1 //===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 /// This file implements the targeting of the Machinelegalizer class for
10 /// AMDGPU.
11 /// \todo This should be generated by TableGen.
12 //===----------------------------------------------------------------------===//
13 
14 #include "AMDGPULegalizerInfo.h"
15 
16 #include "AMDGPU.h"
17 #include "AMDGPUGlobalISelUtils.h"
18 #include "AMDGPUInstrInfo.h"
19 #include "AMDGPUTargetMachine.h"
20 #include "SIMachineFunctionInfo.h"
21 #include "Utils/AMDGPUBaseInfo.h"
22 #include "llvm/ADT/ScopeExit.h"
23 #include "llvm/BinaryFormat/ELF.h"
24 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
25 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
26 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/IntrinsicsAMDGPU.h"
29 #include "llvm/IR/IntrinsicsR600.h"
30 
31 #define DEBUG_TYPE "amdgpu-legalinfo"
32 
33 using namespace llvm;
34 using namespace LegalizeActions;
35 using namespace LegalizeMutations;
36 using namespace LegalityPredicates;
37 using namespace MIPatternMatch;
38 
39 // Hack until load/store selection patterns support any tuple of legal types.
40 static cl::opt<bool> EnableNewLegality(
41   "amdgpu-global-isel-new-legality",
42   cl::desc("Use GlobalISel desired legality, rather than try to use"
43            "rules compatible with selection patterns"),
44   cl::init(false),
45   cl::ReallyHidden);
46 
47 static constexpr unsigned MaxRegisterSize = 1024;
48 
49 // Round the number of elements to the next power of two elements
50 static LLT getPow2VectorType(LLT Ty) {
51   unsigned NElts = Ty.getNumElements();
52   unsigned Pow2NElts = 1 <<  Log2_32_Ceil(NElts);
53   return Ty.changeElementCount(ElementCount::getFixed(Pow2NElts));
54 }
55 
56 // Round the number of bits to the next power of two bits
57 static LLT getPow2ScalarType(LLT Ty) {
58   unsigned Bits = Ty.getSizeInBits();
59   unsigned Pow2Bits = 1 <<  Log2_32_Ceil(Bits);
60   return LLT::scalar(Pow2Bits);
61 }
62 
63 /// \returns true if this is an odd sized vector which should widen by adding an
64 /// additional element. This is mostly to handle <3 x s16> -> <4 x s16>. This
65 /// excludes s1 vectors, which should always be scalarized.
66 static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
67   return [=](const LegalityQuery &Query) {
68     const LLT Ty = Query.Types[TypeIdx];
69     if (!Ty.isVector())
70       return false;
71 
72     const LLT EltTy = Ty.getElementType();
73     const unsigned EltSize = EltTy.getSizeInBits();
74     return Ty.getNumElements() % 2 != 0 &&
75            EltSize > 1 && EltSize < 32 &&
76            Ty.getSizeInBits() % 32 != 0;
77   };
78 }
79 
80 static LegalityPredicate sizeIsMultipleOf32(unsigned TypeIdx) {
81   return [=](const LegalityQuery &Query) {
82     const LLT Ty = Query.Types[TypeIdx];
83     return Ty.getSizeInBits() % 32 == 0;
84   };
85 }
86 
87 static LegalityPredicate isWideVec16(unsigned TypeIdx) {
88   return [=](const LegalityQuery &Query) {
89     const LLT Ty = Query.Types[TypeIdx];
90     const LLT EltTy = Ty.getScalarType();
91     return EltTy.getSizeInBits() == 16 && Ty.getNumElements() > 2;
92   };
93 }
94 
95 static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
96   return [=](const LegalityQuery &Query) {
97     const LLT Ty = Query.Types[TypeIdx];
98     const LLT EltTy = Ty.getElementType();
99     return std::make_pair(TypeIdx,
100                           LLT::fixed_vector(Ty.getNumElements() + 1, EltTy));
101   };
102 }
103 
104 static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
105   return [=](const LegalityQuery &Query) {
106     const LLT Ty = Query.Types[TypeIdx];
107     const LLT EltTy = Ty.getElementType();
108     unsigned Size = Ty.getSizeInBits();
109     unsigned Pieces = (Size + 63) / 64;
110     unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
111     return std::make_pair(
112         TypeIdx,
113         LLT::scalarOrVector(ElementCount::getFixed(NewNumElts), EltTy));
114   };
115 }
116 
117 // Increase the number of vector elements to reach the next multiple of 32-bit
118 // type.
119 static LegalizeMutation moreEltsToNext32Bit(unsigned TypeIdx) {
120   return [=](const LegalityQuery &Query) {
121     const LLT Ty = Query.Types[TypeIdx];
122 
123     const LLT EltTy = Ty.getElementType();
124     const int Size = Ty.getSizeInBits();
125     const int EltSize = EltTy.getSizeInBits();
126     const int NextMul32 = (Size + 31) / 32;
127 
128     assert(EltSize < 32);
129 
130     const int NewNumElts = (32 * NextMul32 + EltSize - 1) / EltSize;
131     return std::make_pair(TypeIdx, LLT::fixed_vector(NewNumElts, EltTy));
132   };
133 }
134 
135 static LLT getBitcastRegisterType(const LLT Ty) {
136   const unsigned Size = Ty.getSizeInBits();
137 
138   if (Size <= 32) {
139     // <2 x s8> -> s16
140     // <4 x s8> -> s32
141     return LLT::scalar(Size);
142   }
143 
144   return LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32);
145 }
146 
147 static LegalizeMutation bitcastToRegisterType(unsigned TypeIdx) {
148   return [=](const LegalityQuery &Query) {
149     const LLT Ty = Query.Types[TypeIdx];
150     return std::make_pair(TypeIdx, getBitcastRegisterType(Ty));
151   };
152 }
153 
154 static LegalizeMutation bitcastToVectorElement32(unsigned TypeIdx) {
155   return [=](const LegalityQuery &Query) {
156     const LLT Ty = Query.Types[TypeIdx];
157     unsigned Size = Ty.getSizeInBits();
158     assert(Size % 32 == 0);
159     return std::make_pair(
160         TypeIdx, LLT::scalarOrVector(ElementCount::getFixed(Size / 32), 32));
161   };
162 }
163 
164 static LegalityPredicate vectorSmallerThan(unsigned TypeIdx, unsigned Size) {
165   return [=](const LegalityQuery &Query) {
166     const LLT QueryTy = Query.Types[TypeIdx];
167     return QueryTy.isVector() && QueryTy.getSizeInBits() < Size;
168   };
169 }
170 
171 static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
172   return [=](const LegalityQuery &Query) {
173     const LLT QueryTy = Query.Types[TypeIdx];
174     return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
175   };
176 }
177 
178 static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
179   return [=](const LegalityQuery &Query) {
180     const LLT QueryTy = Query.Types[TypeIdx];
181     return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
182   };
183 }
184 
185 static bool isRegisterSize(unsigned Size) {
186   return Size % 32 == 0 && Size <= MaxRegisterSize;
187 }
188 
189 static bool isRegisterVectorElementType(LLT EltTy) {
190   const int EltSize = EltTy.getSizeInBits();
191   return EltSize == 16 || EltSize % 32 == 0;
192 }
193 
194 static bool isRegisterVectorType(LLT Ty) {
195   const int EltSize = Ty.getElementType().getSizeInBits();
196   return EltSize == 32 || EltSize == 64 ||
197          (EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
198          EltSize == 128 || EltSize == 256;
199 }
200 
201 static bool isRegisterType(LLT Ty) {
202   if (!isRegisterSize(Ty.getSizeInBits()))
203     return false;
204 
205   if (Ty.isVector())
206     return isRegisterVectorType(Ty);
207 
208   return true;
209 }
210 
211 // Any combination of 32 or 64-bit elements up the maximum register size, and
212 // multiples of v2s16.
213 static LegalityPredicate isRegisterType(unsigned TypeIdx) {
214   return [=](const LegalityQuery &Query) {
215     return isRegisterType(Query.Types[TypeIdx]);
216   };
217 }
218 
219 static LegalityPredicate elementTypeIsLegal(unsigned TypeIdx) {
220   return [=](const LegalityQuery &Query) {
221     const LLT QueryTy = Query.Types[TypeIdx];
222     if (!QueryTy.isVector())
223       return false;
224     const LLT EltTy = QueryTy.getElementType();
225     return EltTy == LLT::scalar(16) || EltTy.getSizeInBits() >= 32;
226   };
227 }
228 
229 // If we have a truncating store or an extending load with a data size larger
230 // than 32-bits, we need to reduce to a 32-bit type.
231 static LegalityPredicate isWideScalarExtLoadTruncStore(unsigned TypeIdx) {
232   return [=](const LegalityQuery &Query) {
233     const LLT Ty = Query.Types[TypeIdx];
234     return !Ty.isVector() && Ty.getSizeInBits() > 32 &&
235            Query.MMODescrs[0].MemoryTy.getSizeInBits() < Ty.getSizeInBits();
236   };
237 }
238 
239 // TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
240 // handle some operations by just promoting the register during
241 // selection. There are also d16 loads on GFX9+ which preserve the high bits.
242 static unsigned maxSizeForAddrSpace(const GCNSubtarget &ST, unsigned AS,
243                                     bool IsLoad) {
244   switch (AS) {
245   case AMDGPUAS::PRIVATE_ADDRESS:
246     // FIXME: Private element size.
247     return ST.enableFlatScratch() ? 128 : 32;
248   case AMDGPUAS::LOCAL_ADDRESS:
249     return ST.useDS128() ? 128 : 64;
250   case AMDGPUAS::GLOBAL_ADDRESS:
251   case AMDGPUAS::CONSTANT_ADDRESS:
252   case AMDGPUAS::CONSTANT_ADDRESS_32BIT:
253     // Treat constant and global as identical. SMRD loads are sometimes usable for
254     // global loads (ideally constant address space should be eliminated)
255     // depending on the context. Legality cannot be context dependent, but
256     // RegBankSelect can split the load as necessary depending on the pointer
257     // register bank/uniformity and if the memory is invariant or not written in a
258     // kernel.
259     return IsLoad ? 512 : 128;
260   default:
261     // Flat addresses may contextually need to be split to 32-bit parts if they
262     // may alias scratch depending on the subtarget.
263     return 128;
264   }
265 }
266 
267 static bool isLoadStoreSizeLegal(const GCNSubtarget &ST,
268                                  const LegalityQuery &Query) {
269   const LLT Ty = Query.Types[0];
270 
271   // Handle G_LOAD, G_ZEXTLOAD, G_SEXTLOAD
272   const bool IsLoad = Query.Opcode != AMDGPU::G_STORE;
273 
274   unsigned RegSize = Ty.getSizeInBits();
275   uint64_t MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
276   uint64_t AlignBits = Query.MMODescrs[0].AlignInBits;
277   unsigned AS = Query.Types[1].getAddressSpace();
278 
279   // All of these need to be custom lowered to cast the pointer operand.
280   if (AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT)
281     return false;
282 
283   // Do not handle extending vector loads.
284   if (Ty.isVector() && MemSize != RegSize)
285     return false;
286 
287   // TODO: We should be able to widen loads if the alignment is high enough, but
288   // we also need to modify the memory access size.
289 #if 0
290   // Accept widening loads based on alignment.
291   if (IsLoad && MemSize < Size)
292     MemSize = std::max(MemSize, Align);
293 #endif
294 
295   // Only 1-byte and 2-byte to 32-bit extloads are valid.
