B, 829 const FuncInfo &FInfo) { 830 assert((FInfo.getId() == AMDGPULibFunc::EI_POW || 831 FInfo.getId() == AMDGPULibFunc::EI_POWR || 832 FInfo.getId() == AMDGPULibFunc::EI_POWN) && 833 "fold_pow: encounter a wrong function call"); 834 835 Value *opr0, *opr1; 836 ConstantFP *CF; 837 ConstantInt *CINT; 838 ConstantAggregateZero *CZero; 839 Type *eltType; 840 841 opr0 = CI->getArgOperand(0); 842 opr1 = CI->getArgOperand(1); 843 CZero = dyn_cast<ConstantAggregateZero>(opr1); 844 if (getVecSize(FInfo) == 1) { 845 eltType = opr0->getType(); 846 CF = dyn_cast<ConstantFP>(opr1); 847 CINT = dyn_cast<ConstantInt>(opr1); 848 } else { 849 VectorType *VTy = dyn_cast<VectorType>(opr0->getType()); 850 assert(VTy && "Oprand of vector function should be of vectortype"); 851 eltType = VTy->getElementType(); 852 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1); 853 854 // Now, only Handle vector const whose elements have the same value. 855 CF = CDV ? dyn_cast_or_null<ConstantFP>(CDV->getSplatValue()) : nullptr; 856 CINT = CDV ? dyn_cast_or_null<ConstantInt>(CDV->getSplatValue()) : nullptr; 857 } 858 859 // No unsafe math , no constant argument, do nothing 860 if (!isUnsafeMath(CI) && !CF && !CINT && !CZero) 861 return false; 862 863 // 0x1111111 means that we don't do anything for this call. 864 int ci_opr1 = (CINT ? (int)CINT->getSExtValue() : 0x1111111); 865 866 if ((CF && CF->isZero()) || (CINT && ci_opr1 == 0) || CZero) { 867 // pow/powr/pown(x, 0) == 1 868 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1\n"); 869 Constant *cnval = ConstantFP::get(eltType, 1.0); 870 if (getVecSize(FInfo) > 1) { 871 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 872 } 873 replaceCall(cnval); 874 return true; 875 } 876 if ((CF && CF->isExactlyValue(1.0)) || (CINT && ci_opr1 == 1)) { 877 // pow/powr/pown(x, 1.0) = x 878 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 879 replaceCall(opr0); 880 return true; 881 } 882 if ((CF && CF->isExactlyValue(2.0)) || (CINT && ci_opr1 == 2)) { 883 // pow/powr/pown(x, 2.0) = x*x 884 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " << *opr0 885 << "\n"); 886 Value *nval = B.CreateFMul(opr0, opr0, "__pow2"); 887 replaceCall(nval); 888 return true; 889 } 890 if ((CF && CF->isExactlyValue(-1.0)) || (CINT && ci_opr1 == -1)) { 891 // pow/powr/pown(x, -1.0) = 1.0/x 892 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1 / " << *opr0 << "\n"); 893 Constant *cnval = ConstantFP::get(eltType, 1.0); 894 if (getVecSize(FInfo) > 1) { 895 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 896 } 897 Value *nval = B.CreateFDiv(cnval, opr0, "__powrecip"); 898 replaceCall(nval); 899 return true; 900 } 901 902 Module *M = CI->getModule(); 903 if (CF && (CF->isExactlyValue(0.5) || CF->isExactlyValue(-0.5))) { 904 // pow[r](x, [-]0.5) = sqrt(x) 905 bool issqrt = CF->isExactlyValue(0.5); 906 if (FunctionCallee FPExpr = 907 getFunction(M, AMDGPULibFunc(issqrt ? AMDGPULibFunc::EI_SQRT 908 : AMDGPULibFunc::EI_RSQRT, 909 FInfo))) { 910 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 911 << FInfo.getName().c_str() << "(" << *opr0 << ")\n"); 912 Value *nval = CreateCallEx(B,FPExpr, opr0, issqrt ? "__pow2sqrt" 913 : "__pow2rsqrt"); 914 replaceCall(nval); 915 return true; 916 } 917 } 918 919 if (!isUnsafeMath(CI)) 920 return false; 921 922 // Unsafe Math optimization 923 924 // Remember that ci_opr1 is set if opr1 is integral 925 if (CF) { 926 double dval = (getArgType(FInfo) == AMDGPULibFunc::F32) 927 ? (double)CF->getValueAPF().convertToFloat() 928 : CF->getValueAPF().convertToDouble(); 929 int ival = (int)dval; 930 if ((double)ival == dval) { 931 ci_opr1 = ival; 932 } else 933 ci_opr1 = 0x11111111; 934 } 935 936 // pow/powr/pown(x, c) = [1/](x*x*..x); where 937 // trunc(c) == c && the number of x == c && |c| <= 12 938 unsigned abs_opr1 = (ci_opr1 < 