296   if (MemSize != RegSize && RegSize != 32)
297     return false;
298 
299   if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
300     return false;
301 
302   switch (MemSize) {
303   case 8:
304   case 16:
305   case 32:
306   case 64:
307   case 128:
308     break;
309   case 96:
310     if (!ST.hasDwordx3LoadStores())
311       return false;
312     break;
313   case 256:
314   case 512:
315     // These may contextually need to be broken down.
316     break;
317   default:
318     return false;
319   }
320 
321   assert(RegSize >= MemSize);
322 
323   if (AlignBits < MemSize) {
324     const SITargetLowering *TLI = ST.getTargetLowering();
325     if (!TLI->allowsMisalignedMemoryAccessesImpl(MemSize, AS,
326                                                  Align(AlignBits / 8)))
327       return false;
328   }
329 
330   return true;
331 }
332 
333 // The current selector can't handle <6 x s16>, <8 x s16>, s96, s128 etc, so
334 // workaround this. Eventually it should ignore the type for loads and only care
335 // about the size. Return true in cases where we will workaround this for now by
336 // bitcasting.
337 static bool loadStoreBitcastWorkaround(const LLT Ty) {
338   if (EnableNewLegality)
339     return false;
340 
341   const unsigned Size = Ty.getSizeInBits();
342   if (Size <= 64)
343     return false;
344   if (!Ty.isVector())
345     return true;
346 
347   LLT EltTy = Ty.getElementType();
348   if (EltTy.isPointer())
349     return true;
350 
351   unsigned EltSize = EltTy.getSizeInBits();
352   return EltSize != 32 && EltSize != 64;
353 }
354 
355 static bool isLoadStoreLegal(const GCNSubtarget &ST, const LegalityQuery &Query) {
356   const LLT Ty = Query.Types[0];
357   return isRegisterType(Ty) && isLoadStoreSizeLegal(ST, Query) &&
358          !loadStoreBitcastWorkaround(Ty);
359 }
360 
361 /// Return true if a load or store of the type should be lowered with a bitcast
362 /// to a different type.
363 static bool shouldBitcastLoadStoreType(const GCNSubtarget &ST, const LLT Ty,
364                                        const LLT MemTy) {
365   const unsigned MemSizeInBits = MemTy.getSizeInBits();
366   const unsigned Size = Ty.getSizeInBits();
367   if (Size != MemSizeInBits)
368     return Size <= 32 && Ty.isVector();
369 
370   if (loadStoreBitcastWorkaround(Ty) && isRegisterType(Ty))
371     return true;
372 
373   // Don't try to handle bitcasting vector ext loads for now.
374   return Ty.isVector() && (!MemTy.isVector() || MemTy == Ty) &&
375          (Size <= 32 || isRegisterSize(Size)) &&
376          !isRegisterVectorElementType(Ty.getElementType());
377 }
378 
379 /// Return true if we should legalize a load by widening an odd sized memory
380 /// access up to the alignment. Note this case when the memory access itself
381 /// changes, not the size of the result register.
382 static bool shouldWidenLoad(const GCNSubtarget &ST, LLT MemoryTy,
383                             uint64_t AlignInBits, unsigned AddrSpace,
384                             unsigned Opcode) {
385   unsigned SizeInBits = MemoryTy.getSizeInBits();
386   // We don't want to widen cases that are naturally legal.
387   if (isPowerOf2_32(SizeInBits))
388     return false;
389 
390   // If we have 96-bit memory operations, we shouldn't touch them. Note we may
391   // end up widening these for a scalar load during RegBankSelect, since there
392   // aren't 96-bit scalar loads.
393   if (SizeInBits == 96 && ST.hasDwordx3LoadStores())
394     return false;
395 
396   if (SizeInBits >= maxSizeForAddrSpace(ST, AddrSpace, Opcode))
397     return false;
398 
399   // A load is known dereferenceable up to the alignment, so it's legal to widen
400   // to it.
401   //
402   // TODO: Could check dereferenceable for less aligned cases.
403   unsigned RoundedSize = NextPowerOf2(SizeInBits);
404   if (AlignInBits < RoundedSize)
405     return false;
406 
407   // Do not widen if it would introduce a slow unaligned load.
408   const SITargetLowering *TLI = ST.getTargetLowering();
409   bool Fast = false;
410   return TLI->allowsMisalignedMemoryAccessesImpl(
411              RoundedSize, AddrSpace, Align(AlignInBits / 8),
412              MachineMemOperand::MOLoad, &Fast) &&
413          Fast;
414 }
415 
416 static bool shouldWidenLoad(const GCNSubtarget &ST, const LegalityQuery &Query,
417                             unsigned Opcode) {
418   if (Query.MMODescrs[0].Ordering != AtomicOrdering::NotAtomic)
419     return false;
420 
421   return shouldWidenLoad(ST, Query.MMODescrs[0].MemoryTy,
422                          Query.MMODescrs[0].AlignInBits,
423                          Query.Types[1].getAddressSpace(), Opcode);
424 }
425 
426 AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
427                                          const GCNTargetMachine &TM)
428   :  ST(ST_) {
429   using namespace TargetOpcode;
430 
431   auto GetAddrSpacePtr = [&TM](unsigned AS) {
432     return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
433   };
434 
435   const LLT S1 = LLT::scalar(1);
436   const LLT S8 = LLT::scalar(8);
437   const LLT S16 = LLT::scalar(16);
438   const LLT S32 = LLT::scalar(32);
439   const LLT S64 = LLT::scalar(64);
440   const LLT S128 = LLT::scalar(128);
441   const LLT S256 = LLT::scalar(256);
442   const LLT S512 = LLT::scalar(512);
443   const LLT MaxScalar = LLT::scalar(MaxRegisterSize);
444 
445   const LLT V2S8 = LLT::fixed_vector(2, 8);
446   const LLT V2S16 = LLT::fixed_vector(2, 16);
447   const LLT V4S16 = LLT::fixed_vector(4, 16);
448 
449   const LLT V2S32 = LLT::fixed_vector(2, 32);
450   const LLT V3S32 = LLT::fixed_vector(3, 32);
451   const LLT V4S32 = LLT::fixed_vector(4, 32);
452   const LLT V5S32 = LLT::fixed_vector(5, 32);
453   const LLT V6S32 = LLT::fixed_vector(6, 32);
454   const LLT V7S32 = LLT::fixed_vector(7, 32);
455   const LLT V8S32 = LLT::fixed_vector(8, 32);
456   const LLT V9S32 = LLT::fixed_vector(9, 32);
457   const LLT V10S32 = LLT::fixed_vector(10, 32);
458   const LLT V11S32 = LLT::fixed_vector(11, 32);
459   const LLT V12S32 = LLT::fixed_vector(12, 32);
460   const LLT V13S32 = LLT::fixed_vector(13, 32);
461   const LLT V14S32 = LLT::fixed_vector(14, 32);
462   const LLT V15S32 = LLT::fixed_vector(15, 32);
463   const LLT V16S32 = LLT::fixed_vector(16, 32);
464   const LLT V32S32 = LLT::fixed_vector(32, 32);
465 
466   const LLT V2S64 = LLT::fixed_vector(2, 64);
467   const LLT V3S64 = LLT::fixed_vector(3, 64);
468   const LLT V4S64 = LLT::fixed_vector(4, 64);
469   const LLT V5S64 = LLT::fixed_vector(5, 64);
470   const LLT V6S64 = LLT::fixed_vector(6, 64);
471   const LLT V7S64 = LLT::fixed_vector(7, 64);
472   const LLT V8S64 = LLT::fixed_vector(8, 64);
473   const LLT V16S64 = LLT::fixed_vector(16, 64);
474 
475   std::initializer_list<LLT> AllS32Vectors =
476     {V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
477      V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32, V32S32};
478   std::initializer_list<LLT> AllS64Vectors =
479     {V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64, V16S64};
480 
481   const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
482   const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
483   const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
484   const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
485   const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
486   const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
487   const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
488 
489   const LLT CodePtr = FlatPtr;
490 
491   const std::initializer_list<LLT> AddrSpaces64 = {
492     GlobalPtr, ConstantPtr, FlatPtr
493   };
494 
495   const std::initializer_list<LLT> AddrSpaces32 = {
496     LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
497   };
498 
499   const std::initializer_list<LLT> FPTypesBase = {
500     S32, S64
501   };
502 
503   const std::initializer_list<LLT> FPTypes16 = {
504     S32, S64, S16
505   };
506 
507   const std::initializer_list<LLT> FPTypesPK16 = {
508     S32, S64, S16, V2S16
509   };
510 
511   const LLT MinScalarFPTy = ST.has16BitInsts() ? S16 : S32;
512 
513   // s1 for VCC branches, s32 for SCC branches.
514   getActionDefinitionsBuilder(G_BRCOND).legalFor({S1, S32});
515 
516   // TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
517   // elements for v3s16
518   getActionDefinitionsBuilder(G_PHI)
519     .legalFor({S32, S64, V2S16, S16, V4S16, S1, S128, S256})
520     .legalFor(AllS32Vectors)
521     .legalFor(AllS64Vectors)
522     .legalFor(AddrSpaces64)
523     .legalFor(AddrSpaces32)
524     .legalIf(isPointer(0))
525     .clampScalar(0, S16, S256)
526     .widenScalarToNextPow2(0, 32)
527     .clampMaxNumElements(0, S32, 16)
528     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
529     .scalarize(0);
530 
531   if (ST.hasVOP3PInsts() && ST.hasAddNoCarry() && ST.hasIntClamp()) {
532     // Full set of gfx9 features.
533     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
534       .legalFor({S32, S16, V2S16})
535       .minScalar(0, S16)
536       .clampMaxNumElementsStrict(0, S16, 2)
537       .widenScalarToNextMultipleOf(0, 32)
538       .maxScalar(0, S32)
539       .scalarize(0);
540 
541     getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT, G_SADDSAT, G_SSUBSAT})
542       .legalFor({S32, S16, V2S16}) // Clamp modifier
543       .minScalarOrElt(0, S16)
544       .clampMaxNumElementsStrict(0, S16, 2)
545       .scalarize(0)
546       .widenScalarToNextPow2(0, 32)
547       .lower();
548   } else if (ST.has16BitInsts()) {
549     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
550       .legalFor({S32, S16})
551       .minScalar(0, S16)
552       .widenScalarToNextMultipleOf(0, 32)
553       .maxScalar(0, S32)
554       .scalarize(0);
555 
556     // Technically the saturating operations require clamp bit support, but this
557     // was introduced at the same time as 16-bit operations.
558     getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
559       .legalFor({S32, S16}) // Clamp modifier
560       .minScalar(0, S16)
561       .scalarize(0)
562       .widenScalarToNextPow2(0, 16)
563       .lower();
564 
565     // We're just lowering this, but it helps get a better result to try to
566     // coerce to the desired type first.
567     getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
568       .minScalar(0, S16)
569       .scalarize(0)
570       .lower();
571   } else {
572     getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
573       .legalFor({S32})
574       .widenScalarToNextMultipleOf(0, 32)
575       .clampScalar(0, S32, S32)
576       .scalarize(0);
577 
578     if (ST.hasIntClamp()) {
579       getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
580         .legalFor({S32}) // Clamp modifier.
581         .scalarize(0)
582         .minScalarOrElt(0, S32)
583         .lower();
584     } else {
585       // Clamp bit support was added in VI, along with 16-bit operations.
586       getActionDefinitionsBuilder({G_UADDSAT, G_USUBSAT})
587         .minScalar(0, S32)
588         .scalarize(0)
589         .lower();
590     }
591 
592     // FIXME: DAG expansion gets better results. The widening uses the smaller
593     // range values and goes for the min/max lowering directly.
594     getActionDefinitionsBuilder({G_SADDSAT, G_SSUBSAT})
595       .minScalar(0, S32)
596       .scalarize(0)
597       .lower();
598   }
599 
600   getActionDefinitionsBuilder(
601       {G_SDIV, G_UDIV, G_SREM, G_UREM, G_SDIVREM, G_UDIVREM})
602       .customFor({S32, S64})
603       .clampScalar(0, S32, S64)
604       .widenScalarToNextPow2(0, 32)
605       .scalarize(0);
606 
607   auto &Mulh = getActionDefinitionsBuilder({G_UMULH, G_SMULH})
608                    .legalFor({S32})
609                    .maxScalar(0, S32);
610 
611   if (ST.hasVOP3PInsts()) {
612     Mulh
613       .clampMaxNumElements(0, S8, 2)
614       .lowerFor({V2S8});
615   }
616 
617   Mulh
618     .scalarize(0)
619     .lower();
620 
621   // Report legal for any types we can handle anywhere. For the cases only legal
622   // on the SALU, RegBankSelect will be able to re-legalize.
623   getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
624     .legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
625     .clampScalar(0, S32, S64)
626     .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
627     .fewerElementsIf(vectorWiderThan(0, 64), fewerEltsToSize64Vector(0))
628     .widenScalarToNextPow2(0)
629     .scalarize(0);
630 
631   getActionDefinitionsBuilder({G_UADDO, G_USUBO,
632                                G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
633     .legalFor({{S32, S1}, {S32, S32}})
634     .minScalar(0, S32)
635     .scalarize(0)
636     .lower();
637 
638   getActionDefinitionsBuilder(G_BITCAST)
639     // Don't worry about the size constraint.
640     .legalIf(all(isRegisterType(0), isRegisterType(1)))
641     .lower();
642 
643 
644   getActionDefinitionsBuilder(G_CONSTANT)
645     .legalFor({S1, S32, S64, S16, GlobalPtr,
646                LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
647     .legalIf(isPointer(0))
648     .clampScalar(0, S32, S64)
649     .widenScalarToNextPow2(0);
650 
651   getActionDefinitionsBuilder(G_FCONSTANT)
652     .legalFor({S32, S64, S16})
653     .clampScalar(0, S16, S64);
654 
655   getActionDefinitionsBuilder({G_IMPLICIT_DEF, G_FREEZE})
656       .legalIf(isRegisterType(0))
657       // s1 and s16 are special cases because they have legal operations on
658       // them, but don't really occupy registers in the normal way.
659       .legalFor({S1, S16})
660       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
661       .clampScalarOrElt(0, S32, MaxScalar)
662       .widenScalarToNextPow2(0, 32)
663       .clampMaxNumElements(0, S32, 16);
664 
665   getActionDefinitionsBuilder(G_FRAME_INDEX).legalFor({PrivatePtr});
666 
667   // If the amount is divergent, we have to do a wave reduction to get the
668   // maximum value, so this is expanded during RegBankSelect.
669   getActionDefinitionsBuilder(G_DYN_STACKALLOC)
670     .legalFor({{PrivatePtr, S32}});
671 
672   getActionDefinitionsBuilder(G_GLOBAL_VALUE)
673     .customIf(typeIsNot(0, PrivatePtr));
674 
675   getActionDefinitionsBuilder(G_BLOCK_ADDR).legalFor({CodePtr});
676 
677   auto &FPOpActions = getActionDefinitionsBuilder(
678     { G_FADD, G_FMUL, G_FMA, G_FCANONICALIZE})
679     .legalFor({S32, S64});
680   auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
681     .customFor({S32, S64});
682   auto &FDIVActions = getActionDefinitionsBuilder(G_FDIV)
683     .customFor({S32, S64});
684 
685   if (ST.has16BitInsts()) {
686     if (ST.hasVOP3PInsts())
687       FPOpActions.legalFor({S16, V2S16});
688     else
689       FPOpActions.legalFor({S16});
690 
691     TrigActions.customFor({S16});
692     FDIVActions.customFor({S16});
693   }
694 
695   auto &MinNumMaxNum = getActionDefinitionsBuilder({
696       G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});
697 
698   if (ST.hasVOP3PInsts()) {
699     MinNumMaxNum.customFor(FPTypesPK16)
700       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
701       .clampMaxNumElements(0, S16, 2)
702       .clampScalar(0, S16, S64)
703       .scalarize(0);
704   } else if (ST.has16BitInsts()) {
705     MinNumMaxNum.customFor(FPTypes16)
706       .clampScalar(0, S16, S64)
707       .scalarize(0);
708   } else {
709     MinNumMaxNum.customFor(FPTypesBase)
710       .clampScalar(0, S32, S64)
711       .scalarize(0);
712   }
713 
714   if (ST.hasVOP3PInsts())
715     FPOpActions.clampMaxNumElementsStrict(0, S16, 2);
716 
717   FPOpActions
718     .scalarize(0)
719     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
720 
721   TrigActions
722     .scalarize(0)
723     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
724 
725   FDIVActions
726     .scalarize(0)
727     .clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
728 
729   getActionDefinitionsBuilder({G_FNEG, G_FABS})
730     .legalFor(FPTypesPK16)
731     .clampMaxNumElementsStrict(0, S16, 2)
732     .scalarize(0)
733     .clampScalar(0, S16, S64);
734 
735   if (ST.has16BitInsts()) {
736     getActionDefinitionsBuilder({G_FSQRT, G_FFLOOR})
737       .legalFor({S32, S64, S16})
738       .scalarize(0)
739       .clampScalar(0, S16, S64);
740   } else {
741     getActionDefinitionsBuilder(G_FSQRT)
742       .legalFor({S32, S64})
743       .scalarize(0)
744       .clampScalar(0, S32, S64);
745 
746     if (ST.hasFractBug()) {
747       getActionDefinitionsBuilder(G_FFLOOR)
748         .customFor({S64})
749         .legalFor({S32, S64})
750         .scalarize(0)
751         .clampScalar(0, S32, S64);
752     } else {
753       getActionDefinitionsBuilder(G_FFLOOR)
754         .legalFor({S32, S64})
755         .scalarize(0)
756         .clampScalar(0, S32, S64);
757     }
758   }
759 
760   getActionDefinitionsBuilder(G_FPTRUNC)
761     .legalFor({{S32, S64}, {S16, S32}})
762     .scalarize(0)
763     .lower();
764 
765   getActionDefinitionsBuilder(G_FPEXT)
766     .legalFor({{S64, S32}, {S32, S16}})
767     .narrowScalarFor({{S64, S16}}, changeTo(0, S32))
768     .scalarize(0);
769 
770   getActionDefinitionsBuilder(G_FSUB)
771       // Use actual fsub instruction
772       .legalFor({S32})
773       // Must use fadd + fneg
774       .lowerFor({S64, S16, V2S16})
775       .scalarize(0)
776       .clampScalar(0, S32, S64);
777 
778   // Whether this is legal depends on the floating point mode for the function.
779   auto &FMad = getActionDefinitionsBuilder(G_FMAD);
780   if (ST.hasMadF16() && ST.hasMadMacF32Insts())
781     FMad.customFor({S32, S16});
782   else if (ST.hasMadMacF32Insts())
783     FMad.customFor({S32});
784   else if (ST.hasMadF16())
785     FMad.customFor({S16});
786   FMad.scalarize(0)
787       .lower();
788 
789   auto &FRem = getActionDefinitionsBuilder(G_FREM);
790   if (ST.has16BitInsts()) {
791     FRem.customFor({S16, S32, S64});
792   } else {
793     FRem.minScalar(0, S32)
794         .customFor({S32, S64});
795   }
796   FRem.scalarize(0);
797 
798   // TODO: Do we need to clamp maximum bitwidth?
799   getActionDefinitionsBuilder(G_TRUNC)
800     .legalIf(isScalar(0))
801     .legalFor({{V2S16, V2S32}})
802     .clampMaxNumElements(0, S16, 2)
803     // Avoid scalarizing in cases that should be truly illegal. In unresolvable
804     // situations (like an invalid implicit use), we don't want to infinite loop
805     // in the legalizer.
806     .fewerElementsIf(elementTypeIsLegal(0), LegalizeMutations::scalarize(0))
807     .alwaysLegal();
808 
809   getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
810     .legalFor({{S64, S32}, {S32, S16}, {S64, S16},
811                {S32, S1}, {S64, S1}, {S16, S1}})
812     .scalarize(0)
813     .clampScalar(0, S32, S64)
814     .widenScalarToNextPow2(1, 32);
815 
816   // TODO: Split s1->s64 during regbankselect for VALU.
817   auto &IToFP = getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
818                     .legalFor({{S32, S32}, {S64, S32}, {S16, S32}})
819                     .lowerIf(typeIs(1, S1))
820                     .customFor({{S32, S64}, {S64, S64}});
821   if (ST.has16BitInsts())
822     IToFP.legalFor({{S16, S16}});
823   IToFP.clampScalar(1, S32, S64)
824        .minScalar(0, S32)
825        .scalarize(0)
826        .widenScalarToNextPow2(1);
827 
828   auto &FPToI = getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
829     .legalFor({{S32, S32}, {S32, S64}, {S32, S16}})
830     .customFor({{S64, S32}, {S64, S64}})
831     .narrowScalarFor({{S64, S16}}, changeTo(0, S32));
832   if (ST.has16BitInsts())
833     FPToI.legalFor({{S16, S16}});
834   else
835     FPToI.minScalar(1, S32);
836 
837   FPToI.minScalar(0, S32)
838        .widenScalarToNextPow2(0, 32)
839        .scalarize(0)
840        .lower();
841 
842   getActionDefinitionsBuilder(G_INTRINSIC_FPTRUNC_ROUND)
843       .customFor({S16, S32})
844       .scalarize(0)
845       .lower();
846 
847   // Lower roundeven into G_FRINT
848   getActionDefinitionsBuilder({G_INTRINSIC_ROUND, G_INTRINSIC_ROUNDEVEN})
849     .scalarize(0)
850     .lower();
851 
852   if (ST.has16BitInsts()) {
853     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
854       .legalFor({S16, S32, S64})
855       .clampScalar(0, S16, S64)
856       .scalarize(0);
857   } else if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
858     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
859       .legalFor({S32, S64})
860       .clampScalar(0, S32, S64)
861       .scalarize(0);
862   } else {
863     getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
864       .legalFor({S32})
865       .customFor({S64})
866       .clampScalar(0, S32, S64)
867       .scalarize(0);
868   }
869 
870   getActionDefinitionsBuilder(G_PTR_ADD)
871     .legalIf(all(isPointer(0), sameSize(0, 1)))
872     .scalarize(0)
873     .scalarSameSizeAs(1, 0);
874 
875   getActionDefinitionsBuilder(G_PTRMASK)
876     .legalIf(all(sameSize(0, 1), typeInSet(1, {S64, S32})))
877     .scalarSameSizeAs(1, 0)
878     .scalarize(0);
879 
880   auto &CmpBuilder =
881     getActionDefinitionsBuilder(G_ICMP)
882     // The compare output type differs based on the register bank of the output,
883     // so make both s1 and s32 legal.
884     //
885     // Scalar compares producing output in scc will be promoted to s32, as that
886     // is the allocatable register type that will be needed for the copy from
887     // scc. This will be promoted during RegBankSelect, and we assume something
888     // before that won't try to use s32 result types.
889     //
890     // Vector compares producing an output in vcc/SGPR will use s1 in VCC reg
891     // bank.