0) ? -ci_opr1 : ci_opr1; 939 if (abs_opr1 <= 12) { 940 Constant *cnval; 941 Value *nval; 942 if (abs_opr1 == 0) { 943 cnval = ConstantFP::get(eltType, 1.0); 944 if (getVecSize(FInfo) > 1) { 945 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 946 } 947 nval = cnval; 948 } else { 949 Value *valx2 = nullptr; 950 nval = nullptr; 951 while (abs_opr1 > 0) { 952 valx2 = valx2 ? B.CreateFMul(valx2, valx2, "__powx2") : opr0; 953 if (abs_opr1 & 1) { 954 nval = nval ? B.CreateFMul(nval, valx2, "__powprod") : valx2; 955 } 956 abs_opr1 >>= 1; 957 } 958 } 959 960 if (ci_opr1 < 0) { 961 cnval = ConstantFP::get(eltType, 1.0); 962 if (getVecSize(FInfo) > 1) { 963 cnval = ConstantDataVector::getSplat(getVecSize(FInfo), cnval); 964 } 965 nval = B.CreateFDiv(cnval, nval, "__1powprod"); 966 } 967 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 968 << ((ci_opr1 < 0) ? "1/prod(" : "prod(") << *opr0 969 << ")\n"); 970 replaceCall(nval); 971 return true; 972 } 973 974 // powr ---> exp2(y * log2(x)) 975 // pown/pow ---> powr(fabs(x), y) | (x & ((int)y << 31)) 976 FunctionCallee ExpExpr = 977 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_EXP2, FInfo)); 978 if (!ExpExpr) 979 return false; 980 981 bool needlog = false; 982 bool needabs = false; 983 bool needcopysign = false; 984 Constant *cnval = nullptr; 985 if (getVecSize(FInfo) == 1) { 986 CF = dyn_cast<ConstantFP>(opr0); 987 988 if (CF) { 989 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 990 ? (double)CF->getValueAPF().convertToFloat() 991 : CF->getValueAPF().convertToDouble(); 992 993 V = log2(std::abs(V)); 994 cnval = ConstantFP::get(eltType, V); 995 needcopysign = (FInfo.getId() != AMDGPULibFunc::EI_POWR) && 996 CF->isNegative(); 997 } else { 998 needlog = true; 999 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR && 1000 (!CF || CF->isNegative()); 1001 } 1002 } else { 1003 ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr0); 1004 1005 if (!CDV) { 1006 needlog = true; 1007 needcopysign = needabs = FInfo.getId() != AMDGPULibFunc::EI_POWR; 1008 } else { 1009 assert ((int)CDV->getNumElements() == getVecSize(FInfo) && 1010 "Wrong vector size detected"); 1011 1012 SmallVector<double, 0> DVal; 1013 for (int i=0; i < getVecSize(FInfo); ++i) { 1014 double V = (getArgType(FInfo) == AMDGPULibFunc::F32) 1015 ? (double)CDV->getElementAsFloat(i) 1016 : CDV->getElementAsDouble(i); 1017 if (V < 0.0) needcopysign = true; 1018 V = log2(std::abs(V)); 1019 DVal.push_back(V); 1020 } 1021 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1022 SmallVector<float, 0> FVal; 1023 for (unsigned i=0; i < DVal.size(); ++i) { 1024 FVal.push_back((float)DVal[i]); 1025 } 1026 ArrayRef<float> tmp(FVal); 1027 cnval = ConstantDataVector::get(M->getContext(), tmp); 1028 } else { 1029 ArrayRef<double> tmp(DVal); 1030 cnval = ConstantDataVector::get(M->getContext(), tmp); 1031 } 1032 } 1033 } 1034 1035 if (needcopysign && (FInfo.getId() == AMDGPULibFunc::EI_POW)) { 1036 // We cannot handle corner cases for a general pow() function, give up 1037 // unless y is a constant integral value. Then proceed as if it were pown. 1038 if (getVecSize(FInfo) == 1) { 1039 if (const ConstantFP *CF = dyn_cast<ConstantFP>(opr1)) { 1040 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1041 ? (double)CF->getValueAPF().convertToFloat() 1042 : CF->getValueAPF().convertToDouble(); 1043 if (y != (double)(int64_t)y) 1044 return false; 1045 } else 1046 return false; 1047 } else { 1048 if (const ConstantDataVector *CDV = dyn_cast<ConstantDataVector>(opr1)) { 1049 for (int i=0; i < getVecSize(FInfo); ++i) { 1050 double y = (getArgType(FInfo) == AMDGPULibFunc::F32) 1051 ? (double)CDV->getElementAsFloat(i) 1052 : CDV->getElementAsDouble(i); 1053 if (y != (double)(int64_t)y) 1054 return false; 1055 } 1056 } else 1057 return false; 1058 } 1059 } 1060 1061 Value *nval; 1062 