892     .legalForCartesianProduct(
893       {S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
894     .legalForCartesianProduct(
895       {S32}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr});
896   if (ST.has16BitInsts()) {
897     CmpBuilder.legalFor({{S1, S16}});
898   }
899 
900   CmpBuilder
901     .widenScalarToNextPow2(1)
902     .clampScalar(1, S32, S64)
903     .scalarize(0)
904     .legalIf(all(typeInSet(0, {S1, S32}), isPointer(1)));
905 
906   getActionDefinitionsBuilder(G_FCMP)
907     .legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
908     .widenScalarToNextPow2(1)
909     .clampScalar(1, S32, S64)
910     .scalarize(0);
911 
912   // FIXME: fpow has a selection pattern that should move to custom lowering.
913   auto &Exp2Ops = getActionDefinitionsBuilder({G_FEXP2, G_FLOG2});
914   if (ST.has16BitInsts())
915     Exp2Ops.legalFor({S32, S16});
916   else
917     Exp2Ops.legalFor({S32});
918   Exp2Ops.clampScalar(0, MinScalarFPTy, S32);
919   Exp2Ops.scalarize(0);
920 
921   auto &ExpOps = getActionDefinitionsBuilder({G_FEXP, G_FLOG, G_FLOG10, G_FPOW});
922   if (ST.has16BitInsts())
923     ExpOps.customFor({{S32}, {S16}});
924   else
925     ExpOps.customFor({S32});
926   ExpOps.clampScalar(0, MinScalarFPTy, S32)
927         .scalarize(0);
928 
929   getActionDefinitionsBuilder(G_FPOWI)
930     .clampScalar(0, MinScalarFPTy, S32)
931     .lower();
932 
933   // The 64-bit versions produce 32-bit results, but only on the SALU.
934   getActionDefinitionsBuilder(G_CTPOP)
935     .legalFor({{S32, S32}, {S32, S64}})
936     .clampScalar(0, S32, S32)
937     .widenScalarToNextPow2(1, 32)
938     .clampScalar(1, S32, S64)
939     .scalarize(0)
940     .widenScalarToNextPow2(0, 32);
941 
942 
943   // The hardware instructions return a different result on 0 than the generic
944   // instructions expect. The hardware produces -1, but these produce the
945   // bitwidth.
946   getActionDefinitionsBuilder({G_CTLZ, G_CTTZ})
947     .scalarize(0)
948     .clampScalar(0, S32, S32)
949     .clampScalar(1, S32, S64)
950     .widenScalarToNextPow2(0, 32)
951     .widenScalarToNextPow2(1, 32)
952     .custom();
953 
954   // The 64-bit versions produce 32-bit results, but only on the SALU.
955   getActionDefinitionsBuilder({G_CTLZ_ZERO_UNDEF, G_CTTZ_ZERO_UNDEF})
956     .legalFor({{S32, S32}, {S32, S64}})
957     .clampScalar(0, S32, S32)
958     .clampScalar(1, S32, S64)
959     .scalarize(0)
960     .widenScalarToNextPow2(0, 32)
961     .widenScalarToNextPow2(1, 32);
962 
963   // S64 is only legal on SALU, and needs to be broken into 32-bit elements in
964   // RegBankSelect.
965   getActionDefinitionsBuilder(G_BITREVERSE)
966     .legalFor({S32, S64})
967     .clampScalar(0, S32, S64)
968     .scalarize(0)
969     .widenScalarToNextPow2(0);
970 
971   if (ST.has16BitInsts()) {
972     getActionDefinitionsBuilder(G_BSWAP)
973       .legalFor({S16, S32, V2S16})
974       .clampMaxNumElementsStrict(0, S16, 2)
975       // FIXME: Fixing non-power-of-2 before clamp is workaround for
976       // narrowScalar limitation.
977       .widenScalarToNextPow2(0)
978       .clampScalar(0, S16, S32)
979       .scalarize(0);
980 
981     if (ST.hasVOP3PInsts()) {
982       getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
983         .legalFor({S32, S16, V2S16})
984         .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
985         .clampMaxNumElements(0, S16, 2)
986         .minScalar(0, S16)
987         .widenScalarToNextPow2(0)
988         .scalarize(0)
989         .lower();
990     } else {
991       getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
992         .legalFor({S32, S16})
993         .widenScalarToNextPow2(0)
994         .minScalar(0, S16)
995         .scalarize(0)
996         .lower();
997     }
998   } else {
999     // TODO: Should have same legality without v_perm_b32
1000     getActionDefinitionsBuilder(G_BSWAP)
1001       .legalFor({S32})
1002       .lowerIf(scalarNarrowerThan(0, 32))
1003       // FIXME: Fixing non-power-of-2 before clamp is workaround for
1004       // narrowScalar limitation.
1005       .widenScalarToNextPow2(0)
1006       .maxScalar(0, S32)
1007       .scalarize(0)
1008       .lower();
1009 
1010     getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX, G_ABS})
1011       .legalFor({S32})
1012       .minScalar(0, S32)
1013       .widenScalarToNextPow2(0)
1014       .scalarize(0)
1015       .lower();
1016   }
1017 
1018   getActionDefinitionsBuilder(G_INTTOPTR)
1019     // List the common cases
1020     .legalForCartesianProduct(AddrSpaces64, {S64})
1021     .legalForCartesianProduct(AddrSpaces32, {S32})
1022     .scalarize(0)
1023     // Accept any address space as long as the size matches
1024     .legalIf(sameSize(0, 1))
1025     .widenScalarIf(smallerThan(1, 0),
1026       [](const LegalityQuery &Query) {
1027         return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
1028       })
1029     .narrowScalarIf(largerThan(1, 0),
1030       [](const LegalityQuery &Query) {
1031         return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
1032       });
1033 
1034   getActionDefinitionsBuilder(G_PTRTOINT)
1035     // List the common cases
1036     .legalForCartesianProduct(AddrSpaces64, {S64})
1037     .legalForCartesianProduct(AddrSpaces32, {S32})
1038     .scalarize(0)
1039     // Accept any address space as long as the size matches
1040     .legalIf(sameSize(0, 1))
1041     .widenScalarIf(smallerThan(0, 1),
1042       [](const LegalityQuery &Query) {
1043         return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
1044       })
1045     .narrowScalarIf(
1046       largerThan(0, 1),
1047       [](const LegalityQuery &Query) {
1048         return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
1049       });
1050 
1051   getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
1052     .scalarize(0)
1053     .custom();
1054 
1055   const auto needToSplitMemOp = [=](const LegalityQuery &Query,
1056                                     bool IsLoad) -> bool {
1057     const LLT DstTy = Query.Types[0];
1058 
1059     // Split vector extloads.
1060     unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1061 
1062     if (DstTy.isVector() && DstTy.getSizeInBits() > MemSize)
1063       return true;
1064 
1065     const LLT PtrTy = Query.Types[1];
1066     unsigned AS = PtrTy.getAddressSpace();
1067     if (MemSize > maxSizeForAddrSpace(ST, AS, IsLoad))
1068       return true;
1069 
1070     // Catch weird sized loads that don't evenly divide into the access sizes
1071     // TODO: May be able to widen depending on alignment etc.
1072     unsigned NumRegs = (MemSize + 31) / 32;
1073     if (NumRegs == 3) {
1074       if (!ST.hasDwordx3LoadStores())
1075         return true;
1076     } else {
1077       // If the alignment allows, these should have been widened.
1078       if (!isPowerOf2_32(NumRegs))
1079         return true;
1080     }
1081 
1082     return false;
1083   };
1084 
1085   unsigned GlobalAlign32 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 32;
1086   unsigned GlobalAlign16 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 16;
1087   unsigned GlobalAlign8 = ST.hasUnalignedBufferAccessEnabled() ? 0 : 8;
1088 
1089   // TODO: Refine based on subtargets which support unaligned access or 128-bit
1090   // LDS
1091   // TODO: Unsupported flat for SI.
1092 
1093   for (unsigned Op : {G_LOAD, G_STORE}) {
1094     const bool IsStore = Op == G_STORE;
1095 
1096     auto &Actions = getActionDefinitionsBuilder(Op);
1097     // Explicitly list some common cases.
1098     // TODO: Does this help compile time at all?
1099     Actions.legalForTypesWithMemDesc({{S32, GlobalPtr, S32, GlobalAlign32},
1100                                       {V2S32, GlobalPtr, V2S32, GlobalAlign32},
1101                                       {V4S32, GlobalPtr, V4S32, GlobalAlign32},
1102                                       {S64, GlobalPtr, S64, GlobalAlign32},
1103                                       {V2S64, GlobalPtr, V2S64, GlobalAlign32},
1104                                       {V2S16, GlobalPtr, V2S16, GlobalAlign32},
1105                                       {S32, GlobalPtr, S8, GlobalAlign8},
1106                                       {S32, GlobalPtr, S16, GlobalAlign16},
1107 
1108                                       {S32, LocalPtr, S32, 32},
1109                                       {S64, LocalPtr, S64, 32},
1110                                       {V2S32, LocalPtr, V2S32, 32},
1111                                       {S32, LocalPtr, S8, 8},
1112                                       {S32, LocalPtr, S16, 16},
1113                                       {V2S16, LocalPtr, S32, 32},
1114 
1115                                       {S32, PrivatePtr, S32, 32},
1116                                       {S32, PrivatePtr, S8, 8},
1117                                       {S32, PrivatePtr, S16, 16},
1118                                       {V2S16, PrivatePtr, S32, 32},
1119 
1120                                       {S32, ConstantPtr, S32, GlobalAlign32},
1121                                       {V2S32, ConstantPtr, V2S32, GlobalAlign32},
1122                                       {V4S32, ConstantPtr, V4S32, GlobalAlign32},
1123                                       {S64, ConstantPtr, S64, GlobalAlign32},
1124                                       {V2S32, ConstantPtr, V2S32, GlobalAlign32}});
1125     Actions.legalIf(
1126       [=](const LegalityQuery &Query) -> bool {
1127         return isLoadStoreLegal(ST, Query);
1128       });
1129 
1130     // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
1131     // 64-bits.
1132     //
1133     // TODO: Should generalize bitcast action into coerce, which will also cover
1134     // inserting addrspacecasts.
1135     Actions.customIf(typeIs(1, Constant32Ptr));
1136 
1137     // Turn any illegal element vectors into something easier to deal
1138     // with. These will ultimately produce 32-bit scalar shifts to extract the
1139     // parts anyway.
1140     //
1141     // For odd 16-bit element vectors, prefer to split those into pieces with
1142     // 16-bit vector parts.
1143     Actions.bitcastIf(
1144       [=](const LegalityQuery &Query) -> bool {
1145         return shouldBitcastLoadStoreType(ST, Query.Types[0],
1146                                           Query.MMODescrs[0].MemoryTy);
1147       }, bitcastToRegisterType(0));
1148 
1149     if (!IsStore) {
1150       // Widen suitably aligned loads by loading extra bytes. The standard
1151       // legalization actions can't properly express widening memory operands.
1152       Actions.customIf([=](const LegalityQuery &Query) -> bool {
1153         return shouldWidenLoad(ST, Query, G_LOAD);
1154       });
1155     }
1156 
1157     // FIXME: load/store narrowing should be moved to lower action
1158     Actions
1159         .narrowScalarIf(
1160             [=](const LegalityQuery &Query) -> bool {
1161               return !Query.Types[0].isVector() &&
1162                      needToSplitMemOp(Query, Op == G_LOAD);
1163             },
1164             [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1165               const LLT DstTy = Query.Types[0];
1166               const LLT PtrTy = Query.Types[1];
1167 
1168               const unsigned DstSize = DstTy.getSizeInBits();
1169               unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1170 
1171               // Split extloads.
1172               if (DstSize > MemSize)
1173                 return std::make_pair(0, LLT::scalar(MemSize));
1174 
1175               unsigned MaxSize = maxSizeForAddrSpace(ST,
1176                                                      PtrTy.getAddressSpace(),
1177                                                      Op == G_LOAD);
1178               if (MemSize > MaxSize)
1179                 return std::make_pair(0, LLT::scalar(MaxSize));
1180 
1181               uint64_t Align = Query.MMODescrs[0].AlignInBits;
1182               return std::make_pair(0, LLT::scalar(Align));
1183             })
1184         .fewerElementsIf(
1185             [=](const LegalityQuery &Query) -> bool {
1186               return Query.Types[0].isVector() &&
1187                      needToSplitMemOp(Query, Op == G_LOAD);
1188             },
1189             [=](const LegalityQuery &Query) -> std::pair<unsigned, LLT> {
1190               const LLT DstTy = Query.Types[0];
1191               const LLT PtrTy = Query.Types[1];
1192 
1193               LLT EltTy = DstTy.getElementType();
1194               unsigned MaxSize = maxSizeForAddrSpace(ST,
1195                                                      PtrTy.getAddressSpace(),
1196                                                      Op == G_LOAD);
1197 
1198               // FIXME: Handle widened to power of 2 results better. This ends
1199               // up scalarizing.
1200               // FIXME: 3 element stores scalarized on SI
1201 
1202               // Split if it's too large for the address space.
1203               unsigned MemSize = Query.MMODescrs[0].MemoryTy.getSizeInBits();
1204               if (MemSize > MaxSize) {
1205                 unsigned NumElts = DstTy.getNumElements();
1206                 unsigned EltSize = EltTy.getSizeInBits();
1207 
1208                 if (MaxSize % EltSize == 0) {
1209                   return std::make_pair(
1210                       0, LLT::scalarOrVector(
1211                              ElementCount::getFixed(MaxSize / EltSize), EltTy));
1212                 }
1213 
1214                 unsigned NumPieces = MemSize / MaxSize;
1215 
1216                 // FIXME: Refine when odd breakdowns handled
1217                 // The scalars will need to be re-legalized.
1218                 if (NumPieces == 1 || NumPieces >= NumElts ||
1219                     NumElts % NumPieces != 0)
1220                   return std::make_pair(0, EltTy);
1221 
1222                 return std::make_pair(
1223                     0, LLT::fixed_vector(NumElts / NumPieces, EltTy));
1224               }
1225 
1226               // FIXME: We could probably handle weird extending loads better.
1227               if (DstTy.getSizeInBits() > MemSize)
1228                 return std::make_pair(0, EltTy);
1229 
1230               unsigned EltSize = EltTy.getSizeInBits();
1231               unsigned DstSize = DstTy.getSizeInBits();
1232               if (!isPowerOf2_32(DstSize)) {
1233                 // We're probably decomposing an odd sized store. Try to split
1234                 // to the widest type. TODO: Account for alignment. As-is it
1235                 // should be OK, since the new parts will be further legalized.
1236                 unsigned FloorSize = PowerOf2Floor(DstSize);
1237                 return std::make_pair(
1238                     0, LLT::scalarOrVector(
1239                            ElementCount::getFixed(FloorSize / EltSize), EltTy));
1240               }
1241 
1242               // May need relegalization for the scalars.
1243               return std::make_pair(0, EltTy);
1244             })
1245     .minScalar(0, S32)
1246     .narrowScalarIf(isWideScalarExtLoadTruncStore(0), changeTo(0, S32))
1247     .widenScalarToNextPow2(0)
1248     .moreElementsIf(vectorSmallerThan(0, 32), moreEltsToNext32Bit(0))
1249     .lower();
1250   }
1251 
1252   // FIXME: Unaligned accesses not lowered.
1253   auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
1254                        .legalForTypesWithMemDesc({{S32, GlobalPtr, S8, 8},
1255                                                   {S32, GlobalPtr, S16, 2 * 8},
1256                                                   {S32, LocalPtr, S8, 8},
1257                                                   {S32, LocalPtr, S16, 16},
1258                                                   {S32, PrivatePtr, S8, 8},
1259                                                   {S32, PrivatePtr, S16, 16},
1260                                                   {S32, ConstantPtr, S8, 8},
1261                                                   {S32, ConstantPtr, S16, 2 * 8}})
1262                        .legalIf(
1263                          [=](const LegalityQuery &Query) -> bool {
1264                            return isLoadStoreLegal(ST, Query);
1265                          });
1266 
1267   if (ST.hasFlatAddressSpace()) {
1268     ExtLoads.legalForTypesWithMemDesc(
1269         {{S32, FlatPtr, S8, 8}, {S32, FlatPtr, S16, 16}});
1270   }
1271 
1272   // Constant 32-bit is handled by addrspacecasting the 32-bit pointer to
1273   // 64-bits.
1274   //
1275   // TODO: Should generalize bitcast action into coerce, which will also cover
1276   // inserting addrspacecasts.
1277   ExtLoads.customIf(typeIs(1, Constant32Ptr));
1278 
1279   ExtLoads.clampScalar(0, S32, S32)
1280           .widenScalarToNextPow2(0)
1281           .lower();
1282 
1283   auto &Atomics = getActionDefinitionsBuilder(
1284     {G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
1285      G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
1286      G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
1287      G_ATOMICRMW_UMIN})
1288     .legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
1289                {S64, GlobalPtr}, {S64, LocalPtr},
1290                {S32, RegionPtr}, {S64, RegionPtr}});
1291   if (ST.hasFlatAddressSpace()) {
1292     Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
1293   }
1294 
1295   auto &Atomic = getActionDefinitionsBuilder(G_ATOMICRMW_FADD);
1296   if (ST.hasLDSFPAtomicAdd()) {
1297     Atomic.legalFor({{S32, LocalPtr}, {S32, RegionPtr}});
1298     if (ST.hasGFX90AInsts())
1299       Atomic.legalFor({{S64, LocalPtr}});
1300     if (ST.hasGFX940Insts())
1301       Atomic.legalFor({{V2S16, LocalPtr}});
1302   }
1303   if (ST.hasAtomicFaddInsts())
1304     Atomic.legalFor({{S32, GlobalPtr}});
1305 
1306   if (ST.hasGFX90AInsts()) {
1307     // These are legal with some caveats, and should have undergone expansion in
1308     // the IR in most situations
1309     // TODO: Move atomic expansion into legalizer
1310     // TODO: Also supports <2 x f16>
1311     Atomic.legalFor({
1312         {S32, GlobalPtr},
1313         {S64, GlobalPtr},
1314         {S64, FlatPtr}
1315       });
1316   }
1317 
1318   // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling, and output
1319   // demarshalling
1320   getActionDefinitionsBuilder(G_ATOMIC_CMPXCHG)
1321     .customFor({{S32, GlobalPtr}, {S64, GlobalPtr},
1322                 {S32, FlatPtr}, {S64, FlatPtr}})
1323     .legalFor({{S32, LocalPtr}, {S64, LocalPtr},
1324                {S32, RegionPtr}, {S64, RegionPtr}});
1325   // TODO: Pointer types, any 32-bit or 64-bit vector
1326 
1327   // Condition should be s32 for scalar, s1 for vector.
1328   getActionDefinitionsBuilder(G_SELECT)
1329       .legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16, GlobalPtr,
1330                                  LocalPtr, FlatPtr, PrivatePtr,
1331                                  LLT::fixed_vector(2, LocalPtr),
1332                                  LLT::fixed_vector(2, PrivatePtr)},
1333                                 {S1, S32})
1334       .clampScalar(0, S16, S64)
1335       .scalarize(1)
1336       .moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
1337       .fewerElementsIf(numElementsNotEven(0), scalarize(0))
1338       .clampMaxNumElements(0, S32, 2)
1339       .clampMaxNumElements(0, LocalPtr, 2)
1340       .clampMaxNumElements(0, PrivatePtr, 2)
1341       .scalarize(0)
1342       .widenScalarToNextPow2(0)
1343       .legalIf(all(isPointer(0), typeInSet(1, {S1, S32})));
1344 
1345   // TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
1346   // be more flexible with the shift amount type.
1347   auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
1348     .legalFor({{S32, S32}, {S64, S32}});
1349   if (ST.has16BitInsts()) {
1350     if (ST.hasVOP3PInsts()) {
1351       Shifts.legalFor({{S16, S16}, {V2S16, V2S16}})
1352             .clampMaxNumElements(0, S16, 2);
1353     } else
1354       Shifts.legalFor({{S16, S16}});
1355 
1356     // TODO: Support 16-bit shift amounts for all types
1357     Shifts.widenScalarIf(
1358       [=](const LegalityQuery &Query) {
1359         // Use 16-bit shift amounts for any 16-bit shift. Otherwise we want a
1360         // 32-bit amount.
1361         const LLT ValTy = Query.Types[0];
1362         const LLT AmountTy = Query.Types[1];
1363         return ValTy.getSizeInBits() <= 16 &&
1364                AmountTy.getSizeInBits() < 16;
1365       }, changeTo(1, S16));
1366     Shifts.maxScalarIf(typeIs(0, S16), 1, S16);
1367     Shifts.clampScalar(1, S32, S32);
1368     Shifts.widenScalarToNextPow2(0, 16);
1369     Shifts.clampScalar(0, S16, S64);
1370 
1371     getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
1372       .minScalar(0, S16)
1373       .scalarize(0)
1374       .lower();
1375   } else {
1376     // Make sure we legalize the shift amount type first, as the general
1377     // expansion for the shifted type will produce much worse code if it hasn't
1378     // been truncated already.
1379     Shifts.clampScalar(1, S32, S32);
1380     Shifts.widenScalarToNextPow2(0, 32);
1381     Shifts.clampScalar(0, S32, S64);
1382 
1383     getActionDefinitionsBuilder({G_SSHLSAT, G_USHLSAT})
1384       .minScalar(0, S32)
1385       .scalarize(0)
1386       .lower();
1387   }
1388   Shifts.scalarize(0);
1389 
1390   for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
1391     unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
1392     unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
1393     unsigned IdxTypeIdx = 2;
1394 
1395     getActionDefinitionsBuilder(Op)
1396       .customIf([=](const LegalityQuery &Query) {
1397           const LLT EltTy = Query.Types[EltTypeIdx];
1398           const LLT VecTy = Query.Types[VecTypeIdx];
1399           const LLT IdxTy = Query.Types[IdxTypeIdx];
1400           const unsigned EltSize = EltTy.getSizeInBits();
1401           return (EltSize == 32 || EltSize == 64) &&
1402                   VecTy.getSizeInBits() % 32 == 0 &&
1403                   VecTy.getSizeInBits() <= MaxRegisterSize &&
1404                   IdxTy.getSizeInBits() == 32;
1405         })
1406       .bitcastIf(all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltNarrowerThan(VecTypeIdx, 32)),
1407                  bitcastToVectorElement32(VecTypeIdx))
1408       //.bitcastIf(vectorSmallerThan(1, 32), bitcastToScalar(1))
1409       .bitcastIf(
1410         all(sizeIsMultipleOf32(VecTypeIdx), scalarOrEltWiderThan(VecTypeIdx, 64)),
1411         [=](const LegalityQuery &Query) {
1412           // For > 64-bit element types, try to turn this into a 64-bit
1413           // element vector since we may be able to do better indexing
1414           // if this is scalar. If not, fall back to 32.