if (needabs) { 1063 FunctionCallee AbsExpr = 1064 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_FABS, FInfo)); 1065 if (!AbsExpr) 1066 return false; 1067 nval = CreateCallEx(B, AbsExpr, opr0, "__fabs"); 1068 } else { 1069 nval = cnval ? cnval : opr0; 1070 } 1071 if (needlog) { 1072 FunctionCallee LogExpr = 1073 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_LOG2, FInfo)); 1074 if (!LogExpr) 1075 return false; 1076 nval = CreateCallEx(B,LogExpr, nval, "__log2"); 1077 } 1078 1079 if (FInfo.getId() == AMDGPULibFunc::EI_POWN) { 1080 // convert int(32) to fp(f32 or f64) 1081 opr1 = B.CreateSIToFP(opr1, nval->getType(), "pownI2F"); 1082 } 1083 nval = B.CreateFMul(opr1, nval, "__ylogx"); 1084 nval = CreateCallEx(B,ExpExpr, nval, "__exp2"); 1085 1086 if (needcopysign) { 1087 Value *opr_n; 1088 Type* rTy = opr0->getType(); 1089 Type* nTyS = eltType->isDoubleTy() ? B.getInt64Ty() : B.getInt32Ty(); 1090 Type *nTy = nTyS; 1091 if (const auto *vTy = dyn_cast<FixedVectorType>(rTy)) 1092 nTy = FixedVectorType::get(nTyS, vTy); 1093 unsigned size = nTy->getScalarSizeInBits(); 1094 opr_n = CI->getArgOperand(1); 1095 if (opr_n->getType()->isIntegerTy()) 1096 opr_n = B.CreateZExtOrBitCast(opr_n, nTy, "__ytou"); 1097 else 1098 opr_n = B.CreateFPToSI(opr1, nTy, "__ytou"); 1099 1100 Value *sign = B.CreateShl(opr_n, size-1, "__yeven"); 1101 sign = B.CreateAnd(B.CreateBitCast(opr0, nTy), sign, "__pow_sign"); 1102 nval = B.CreateOr(B.CreateBitCast(nval, nTy), sign); 1103 nval = B.CreateBitCast(nval, opr0->getType()); 1104 } 1105 1106 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1107 << "exp2(" << *opr1 << " * log2(" << *opr0 << "))\n"); 1108 replaceCall(nval); 1109 1110 return true; 1111 } 1112 1113 bool AMDGPULibCalls::fold_rootn(CallInst *CI, IRBuilder<> &B, 1114 const FuncInfo &FInfo) { 1115 Value *opr0 = CI->getArgOperand(0); 1116 Value *opr1 = CI->getArgOperand(1); 1117 1118 ConstantInt *CINT = dyn_cast<ConstantInt>(opr1); 1119 if (!CINT) { 1120 return false; 1121 } 1122 int ci_opr1 = (int)CINT->getSExtValue(); 1123 if (ci_opr1 == 1) { // rootn(x, 1) = x 1124 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << "\n"); 1125 replaceCall(opr0); 1126 return true; 1127 } 1128 if (ci_opr1 == 2) { // rootn(x, 2) = sqrt(x) 1129 Module *M = CI->getModule(); 1130 if (FunctionCallee FPExpr = 1131 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1132 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> sqrt(" << *opr0 << ")\n"); 1133 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2sqrt"); 1134 replaceCall(nval); 1135 return true; 1136 } 1137 } else if (ci_opr1 == 3) { // rootn(x, 3) = cbrt(x) 1138 Module *M = CI->getModule(); 1139 if (FunctionCallee FPExpr = 1140 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_CBRT, FInfo))) { 1141 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> cbrt(" << *opr0 << ")\n"); 1142 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2cbrt"); 1143 replaceCall(nval); 1144 return true; 1145 } 1146 } else if (ci_opr1 == -1) { // rootn(x, -1) = 1.0/x 1147 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> 1.0 / " << *opr0 << "\n"); 1148 Value *nval = B.CreateFDiv(ConstantFP::get(opr0->getType(), 1.0), 1149 opr0, 1150 "__rootn2div"); 1151 replaceCall(nval); 1152 return true; 1153 } else if (ci_opr1 == -2) { // rootn(x, -2) = rsqrt(x) 1154 Module *M = CI->getModule(); 1155 if (FunctionCallee FPExpr = 1156 getFunction(M, AMDGPULibFunc(AMDGPULibFunc::EI_RSQRT, FInfo))) { 1157 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> rsqrt(" << *opr0 1158 << ")\n"); 1159 Value *nval = CreateCallEx(B,FPExpr, opr0, "__rootn2rsqrt"); 1160 replaceCall(nval); 1161 return true; 1162 } 1163 } 1164 return false; 1165 } 1166 1167 bool AMDGPULibCalls::fold_fma_mad(CallInst *CI, IRBuilder<> &B, 1168 const FuncInfo &FInfo) { 1169 Value *opr0 = CI->getArgOperand(0); 1170 Value *opr1 = CI->getArgOperand(1); 1171 Value *opr2 = CI->getArgOperand(2); 1172 1173 ConstantFP *CF0 = dyn_cast<ConstantFP>(opr0); 1174 ConstantFP *CF1 = dyn_cast<ConstantFP>(opr1); 1175 if ((CF0 && CF0->isZero()) || (CF1 && CF1->isZero())) { 1176 // fma/mad(a, b, c) = c if a=0 || b=0 1177 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr2 << "\n"); 1178 replaceCall(opr2); 1179 return true; 1180 } 1181 if (CF0 && CF0->isExactlyValue(1.0f)) { 1182 // fma/mad(a, b, c) = b+c if a=1 1183 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr1 << " + " << *opr2 1184 << "\n"); 1185 Value *nval = B.CreateFAdd(opr1, opr2, "fmaadd"); 1186 replaceCall(nval); 1187 return true; 1188 } 1189 if (CF1 && CF1->isExactlyValue(1.0f)) { 1190 // fma/mad(a, b, c) = a+c if b=1 1191 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " + " << *opr2 1192 << "\n"); 1193 Value *nval = B.CreateFAdd(opr0, opr2, "fmaadd"); 1194 replaceCall(nval); 1195 return true; 1196 } 1197 if (ConstantFP *CF = dyn_cast<ConstantFP>(opr2)) { 1198 if (CF->isZero()) { 1199 // fma/mad(a, b, c) = a*b if c=0 1200 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " << *opr0 << " * " 1201 << *opr1 << "\n"); 1202 Value *nval = B.CreateFMul(opr0, opr1, "fmamul"); 1203 replaceCall(nval); 1204 return true; 1205 } 1206 } 1207 1208 return false; 1209 } 1210 1211 // Get a scalar native builtin single argument FP function 1212 FunctionCallee AMDGPULibCalls::getNativeFunction(Module *M, 1213 const FuncInfo &FInfo) { 1214 if (getArgType(FInfo) == AMDGPULibFunc::F64 || !HasNative(FInfo.getId())) 1215 return nullptr; 1216 FuncInfo nf = FInfo; 1217 nf.setPrefix(AMDGPULibFunc::NATIVE); 1218 return getFunction(M, nf); 1219 } 1220 1221 // fold sqrt -> native_sqrt (x) 1222 bool AMDGPULibCalls::fold_sqrt(CallInst *CI, IRBuilder<> &B, 1223 const FuncInfo &FInfo) { 1224 if (getArgType(FInfo) == AMDGPULibFunc::F32 && (getVecSize(FInfo) == 1) && 1225 (FInfo.getPrefix() != AMDGPULibFunc::NATIVE)) { 1226 if (FunctionCallee FPExpr = getNativeFunction( 1227 CI->getModule(), AMDGPULibFunc(AMDGPULibFunc::EI_SQRT, FInfo))) { 1228 Value *opr0 = CI->getArgOperand(0); 1229 LLVM_DEBUG(errs() << "AMDIC: " << *CI << " ---> " 1230 << "sqrt(" << *opr0 << ")\n"); 1231 Value *nval = CreateCallEx(B,FPExpr, opr0, "__sqrt"); 1232 replaceCall(nval); 1233 return true; 1234 } 1235 } 1236 return false; 1237 } 1238 1239 // fold sin, cos -> sincos. 1240 bool AMDGPULibCalls::fold_sincos(CallInst *CI, IRBuilder<> &B, 1241 AliasAnalysis *AA) { 1242 AMDGPULibFunc fInfo; 1243 if (!AMDGPULibFunc::parse(CI->getCalledFunction()->getName(), fInfo)) 1244 return false; 1245 1246 assert(fInfo.getId() == AMDGPULibFunc::EI_SIN || 1247 fInfo.getId() == AMDGPULibFunc::EI_COS); 1248 bool const isSin = fInfo.getId() == AMDGPULibFunc::EI_SIN; 1249 1250 Value *CArgVal = CI->getArgOperand(0); 1251 BasicBlock * const CBB = CI->getParent(); 1252 1253 int const MaxScan = 30; 1254 bool Changed = false; 1255 1256 { // fold in load value. 1257 LoadInst *LI = dyn_cast<LoadInst>(CArgVal); 1258 if (LI && LI->getParent() == CBB) { 1259 BasicBlock::iterator BBI = LI->getIterator(); 1260 Value *AvailableVal = FindAvailableLoadedValue(LI, CBB, BBI, MaxScan, AA); 1261 if (AvailableVal) { 1262 Changed = true; 1263 CArgVal->replaceAllUsesWith(AvailableVal); 1264 if (CArgVal->getNumUses() == 0) 1265 LI->eraseFromParent(); 1266 CArgVal = CI->getArgOperand(0); 1267 } 1268 } 1269 } 1270 1271 Module *M = CI->getModule(); 1272 fInfo.setId(isSin ? AMDGPULibFunc::EI_COS : AMDGPULibFunc::EI_SIN); 1273 std::string const PairName = fInfo.mangle(); 1274 1275 CallInst *UI = nullptr; 1276 for (User* U : CArgVal->users()) { 1277 CallInst *XI = dyn_cast_or_null<CallInst>(U); 1278 if (!XI || XI == CI || XI->getParent() != CBB) 1279 continue; 1280 1281 Function *UCallee = XI->getCalledFunction(); 1282 if (!UCallee || !UCallee->getName().equals(PairName)) 1283 continue; 1284 1285 BasicBlock::iterator BBI = CI->getIterator(); 1286 if (BBI == CI->getParent()->begin()) 1287 break; 1288 --BBI; 1289 for (int I = MaxScan; I > 0 && BBI != CBB->begin(); --BBI, --I) { 1290 if (cast<Instruction>(BBI) == XI) { 1291 UI = XI; 1292 break; 1293 } 1294 } 1295 if (UI) break; 1296 } 1297 1298 if (!UI) 1299 return Changed; 1300 1301 // Merge the sin and cos. 1302 1303 // for OpenCL 2.0 we have only generic implementation of sincos 1304 // function. 