1415           const LLT EltTy = Query.Types[EltTypeIdx];
1416           const LLT VecTy = Query.Types[VecTypeIdx];
1417           const unsigned DstEltSize = EltTy.getSizeInBits();
1418           const unsigned VecSize = VecTy.getSizeInBits();
1419 
1420           const unsigned TargetEltSize = DstEltSize % 64 == 0 ? 64 : 32;
1421           return std::make_pair(
1422               VecTypeIdx,
1423               LLT::fixed_vector(VecSize / TargetEltSize, TargetEltSize));
1424         })
1425       .clampScalar(EltTypeIdx, S32, S64)
1426       .clampScalar(VecTypeIdx, S32, S64)
1427       .clampScalar(IdxTypeIdx, S32, S32)
1428       .clampMaxNumElements(VecTypeIdx, S32, 32)
1429       // TODO: Clamp elements for 64-bit vectors?
1430       // It should only be necessary with variable indexes.
1431       // As a last resort, lower to the stack
1432       .lower();
1433   }
1434 
1435   getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
1436     .unsupportedIf([=](const LegalityQuery &Query) {
1437         const LLT &EltTy = Query.Types[1].getElementType();
1438         return Query.Types[0] != EltTy;
1439       });
1440 
1441   for (unsigned Op : {G_EXTRACT, G_INSERT}) {
1442     unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
1443     unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;
1444 
1445     // FIXME: Doesn't handle extract of illegal sizes.
1446     getActionDefinitionsBuilder(Op)
1447       .lowerIf(all(typeIs(LitTyIdx, S16), sizeIs(BigTyIdx, 32)))
1448       .lowerIf([=](const LegalityQuery &Query) {
1449           // Sub-vector(or single element) insert and extract.
1450           // TODO: verify immediate offset here since lower only works with
1451           // whole elements.
1452           const LLT BigTy = Query.Types[BigTyIdx];
1453           return BigTy.isVector();
1454         })
1455       // FIXME: Multiples of 16 should not be legal.
1456       .legalIf([=](const LegalityQuery &Query) {
1457           const LLT BigTy = Query.Types[BigTyIdx];
1458           const LLT LitTy = Query.Types[LitTyIdx];
1459           return (BigTy.getSizeInBits() % 32 == 0) &&
1460                  (LitTy.getSizeInBits() % 16 == 0);
1461         })
1462       .widenScalarIf(
1463         [=](const LegalityQuery &Query) {
1464           const LLT BigTy = Query.Types[BigTyIdx];
1465           return (BigTy.getScalarSizeInBits() < 16);
1466         },
1467         LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
1468       .widenScalarIf(
1469         [=](const LegalityQuery &Query) {
1470           const LLT LitTy = Query.Types[LitTyIdx];
1471           return (LitTy.getScalarSizeInBits() < 16);
1472         },
1473         LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
1474       .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
1475       .widenScalarToNextPow2(BigTyIdx, 32);
1476 
1477   }
1478 
1479   auto &BuildVector = getActionDefinitionsBuilder(G_BUILD_VECTOR)
1480     .legalForCartesianProduct(AllS32Vectors, {S32})
1481     .legalForCartesianProduct(AllS64Vectors, {S64})
1482     .clampNumElements(0, V16S32, V32S32)
1483     .clampNumElements(0, V2S64, V16S64)
1484     .fewerElementsIf(isWideVec16(0), changeTo(0, V2S16));
1485 
1486   if (ST.hasScalarPackInsts()) {
1487     BuildVector
1488       // FIXME: Should probably widen s1 vectors straight to s32
1489       .minScalarOrElt(0, S16)
1490       // Widen source elements and produce a G_BUILD_VECTOR_TRUNC
1491       .minScalar(1, S32);
1492 
1493     getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
1494       .legalFor({V2S16, S32})
1495       .lower();
1496     BuildVector.minScalarOrElt(0, S32);
1497   } else {
1498     BuildVector.customFor({V2S16, S16});
1499     BuildVector.minScalarOrElt(0, S32);
1500 
1501     getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
1502       .customFor({V2S16, S32})
1503       .lower();
1504   }
1505 
1506   BuildVector.legalIf(isRegisterType(0));
1507 
1508   // FIXME: Clamp maximum size
1509   getActionDefinitionsBuilder(G_CONCAT_VECTORS)
1510     .legalIf(all(isRegisterType(0), isRegisterType(1)))
1511     .clampMaxNumElements(0, S32, 32)
1512     .clampMaxNumElements(1, S16, 2) // TODO: Make 4?
1513     .clampMaxNumElements(0, S16, 64);
1514 
1515   // TODO: Don't fully scalarize v2s16 pieces? Or combine out those
1516   // pre-legalize.
1517   if (ST.hasVOP3PInsts()) {
1518     getActionDefinitionsBuilder(G_SHUFFLE_VECTOR)
1519       .customFor({V2S16, V2S16})
1520       .lower();
1521   } else
1522     getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();
1523 
1524   // Merge/Unmerge
1525   for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
1526     unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
1527     unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
1528 
1529     auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
1530       const LLT Ty = Query.Types[TypeIdx];
1531       if (Ty.isVector()) {
1532         const LLT &EltTy = Ty.getElementType();
1533         if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 512)
1534           return true;
1535         if (!isPowerOf2_32(EltTy.getSizeInBits()))
1536           return true;
1537       }
1538       return false;
1539     };
1540 
1541     auto &Builder = getActionDefinitionsBuilder(Op)
1542       .legalIf(all(isRegisterType(0), isRegisterType(1)))
1543       .lowerFor({{S16, V2S16}})
1544       .lowerIf([=](const LegalityQuery &Query) {
1545           const LLT BigTy = Query.Types[BigTyIdx];
1546           return BigTy.getSizeInBits() == 32;
1547         })
1548       // Try to widen to s16 first for small types.
1549       // TODO: Only do this on targets with legal s16 shifts
1550       .minScalarOrEltIf(scalarNarrowerThan(LitTyIdx, 16), LitTyIdx, S16)
1551       .widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
1552       .moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
1553       .fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
1554                            elementTypeIs(1, S16)),
1555                        changeTo(1, V2S16))
1556       // Clamp the little scalar to s8-s256 and make it a power of 2. It's not
1557       // worth considering the multiples of 64 since 2*192 and 2*384 are not
1558       // valid.
1559       .clampScalar(LitTyIdx, S32, S512)
1560       .widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
1561       // Break up vectors with weird elements into scalars
1562       .fewerElementsIf(
1563         [=](const LegalityQuery &Query) { return notValidElt(Query, LitTyIdx); },
1564         scalarize(0))
1565       .fewerElementsIf(
1566         [=](const LegalityQuery &Query) { return notValidElt(Query, BigTyIdx); },
1567         scalarize(1))
1568       .clampScalar(BigTyIdx, S32, MaxScalar);
1569 
1570     if (Op == G_MERGE_VALUES) {
1571       Builder.widenScalarIf(
1572         // TODO: Use 16-bit shifts if legal for 8-bit values?
1573         [=](const LegalityQuery &Query) {
1574           const LLT Ty = Query.Types[LitTyIdx];
1575           return Ty.getSizeInBits() < 32;
1576         },
1577         changeTo(LitTyIdx, S32));
1578     }
1579 
1580     Builder.widenScalarIf(
1581       [=](const LegalityQuery &Query) {
1582         const LLT Ty = Query.Types[BigTyIdx];
1583         return !isPowerOf2_32(Ty.getSizeInBits()) &&
1584           Ty.getSizeInBits() % 16 != 0;
1585       },
1586       [=](const LegalityQuery &Query) {
1587         // Pick the next power of 2, or a multiple of 64 over 128.
1588         // Whichever is smaller.
1589         const LLT &Ty = Query.Types[BigTyIdx];
1590         unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
1591         if (NewSizeInBits >= 256) {
1592           unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
1593           if (RoundedTo < NewSizeInBits)
1594             NewSizeInBits = RoundedTo;
1595         }
1596         return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
1597       })
1598       // Any vectors left are the wrong size. Scalarize them.
1599       .scalarize(0)
1600       .scalarize(1);
1601   }
1602 
1603   // S64 is only legal on SALU, and needs to be broken into 32-bit elements in
1604   // RegBankSelect.
1605   auto &SextInReg = getActionDefinitionsBuilder(G_SEXT_INREG)
1606     .legalFor({{S32}, {S64}});
1607 
1608   if (ST.hasVOP3PInsts()) {
1609     SextInReg.lowerFor({{V2S16}})
1610       // Prefer to reduce vector widths for 16-bit vectors before lowering, to
1611       // get more vector shift opportunities, since we'll get those when
1612       // expanded.
1613       .clampMaxNumElementsStrict(0, S16, 2);
1614   } else if (ST.has16BitInsts()) {
1615     SextInReg.lowerFor({{S32}, {S64}, {S16}});
1616   } else {
1617     // Prefer to promote to s32 before lowering if we don't have 16-bit
1618     // shifts. This avoid a lot of intermediate truncate and extend operations.
1619     SextInReg.lowerFor({{S32}, {S64}});
1620   }
1621 
1622   SextInReg
1623     .scalarize(0)
1624     .clampScalar(0, S32, S64)
1625     .lower();
1626 
1627   getActionDefinitionsBuilder({G_ROTR, G_ROTL})
1628     .scalarize(0)
1629     .lower();
1630 
1631   // TODO: Only Try to form v2s16 with legal packed instructions.
1632   getActionDefinitionsBuilder(G_FSHR)
1633     .legalFor({{S32, S32}})
1634     .lowerFor({{V2S16, V2S16}})
1635     .clampMaxNumElementsStrict(0, S16, 2)
1636     .scalarize(0)
1637     .lower();
1638 
1639   if (ST.hasVOP3PInsts()) {
1640     getActionDefinitionsBuilder(G_FSHL)
1641       .lowerFor({{V2S16, V2S16}})
1642       .clampMaxNumElementsStrict(0, S16, 2)
1643       .scalarize(0)
1644       .lower();
1645   } else {
1646     getActionDefinitionsBuilder(G_FSHL)
1647       .scalarize(0)
1648       .lower();
1649   }
1650 
1651   getActionDefinitionsBuilder(G_READCYCLECOUNTER)
1652     .legalFor({S64});
1653 
1654   getActionDefinitionsBuilder(G_FENCE)
1655     .alwaysLegal();
1656 
1657   getActionDefinitionsBuilder({G_SMULO, G_UMULO})
1658       .scalarize(0)
1659       .minScalar(0, S32)
1660       .lower();
1661 
1662   getActionDefinitionsBuilder({G_SBFX, G_UBFX})
1663       .legalFor({{S32, S32}, {S64, S32}})
1664       .clampScalar(1, S32, S32)
1665       .clampScalar(0, S32, S64)
1666       .widenScalarToNextPow2(0)
1667       .scalarize(0);
1668 
1669   getActionDefinitionsBuilder({
1670       // TODO: Verify V_BFI_B32 is generated from expanded bit ops
1671       G_FCOPYSIGN,
1672 
1673       G_ATOMIC_CMPXCHG_WITH_SUCCESS,
1674       G_ATOMICRMW_NAND,
1675       G_ATOMICRMW_FSUB,
1676       G_READ_REGISTER,
1677       G_WRITE_REGISTER,
1678 
1679       G_SADDO, G_SSUBO,
1680 
1681        // TODO: Implement
1682       G_FMINIMUM, G_FMAXIMUM}).lower();
1683 
1684   getActionDefinitionsBuilder({G_MEMCPY, G_MEMCPY_INLINE, G_MEMMOVE, G_MEMSET})
1685       .lower();
1686 
1687   getActionDefinitionsBuilder({G_VASTART, G_VAARG, G_BRJT, G_JUMP_TABLE,
1688         G_INDEXED_LOAD, G_INDEXED_SEXTLOAD,
1689         G_INDEXED_ZEXTLOAD, G_INDEXED_STORE})
1690     .unsupported();
1691 
1692   getLegacyLegalizerInfo().computeTables();
1693   verify(*ST.getInstrInfo());
1694 }
1695 
1696 bool AMDGPULegalizerInfo::legalizeCustom(LegalizerHelper &Helper,
1697                                          MachineInstr &MI) const {
1698   MachineIRBuilder &B = Helper.MIRBuilder;
1699   MachineRegisterInfo &MRI = *B.getMRI();
1700 
1701   switch (MI.getOpcode()) {
1702   case TargetOpcode::G_ADDRSPACE_CAST:
1703     return legalizeAddrSpaceCast(MI, MRI, B);
1704   case TargetOpcode::G_FRINT:
1705     return legalizeFrint(MI, MRI, B);
1706   case TargetOpcode::G_FCEIL:
1707     return legalizeFceil(MI, MRI, B);
1708   case TargetOpcode::G_FREM:
1709     return legalizeFrem(MI, MRI, B);
1710   case TargetOpcode::G_INTRINSIC_TRUNC:
1711     return legalizeIntrinsicTrunc(MI, MRI, B);
1712   case TargetOpcode::G_SITOFP:
1713     return legalizeITOFP(MI, MRI, B, true);
1714   case TargetOpcode::G_UITOFP:
1715     return legalizeITOFP(MI, MRI, B, false);
1716   case TargetOpcode::G_FPTOSI:
1717     return legalizeFPTOI(MI, MRI, B, true);
1718   case TargetOpcode::G_FPTOUI:
1719     return legalizeFPTOI(MI, MRI, B, false);
1720   case TargetOpcode::G_FMINNUM:
1721   case TargetOpcode::G_FMAXNUM:
1722   case TargetOpcode::G_FMINNUM_IEEE:
1723   case TargetOpcode::G_FMAXNUM_IEEE:
1724     return legalizeMinNumMaxNum(Helper, MI);
1725   case TargetOpcode::G_EXTRACT_VECTOR_ELT:
1726     return legalizeExtractVectorElt(MI, MRI, B);
1727   case TargetOpcode::G_INSERT_VECTOR_ELT:
1728     return legalizeInsertVectorElt(MI, MRI, B);
1729   case TargetOpcode::G_SHUFFLE_VECTOR:
1730     return legalizeShuffleVector(MI, MRI, B);
1731   case TargetOpcode::G_FSIN:
1732   case TargetOpcode::G_FCOS:
1733     return legalizeSinCos(MI, MRI, B);
1734   case TargetOpcode::G_GLOBAL_VALUE:
1735     return legalizeGlobalValue(MI, MRI, B);
1736   case TargetOpcode::G_LOAD:
1737   case TargetOpcode::G_SEXTLOAD:
1738   case TargetOpcode::G_ZEXTLOAD:
1739     return legalizeLoad(Helper, MI);
1740   case TargetOpcode::G_FMAD:
1741     return legalizeFMad(MI, MRI, B);
1742   case TargetOpcode::G_FDIV:
1743     return legalizeFDIV(MI, MRI, B);
1744   case TargetOpcode::G_UDIV:
1745   case TargetOpcode::G_UREM:
1746   case TargetOpcode::G_UDIVREM:
1747     return legalizeUnsignedDIV_REM(MI, MRI, B);
1748   case TargetOpcode::G_SDIV:
1749   case TargetOpcode::G_SREM:
1750   case TargetOpcode::G_SDIVREM:
1751     return legalizeSignedDIV_REM(MI, MRI, B);
1752   case TargetOpcode::G_ATOMIC_CMPXCHG:
1753     return legalizeAtomicCmpXChg(MI, MRI, B);
1754   case TargetOpcode::G_FLOG:
1755     return legalizeFlog(MI, B, numbers::ln2f);
1756   case TargetOpcode::G_FLOG10:
1757     return legalizeFlog(MI, B, numbers::ln2f / numbers::ln10f);
1758   case TargetOpcode::G_FEXP:
1759     return legalizeFExp(MI, B);
1760   case TargetOpcode::G_FPOW:
1761     return legalizeFPow(MI, B);
1762   case TargetOpcode::G_FFLOOR:
1763     return legalizeFFloor(MI, MRI, B);
1764   case TargetOpcode::G_BUILD_VECTOR:
1765     return legalizeBuildVector(MI, MRI, B);
1766   case TargetOpcode::G_CTLZ:
1767   case TargetOpcode::G_CTTZ:
1768     return legalizeCTLZ_CTTZ(MI, MRI, B);
1769   case TargetOpcode::G_INTRINSIC_FPTRUNC_ROUND:
1770     return legalizeFPTruncRound(MI, B);
1771   default:
1772     return false;
1773   }
1774 
1775   llvm_unreachable("expected switch to return");
1776 }
1777 
1778 Register AMDGPULegalizerInfo::getSegmentAperture(
1779   unsigned AS,
1780   MachineRegisterInfo &MRI,
1781   MachineIRBuilder &B) const {
1782   MachineFunction &MF = B.getMF();
1783   const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1784   const LLT S32 = LLT::scalar(32);
1785 
1786   assert(AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::PRIVATE_ADDRESS);
1787 
1788   if (ST.hasApertureRegs()) {
1789     // FIXME: Use inline constants (src_{shared, private}_base) instead of
1790     // getreg.
1791     unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
1792         AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
1793         AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
1794     unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
1795         AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
1796         AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
1797     unsigned Encoding =
1798         AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
1799         Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
1800         WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
1801 
1802     Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
1803 
1804     B.buildInstr(AMDGPU::S_GETREG_B32)
1805       .addDef(GetReg)
1806       .addImm(Encoding);
1807     MRI.setType(GetReg, S32);
1808 
1809     auto ShiftAmt = B.buildConstant(S32, WidthM1 + 1);
1810     return B.buildShl(S32, GetReg, ShiftAmt).getReg(0);
1811   }
1812 
1813   // TODO: can we be smarter about machine pointer info?
1814   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
1815   Register LoadAddr = MRI.createGenericVirtualRegister(
1816     LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1817   // For code object version 5, private_base and shared_base are passed through
1818   // implicit kernargs.
1819   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
1820     AMDGPUTargetLowering::ImplicitParameter Param =
1821         AS == AMDGPUAS::LOCAL_ADDRESS ? AMDGPUTargetLowering::SHARED_BASE
1822                                       : AMDGPUTargetLowering::PRIVATE_BASE;
1823     uint64_t Offset =
1824         ST.getTargetLowering()->getImplicitParameterOffset(B.getMF(), Param);
1825 
1826     Register KernargPtrReg = MRI.createGenericVirtualRegister(
1827         LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1828 
1829     if (!loadInputValue(KernargPtrReg, B,
1830                         AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
1831       return Register();
1832 
1833     MachineMemOperand *MMO = MF.getMachineMemOperand(
1834         PtrInfo,
1835         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
1836             MachineMemOperand::MOInvariant,
1837         LLT::scalar(32), commonAlignment(Align(64), Offset));
1838 
1839     // Pointer address
1840     B.buildPtrAdd(LoadAddr, KernargPtrReg,
1841                   B.buildConstant(LLT::scalar(64), Offset).getReg(0));
1842     // Load address
1843     return B.buildLoad(S32, LoadAddr, *MMO).getReg(0);
1844   }
1845 
1846   Register QueuePtr = MRI.createGenericVirtualRegister(
1847     LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1848 
1849   if (!loadInputValue(QueuePtr, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
1850     return Register();
1851 
1852   // Offset into amd_queue_t for group_segment_aperture_base_hi /
1853   // private_segment_aperture_base_hi.
1854   uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
1855 
1856   MachineMemOperand *MMO = MF.getMachineMemOperand(
1857       PtrInfo,
1858       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
1859           MachineMemOperand::MOInvariant,
1860       LLT::scalar(32), commonAlignment(Align(64), StructOffset));
1861 
1862   B.buildPtrAdd(LoadAddr, QueuePtr,
1863                 B.buildConstant(LLT::scalar(64), StructOffset).getReg(0));
1864   return B.buildLoad(S32, LoadAddr, *MMO).getReg(0);
1865 }
1866 
1867 /// Return true if the value is a known valid address, such that a null check is
1868 /// not necessary.
1869 static bool isKnownNonNull(Register Val, MachineRegisterInfo &MRI,
1870                            const AMDGPUTargetMachine &TM, unsigned AddrSpace) {
1871   MachineInstr *Def = MRI.getVRegDef(Val);
1872   switch (Def->getOpcode()) {
1873   case AMDGPU::G_FRAME_INDEX:
1874   case AMDGPU::G_GLOBAL_VALUE:
1875   case AMDGPU::G_BLOCK_ADDR:
1876     return true;
1877   case AMDGPU::G_CONSTANT: {
1878     const ConstantInt *CI = Def->getOperand(1).getCImm();
1879     return CI->getSExtValue() != TM.getNullPointerValue(AddrSpace);
1880   }
1881   default:
1882     return false;
1883   }
1884 
1885   return false;
1886 }
1887 
1888 bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
1889   MachineInstr &MI, MachineRegisterInfo &MRI,
1890   MachineIRBuilder &B) const {
1891   MachineFunction &MF = B.getMF();
1892 
1893   const LLT S32 = LLT::scalar(32);
1894   Register Dst = MI.getOperand(0).getReg();
1895   Register Src = MI.getOperand(1).getReg();
1896 
1897   LLT DstTy = MRI.getType(Dst);
1898   LLT SrcTy = MRI.getType(Src);
1899   unsigned DestAS = DstTy.getAddressSpace();
1900   unsigned SrcAS = SrcTy.getAddressSpace();
1901 
1902   // TODO: Avoid reloading from the queue ptr for each cast, or at least each
1903   // vector element.
1904   assert(!DstTy.isVector());
1905 
1906   const AMDGPUTargetMachine &TM
1907     = static_cast<const AMDGPUTargetMachine &>(MF.getTarget());
1908 
1909   if (TM.isNoopAddrSpaceCast(SrcAS, DestAS)) {
1910     MI.setDesc(B.getTII().get(TargetOpcode::G_BITCAST));
1911     return true;
1912   }
1913 
1914   if (SrcAS == AMDGPUAS::FLAT_ADDRESS &&
1915       (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
1916        DestAS == AMDGPUAS::PRIVATE_ADDRESS)) {
1917     if (isKnownNonNull(Src, MRI, TM, SrcAS)) {
1918       // Extract low 32-bits of the pointer.
1919       B.buildExtract(Dst, Src, 0);
1920       MI.eraseFromParent();
1921       return true;
1922     }
1923 
1924     unsigned NullVal = TM.getNullPointerValue(DestAS);
1925 
1926     auto SegmentNull = B.buildConstant(DstTy, NullVal);
1927     auto FlatNull = B.buildConstant(SrcTy, 0);
1928 
1929     // Extract low 32-bits of the pointer.
1930     auto PtrLo32 = B.buildExtract(DstTy, Src, 0);
1931 
1932     auto CmpRes =
1933         B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src, FlatNull.getReg(0));
1934     B.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
1935 
1936     MI.eraseFromParent();
1937     return true;
1938   }
1939 
1940   if (DestAS == AMDGPUAS::FLAT_ADDRESS &&
1941       (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
1942        SrcAS == AMDGPUAS::PRIVATE_ADDRESS)) {
1943     if (!ST.hasFlatAddressSpace())
1944       return false;
1945 
1946     Register ApertureReg = getSegmentAperture(SrcAS, MRI, B);
1947     if (!ApertureReg.isValid())
1948       return false;
1949 
1950     // Coerce the type of the low half of the result so we can use merge_values.
1951     Register SrcAsInt = B.buildPtrToInt(S32, Src).getReg(0);
1952 
1953     // TODO: Should we allow mismatched types but matching sizes in merges to
1954     // avoid the ptrtoint?