1305 AMDGPULibFunc nf(AMDGPULibFunc::EI_SINCOS, fInfo); 1306 nf.getLeads()[0].PtrKind = AMDGPULibFunc::getEPtrKindFromAddrSpace(AMDGPUAS::FLAT_ADDRESS); 1307 FunctionCallee Fsincos = getFunction(M, nf); 1308 if (!Fsincos) 1309 return Changed; 1310 1311 BasicBlock::iterator ItOld = B.GetInsertPoint(); 1312 AllocaInst *Alloc = insertAlloca(UI, B, "__sincos_"); 1313 B.SetInsertPoint(UI); 1314 1315 Value *P = Alloc; 1316 Type *PTy = Fsincos.getFunctionType()->getParamType(1); 1317 // The allocaInst allocates the memory in private address space. This need 1318 // to be bitcasted to point to the address space of cos pointer type. 1319 // In OpenCL 2.0 this is generic, while in 1.2 that is private. 1320 if (PTy->getPointerAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 1321 P = B.CreateAddrSpaceCast(Alloc, PTy); 1322 CallInst *Call = CreateCallEx2(B, Fsincos, UI->getArgOperand(0), P); 1323 1324 LLVM_DEBUG(errs() << "AMDIC: fold_sincos (" << *CI << ", " << *UI << ") with " 1325 << *Call << "\n"); 1326 1327 if (!isSin) { // CI->cos, UI->sin 1328 B.SetInsertPoint(&*ItOld); 1329 UI->replaceAllUsesWith(&*Call); 1330 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1331 CI->replaceAllUsesWith(Reload); 1332 UI->eraseFromParent(); 1333 CI->eraseFromParent(); 1334 } else { // CI->sin, UI->cos 1335 Instruction *Reload = B.CreateLoad(Alloc->getAllocatedType(), Alloc); 1336 UI->replaceAllUsesWith(Reload); 1337 CI->replaceAllUsesWith(Call); 1338 UI->eraseFromParent(); 1339 CI->eraseFromParent(); 1340 } 1341 return true; 1342 } 1343 1344 bool AMDGPULibCalls::fold_wavefrontsize(CallInst *CI, IRBuilder<> &B) { 1345 if (!TM) 1346 return false; 1347 1348 StringRef CPU = TM->getTargetCPU(); 1349 StringRef Features = TM->getTargetFeatureString(); 1350 if ((CPU.empty() || CPU.equals_insensitive("generic")) && 1351 (Features.empty() || !Features.contains_insensitive("wavefrontsize"))) 1352 return false; 1353 1354 Function *F = CI->getParent()->getParent(); 1355 const GCNSubtarget &ST = TM->getSubtarget<GCNSubtarget>(*F); 1356 unsigned N = ST.getWavefrontSize(); 1357 1358 LLVM_DEBUG(errs() << "AMDIC: fold_wavefrontsize (" << *CI << ") with " 1359 << N << "\n"); 1360 1361 CI->replaceAllUsesWith(ConstantInt::get(B.getInt32Ty(), N)); 1362 CI->eraseFromParent(); 1363 return true; 1364 } 1365 1366 // Get insertion point at entry. 1367 BasicBlock::iterator AMDGPULibCalls::getEntryIns(CallInst * UI) { 1368 Function * Func = UI->getParent()->getParent(); 1369 BasicBlock * BB = &Func->getEntryBlock(); 1370 assert(BB && "Entry block not found!"); 1371 BasicBlock::iterator ItNew = BB->begin(); 1372 return ItNew; 1373 } 1374 1375 // Insert a AllocsInst at the beginning of function entry block. 1376 AllocaInst* AMDGPULibCalls::insertAlloca(CallInst *UI, IRBuilder<> &B, 1377 const char *prefix) { 1378 BasicBlock::iterator ItNew = getEntryIns(UI); 1379 Function *UCallee = UI->getCalledFunction(); 1380 Type *RetType = UCallee->getReturnType(); 1381 B.SetInsertPoint(&*ItNew); 1382 AllocaInst *Alloc = 1383 B.CreateAlloca(RetType, nullptr, std::string(prefix) + UI->getName()); 1384 Alloc->setAlignment( 1385 Align(UCallee->getParent()->getDataLayout().getTypeAllocSize(RetType))); 1386 return Alloc; 1387 } 1388 1389 bool AMDGPULibCalls::evaluateScalarMathFunc(const FuncInfo &FInfo, 1390 double& Res0, double& Res1, 1391 Constant *copr0, Constant *copr1, 1392 Constant *copr2) { 1393 // By default, opr0/opr1/opr3 holds values of float/double type. 1394 // If they are not float/double, each function has to its 1395 // operand separately. 1396 double opr0=0.0, opr1=0.0, opr2=0.0; 1397 ConstantFP *fpopr0 = dyn_cast_or_null<ConstantFP>(copr0); 1398 ConstantFP *fpopr1 = dyn_cast_or_null<ConstantFP>(copr1); 1399 ConstantFP *fpopr2 = dyn_cast_or_null<ConstantFP>(copr2); 1400 if (fpopr0) { 1401 opr0 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1402 ? fpopr0->getValueAPF().convertToDouble() 1403 : (double)fpopr0->getValueAPF().convertToFloat(); 1404 } 1405 1406 if (fpopr1) { 1407 opr1 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1408 ? fpopr1->getValueAPF().convertToDouble() 1409 : (double)fpopr1->getValueAPF().convertToFloat(); 1410 } 1411 1412 if (fpopr2) { 1413 opr2 = (getArgType(FInfo) == AMDGPULibFunc::F64) 1414 ? fpopr2->getValueAPF().convertToDouble() 1415 : (double)fpopr2->getValueAPF().convertToFloat(); 1416 } 1417 1418 switch (FInfo.getId()) { 1419 default : return false; 1420 1421 case AMDGPULibFunc::EI_ACOS: 1422 Res0 = acos(opr0); 1423 return true; 1424 1425 case AMDGPULibFunc::EI_ACOSH: 1426 // acosh(x) == log(x + sqrt(x*x - 1)) 1427 Res0 = log(opr0 + sqrt(opr0*opr0 - 1.0)); 1428 return true; 1429 1430 case AMDGPULibFunc::EI_ACOSPI: 1431 Res0 = acos(opr0) / MATH_PI; 1432 return true; 1433 1434 case AMDGPULibFunc::EI_ASIN: 1435 Res0 = asin(opr0); 1436 return true; 1437 1438 case AMDGPULibFunc::EI_ASINH: 1439 // asinh(x) == log(x + sqrt(x*x + 1)) 1440 Res0 = log(opr0 + sqrt(opr0*opr0 + 1.0)); 1441 return true; 1442 1443 case AMDGPULibFunc::EI_ASINPI: 1444 Res0 = asin(opr0) / MATH_PI; 1445 return true; 1446 1447 case AMDGPULibFunc::EI_ATAN: 1448 Res0 = atan(opr0); 1449 return true; 1450 1451 case AMDGPULibFunc::EI_ATANH: 1452 // atanh(x) == (log(x+1) - log(x-1))/2; 1453 Res0 = (log(opr0 + 1.0) - log(opr0 - 1.0))/2.0; 1454 return true; 1455 1456 case AMDGPULibFunc::EI_ATANPI: 1457 Res0 = atan(opr0) / MATH_PI; 1458 return true; 1459 1460 case AMDGPULibFunc::EI_CBRT: 1461 Res0 = (opr0 < 0.0) ? -pow(-opr0, 1.0/3.0) : pow(opr0, 1.0/3.0); 1462 return true; 1463 1464 case AMDGPULibFunc::EI_COS: 1465 Res0 = cos(opr0); 1466 return true; 1467 1468 case AMDGPULibFunc::EI_COSH: 1469 Res0 = cosh(opr0); 1470 return true; 1471 1472 case AMDGPULibFunc::EI_COSPI: 1473 Res0 = cos(MATH_PI * opr0); 1474 return true; 1475 1476 case AMDGPULibFunc::EI_EXP: 1477 Res0 = exp(opr0); 1478 return true; 1479 1480 case AMDGPULibFunc::EI_EXP2: 1481 Res0 = pow(2.0, opr0); 1482 return true; 1483 1484 case AMDGPULibFunc::EI_EXP10: 1485 Res0 = pow(10.0, opr0); 1486 return true; 1487 1488 case AMDGPULibFunc::EI_EXPM1: 1489 Res0 = exp(opr0) - 1.0; 1490 return true; 1491 1492 case AMDGPULibFunc::EI_LOG: 1493 Res0 = log(opr0); 1494 return true; 1495 1496 case AMDGPULibFunc::EI_LOG2: 1497 Res0 = log(opr0) / log(2.0); 1498 return true; 1499 1500 case AMDGPULibFunc::EI_LOG10: 1501 Res0 = log(opr0) / log(10.0); 1502 return true; 1503 1504 case AMDGPULibFunc::EI_RSQRT: 1505 Res0 = 1.0 / sqrt(opr0); 1506 return true; 1507 1508 case AMDGPULibFunc::EI_SIN: 1509 Res0 = sin(opr0); 1510 return true; 1511 1512 case AMDGPULibFunc::EI_SINH: 1513 Res0 = sinh(opr0); 1514 return true; 1515 1516 case AMDGPULibFunc::EI_SINPI: 1517 Res0 = sin(MATH_PI * opr0); 1518 return true; 1519 1520 case AMDGPULibFunc::EI_SQRT: 1521 Res0 = sqrt(opr0); 1522 return true; 1523 1524 case AMDGPULibFunc::EI_TAN: 1525 Res0 = tan(opr0); 1526 return true; 1527 1528 case AMDGPULibFunc::EI_TANH: 1529 Res0 = tanh(opr0); 1530 return true; 1531 1532 case AMDGPULibFunc::EI_TANPI: 1533 Res0 = tan(MATH_PI * opr0); 1534 return true; 1535 1536 case AMDGPULibFunc::EI_RECIP: 1537 Res0 = 1.0 / opr0; 1538 return true; 1539 1540 // two-arg functions 1541 case AMDGPULibFunc::EI_DIVIDE: 1542 Res0 = opr0 / opr1; 1543 return true; 1544 1545 case AMDGPULibFunc::EI_POW: 1546 case AMDGPULibFunc::EI_POWR: 1547 Res0 = pow(opr0, opr1); 1548 return true; 1549 1550 case AMDGPULibFunc::EI_POWN: { 1551 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1552 double val = (double)iopr1->getSExtValue(); 1553 Res0 = pow(opr0, val); 1554 return true; 1555 } 1556 return false; 1557 } 1558 1559 case AMDGPULibFunc::EI_ROOTN: { 1560 if (ConstantInt *iopr1 = dyn_cast_or_null<ConstantInt>(copr1)) { 1561 double val = (double)iopr1->getSExtValue(); 1562 Res0 = pow(opr0, 1.0 / val); 1563 return true; 1564 } 1565 return false; 1566 } 1567 1568 // with ptr arg 1569 case AMDGPULibFunc::EI_SINCOS: 1570 Res0 = sin(opr0); 1571 Res1 = cos(opr0); 1572 return true; 1573 1574 // three-arg functions 1575 case AMDGPULibFunc::EI_FMA: 1576 case AMDGPULibFunc::EI_MAD: 1577 Res0 = opr0 * opr1 + opr2; 1578 return true; 1579 } 1580 1581 return false; 1582 } 1583 1584 bool AMDGPULibCalls::evaluateCall(CallInst *aCI, const FuncInfo &FInfo) { 1585 int numArgs = (int)aCI->arg_size(); 1586 if (numArgs > 3) 1587 return false; 1588 1589 Constant *copr0 = nullptr; 1590 Constant *copr1 = nullptr; 1591 Constant *copr2 = nullptr; 1592 if (numArgs > 0) { 1593 if ((copr0 = dyn_cast<Constant>(aCI->getArgOperand(0))) == nullptr) 1594 return false; 1595 } 1596 1597 if (numArgs > 1) { 1598 if ((copr1 = dyn_cast<Constant>(aCI->getArgOperand(1))) == nullptr) { 1599 if (FInfo.getId() != AMDGPULibFunc::EI_SINCOS) 1600 return false; 1601 } 1602 } 1603 1604 if (numArgs > 2) { 1605 if ((copr2 = dyn_cast<Constant>(aCI->getArgOperand(2))) == nullptr) 1606 return false; 1607 } 1608 1609 // At this point, all arguments to aCI are constants. 1610 1611 // max vector size is 16, and sincos will generate two results. 1612 double DVal0[16], DVal1[16]; 1613 bool hasTwoResults = (FInfo.getId() == AMDGPULibFunc::EI_SINCOS); 1614 if (getVecSize(FInfo) == 1) { 1615 if (!evaluateScalarMathFunc(FInfo, DVal0[0], 1616 DVal1[0], copr0, copr1, copr2)) { 1617 return false; 1618 } 1619 } else { 1620 ConstantDataVector *CDV0 = dyn_cast_or_null<ConstantDataVector>(copr0); 1621 ConstantDataVector *CDV1 = dyn_cast_or_null<ConstantDataVector>(copr1); 1622 ConstantDataVector *CDV2 = dyn_cast_or_null<ConstantDataVector>(copr2); 1623 for (int i=0; i < getVecSize(FInfo); ++i) { 1624 Constant *celt0 = CDV0 ? CDV0->getElementAsConstant(i) : nullptr; 1625 Constant *celt1 = CDV1 ? CDV1->getElementAsConstant(i) : nullptr; 1626 Constant *celt2 = CDV2 ? CDV2->getElementAsConstant(i) : nullptr; 1627 if (!evaluateScalarMathFunc(FInfo, DVal0[i], 1628 DVal1[i], celt0, celt1, celt2)) { 1629 return false; 1630 } 1631 } 1632 } 1633 1634 LLVMContext &context = CI->getParent()->getParent()->getContext(); 1635 Constant *nval0, *nval1; 1636 if (getVecSize(FInfo) == 1) { 1637 nval0 = ConstantFP::get(CI->getType(), DVal0[0]); 1638 if (hasTwoResults) 1639 nval1 = ConstantFP::get(CI->getType(), DVal1[0]); 1640 } else { 1641 if (getArgType(FInfo) == AMDGPULibFunc::F32) { 1642 SmallVector <float, 0> FVal0, FVal1; 1643 for (int i=0; i < getVecSize(FInfo); ++i) 1644 FVal0.push_back((float)DVal0[i]); 1645 ArrayRef<float> tmp0(FVal0); 1646 nval0 = ConstantDataVector::get(context, tmp0); 1647 if (hasTwoResults) { 1648 for (int i=0; i < getVecSize(FInfo); ++i) 1649 FVal1.push_back((float)DVal1[i]); 1650 ArrayRef<float> tmp1(FVal1); 1651 nval1 = ConstantDataVector::get(context, tmp1); 1652 } 1653 } else { 1654 ArrayRef<double> tmp0(DVal0); 1655 nval0 = ConstantDataVector::get(context, tmp0); 1656 if (hasTwoResults) { 1657 ArrayRef<double> tmp1(DVal1); 1658 nval1 = ConstantDataVector::get(context, tmp1); 1659 } 1660 } 1661 } 1662 1663 if (hasTwoResults) { 1664 // sincos 1665 assert(FInfo.getId() == AMDGPULibFunc::EI_SINCOS && 1666 "math function with ptr arg not supported yet"); 1667 new StoreInst(nval1, aCI->getArgOperand(1), aCI); 1668 } 1669 1670 replaceCall(nval0); 1671 return true; 1672 } 1673 1674 // Public interface to the Simplify LibCalls pass. 1675 FunctionPass *llvm::createAMDGPUSimplifyLibCallsPass(const TargetMachine *TM) { 1676 return new AMDGPUSimplifyLibCalls(TM); 1677 } 1678 1679 FunctionPass *llvm::createAMDGPUUseNativeCallsPass() { 1680 return new AMDGPUUseNativeCalls(); 1681 } 1682 1683 bool AMDGPUSimplifyLibCalls::runOnFunction(Function &F) { 1684 if (skipFunction(F)) 1685 return false; 1686 1687 bool Changed = false; 1688 auto AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 1689 1690 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1691 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1692 1693 for (auto &BB : F) { 1694 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1695 // Ignore non-calls. 1696 CallInst *CI = dyn_cast<CallInst>(I); 1697 ++I; 1698 // Ignore intrinsics that do not become real instructions. 1699 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1700 continue; 1701 1702 // Ignore indirect calls. 1703 Function *Callee = CI->getCalledFunction(); 1704 if (Callee == nullptr) 1705 continue; 1706 1707 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1708 dbgs().flush()); 1709 if(Simplifier.fold(CI, AA)) 1710 Changed = true; 1711 } 1712 } 1713 return Changed; 1714 } 1715 1716 PreservedAnalyses AMDGPUSimplifyLibCallsPass::run(Function &F, 1717 FunctionAnalysisManager &AM) { 1718 AMDGPULibCalls Simplifier(&TM); 1719 Simplifier.initNativeFuncs(); 1720 1721 bool Changed = false; 1722 auto AA = &AM.getResult<AAManager>(F); 1723 1724 LLVM_DEBUG(dbgs() << "AMDIC: process function "; 1725 F.printAsOperand(dbgs(), false, F.getParent()); dbgs() << '\n';); 1726 1727 for (auto &BB : F) { 1728 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1729 // Ignore non-calls. 1730 CallInst *CI = dyn_cast<CallInst>(I); 1731 ++I; 1732 // Ignore intrinsics that do not become real instructions. 1733 if (!CI || isa<DbgInfoIntrinsic>(CI) || CI->isLifetimeStartOrEnd()) 1734 continue; 1735 1736 // Ignore indirect calls. 1737 Function *Callee = CI->getCalledFunction(); 1738 if (Callee == nullptr) 1739 continue; 1740 1741 LLVM_DEBUG(dbgs() << "AMDIC: try folding " << *CI << "\n"; 1742 dbgs().flush()); 1743 if (Simplifier.fold(CI, AA)) 1744 Changed = true; 1745 } 1746 } 1747 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1748 } 1749 1750 bool AMDGPUUseNativeCalls::runOnFunction(Function &F) { 1751 if (skipFunction(F) || UseNative.empty()) 1752 return false; 1753 1754 bool Changed = false; 1755 for (auto &BB : F) { 1756 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ) { 1757 // Ignore non-calls. 1758 CallInst *CI = dyn_cast<CallInst>(I); 1759 ++I; 1760 if (!CI) continue; 1761 1762 // Ignore indirect calls. 1763 Function *Callee = CI->getCalledFunction(); 1764 if (Callee == nullptr) 1765 continue; 1766 1767 if (Simplifier.useNative(CI)) 1768 Changed = true; 1769 } 1770 } 1771 return Changed; 1772 } 1773 1774 PreservedAnalyses AMDGPUUseNativeCallsPass::run(Function &F, 1775 FunctionAnalysisManager &AM) { 1776 if (UseNative.empty()) 1777 return PreservedAnalyses::all(); 1778 1779 AMDGPULibCalls Simplifier; 1780 Simplifier.initNativeFuncs(); 1781 1782 bool Changed = false; 1783 for (auto &BB : F) { 1784 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E;) { 1785 // Ignore non-calls. 1786 CallInst *CI = dyn_cast<CallInst>(I); 1787 ++I; 1788 if (!CI) 1789 continue; 1790 1791 // Ignore indirect calls. 1792 Function *Callee = CI->getCalledFunction(); 1793 if (Callee == nullptr) 1794 continue; 1795 1796 if (Simplifier.useNative(CI)) 1797 Changed = true; 1798 } 1799 } 1800 return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); 1801 } 1802