1955     auto BuildPtr = B.buildMerge(DstTy, {SrcAsInt, ApertureReg});
1956 
1957     if (isKnownNonNull(Src, MRI, TM, SrcAS)) {
1958       B.buildCopy(Dst, BuildPtr);
1959       MI.eraseFromParent();
1960       return true;
1961     }
1962 
1963     auto SegmentNull = B.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
1964     auto FlatNull = B.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
1965 
1966     auto CmpRes = B.buildICmp(CmpInst::ICMP_NE, LLT::scalar(1), Src,
1967                               SegmentNull.getReg(0));
1968 
1969     B.buildSelect(Dst, CmpRes, BuildPtr, FlatNull);
1970 
1971     MI.eraseFromParent();
1972     return true;
1973   }
1974 
1975   if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
1976       SrcTy.getSizeInBits() == 64) {
1977     // Truncate.
1978     B.buildExtract(Dst, Src, 0);
1979     MI.eraseFromParent();
1980     return true;
1981   }
1982 
1983   if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT &&
1984       DstTy.getSizeInBits() == 64) {
1985     const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1986     uint32_t AddrHiVal = Info->get32BitAddressHighBits();
1987 
1988     // FIXME: This is a bit ugly due to creating a merge of 2 pointers to
1989     // another. Merge operands are required to be the same type, but creating an
1990     // extra ptrtoint would be kind of pointless.
1991     auto HighAddr = B.buildConstant(
1992         LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
1993     B.buildMerge(Dst, {Src, HighAddr});
1994     MI.eraseFromParent();
1995     return true;
1996   }
1997 
1998   DiagnosticInfoUnsupported InvalidAddrSpaceCast(
1999       MF.getFunction(), "invalid addrspacecast", B.getDebugLoc());
2000 
2001   LLVMContext &Ctx = MF.getFunction().getContext();
2002   Ctx.diagnose(InvalidAddrSpaceCast);
2003   B.buildUndef(Dst);
2004   MI.eraseFromParent();
2005   return true;
2006 }
2007 
2008 bool AMDGPULegalizerInfo::legalizeFrint(
2009   MachineInstr &MI, MachineRegisterInfo &MRI,
2010   MachineIRBuilder &B) const {
2011   Register Src = MI.getOperand(1).getReg();
2012   LLT Ty = MRI.getType(Src);
2013   assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
2014 
2015   APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
2016   APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
2017 
2018   auto C1 = B.buildFConstant(Ty, C1Val);
2019   auto CopySign = B.buildFCopysign(Ty, C1, Src);
2020 
2021   // TODO: Should this propagate fast-math-flags?
2022   auto Tmp1 = B.buildFAdd(Ty, Src, CopySign);
2023   auto Tmp2 = B.buildFSub(Ty, Tmp1, CopySign);
2024 
2025   auto C2 = B.buildFConstant(Ty, C2Val);
2026   auto Fabs = B.buildFAbs(Ty, Src);
2027 
2028   auto Cond = B.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
2029   B.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
2030   MI.eraseFromParent();
2031   return true;
2032 }
2033 
2034 bool AMDGPULegalizerInfo::legalizeFceil(
2035   MachineInstr &MI, MachineRegisterInfo &MRI,
2036   MachineIRBuilder &B) const {
2037 
2038   const LLT S1 = LLT::scalar(1);
2039   const LLT S64 = LLT::scalar(64);
2040 
2041   Register Src = MI.getOperand(1).getReg();
2042   assert(MRI.getType(Src) == S64);
2043 
2044   // result = trunc(src)
2045   // if (src > 0.0 && src != result)
2046   //   result += 1.0
2047 
2048   auto Trunc = B.buildIntrinsicTrunc(S64, Src);
2049 
2050   const auto Zero = B.buildFConstant(S64, 0.0);
2051   const auto One = B.buildFConstant(S64, 1.0);
2052   auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
2053   auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
2054   auto And = B.buildAnd(S1, Lt0, NeTrunc);
2055   auto Add = B.buildSelect(S64, And, One, Zero);
2056 
2057   // TODO: Should this propagate fast-math-flags?
2058   B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
2059   MI.eraseFromParent();
2060   return true;
2061 }
2062 
2063 bool AMDGPULegalizerInfo::legalizeFrem(
2064   MachineInstr &MI, MachineRegisterInfo &MRI,
2065   MachineIRBuilder &B) const {
2066     Register DstReg = MI.getOperand(0).getReg();
2067     Register Src0Reg = MI.getOperand(1).getReg();
2068     Register Src1Reg = MI.getOperand(2).getReg();
2069     auto Flags = MI.getFlags();
2070     LLT Ty = MRI.getType(DstReg);
2071 
2072     auto Div = B.buildFDiv(Ty, Src0Reg, Src1Reg, Flags);
2073     auto Trunc = B.buildIntrinsicTrunc(Ty, Div, Flags);
2074     auto Neg = B.buildFNeg(Ty, Trunc, Flags);
2075     B.buildFMA(DstReg, Neg, Src1Reg, Src0Reg, Flags);
2076     MI.eraseFromParent();
2077     return true;
2078 }
2079 
2080 static MachineInstrBuilder extractF64Exponent(Register Hi,
2081                                               MachineIRBuilder &B) {
2082   const unsigned FractBits = 52;
2083   const unsigned ExpBits = 11;
2084   LLT S32 = LLT::scalar(32);
2085 
2086   auto Const0 = B.buildConstant(S32, FractBits - 32);
2087   auto Const1 = B.buildConstant(S32, ExpBits);
2088 
2089   auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
2090     .addUse(Hi)
2091     .addUse(Const0.getReg(0))
2092     .addUse(Const1.getReg(0));
2093 
2094   return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
2095 }
2096 
2097 bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
2098   MachineInstr &MI, MachineRegisterInfo &MRI,
2099   MachineIRBuilder &B) const {
2100   const LLT S1 = LLT::scalar(1);
2101   const LLT S32 = LLT::scalar(32);
2102   const LLT S64 = LLT::scalar(64);
2103 
2104   Register Src = MI.getOperand(1).getReg();
2105   assert(MRI.getType(Src) == S64);
2106 
2107   // TODO: Should this use extract since the low half is unused?
2108   auto Unmerge = B.buildUnmerge({S32, S32}, Src);
2109   Register Hi = Unmerge.getReg(1);
2110 
2111   // Extract the upper half, since this is where we will find the sign and
2112   // exponent.
2113   auto Exp = extractF64Exponent(Hi, B);
2114 
2115   const unsigned FractBits = 52;
2116 
2117   // Extract the sign bit.
2118   const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
2119   auto SignBit = B.buildAnd(S32, Hi, SignBitMask);
2120 
2121   const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);
2122 
2123   const auto Zero32 = B.buildConstant(S32, 0);
2124 
2125   // Extend back to 64-bits.
2126   auto SignBit64 = B.buildMerge(S64, {Zero32, SignBit});
2127 
2128   auto Shr = B.buildAShr(S64, FractMask, Exp);
2129   auto Not = B.buildNot(S64, Shr);
2130   auto Tmp0 = B.buildAnd(S64, Src, Not);
2131   auto FiftyOne = B.buildConstant(S32, FractBits - 1);
2132 
2133   auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
2134   auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);
2135 
2136   auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
2137   B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
2138   MI.eraseFromParent();
2139   return true;
2140 }
2141 
2142 bool AMDGPULegalizerInfo::legalizeITOFP(
2143   MachineInstr &MI, MachineRegisterInfo &MRI,
2144   MachineIRBuilder &B, bool Signed) const {
2145 
2146   Register Dst = MI.getOperand(0).getReg();
2147   Register Src = MI.getOperand(1).getReg();
2148 
2149   const LLT S64 = LLT::scalar(64);
2150   const LLT S32 = LLT::scalar(32);
2151 
2152   assert(MRI.getType(Src) == S64);
2153 
2154   auto Unmerge = B.buildUnmerge({S32, S32}, Src);
2155   auto ThirtyTwo = B.buildConstant(S32, 32);
2156 
2157   if (MRI.getType(Dst) == S64) {
2158     auto CvtHi = Signed ? B.buildSITOFP(S64, Unmerge.getReg(1))
2159                         : B.buildUITOFP(S64, Unmerge.getReg(1));
2160 
2161     auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));
2162     auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
2163                      .addUse(CvtHi.getReg(0))
2164                      .addUse(ThirtyTwo.getReg(0));
2165 
2166     // TODO: Should this propagate fast-math-flags?
2167     B.buildFAdd(Dst, LdExp, CvtLo);
2168     MI.eraseFromParent();
2169     return true;
2170   }
2171 
2172   assert(MRI.getType(Dst) == S32);
2173 
2174   auto One = B.buildConstant(S32, 1);
2175 
2176   MachineInstrBuilder ShAmt;
2177   if (Signed) {
2178     auto ThirtyOne = B.buildConstant(S32, 31);
2179     auto X = B.buildXor(S32, Unmerge.getReg(0), Unmerge.getReg(1));
2180     auto OppositeSign = B.buildAShr(S32, X, ThirtyOne);
2181     auto MaxShAmt = B.buildAdd(S32, ThirtyTwo, OppositeSign);
2182     auto LS = B.buildIntrinsic(Intrinsic::amdgcn_sffbh, {S32},
2183                                /*HasSideEffects=*/false)
2184                   .addUse(Unmerge.getReg(1));
2185     auto LS2 = B.buildSub(S32, LS, One);
2186     ShAmt = B.buildUMin(S32, LS2, MaxShAmt);
2187   } else
2188     ShAmt = B.buildCTLZ(S32, Unmerge.getReg(1));
2189   auto Norm = B.buildShl(S64, Src, ShAmt);
2190   auto Unmerge2 = B.buildUnmerge({S32, S32}, Norm);
2191   auto Adjust = B.buildUMin(S32, One, Unmerge2.getReg(0));
2192   auto Norm2 = B.buildOr(S32, Unmerge2.getReg(1), Adjust);
2193   auto FVal = Signed ? B.buildSITOFP(S32, Norm2) : B.buildUITOFP(S32, Norm2);
2194   auto Scale = B.buildSub(S32, ThirtyTwo, ShAmt);
2195   B.buildIntrinsic(Intrinsic::amdgcn_ldexp, ArrayRef<Register>{Dst},
2196                    /*HasSideEffects=*/false)
2197       .addUse(FVal.getReg(0))
2198       .addUse(Scale.getReg(0));
2199   MI.eraseFromParent();
2200   return true;
2201 }
2202 
2203 // TODO: Copied from DAG implementation. Verify logic and document how this
2204 // actually works.
2205 bool AMDGPULegalizerInfo::legalizeFPTOI(MachineInstr &MI,
2206                                         MachineRegisterInfo &MRI,
2207                                         MachineIRBuilder &B,
2208                                         bool Signed) const {
2209 
2210   Register Dst = MI.getOperand(0).getReg();
2211   Register Src = MI.getOperand(1).getReg();
2212 
2213   const LLT S64 = LLT::scalar(64);
2214   const LLT S32 = LLT::scalar(32);
2215 
2216   const LLT SrcLT = MRI.getType(Src);
2217   assert((SrcLT == S32 || SrcLT == S64) && MRI.getType(Dst) == S64);
2218 
2219   unsigned Flags = MI.getFlags();
2220 
2221   // The basic idea of converting a floating point number into a pair of 32-bit
2222   // integers is illustrated as follows:
2223   //
2224   //     tf := trunc(val);
2225   //    hif := floor(tf * 2^-32);
2226   //    lof := tf - hif * 2^32; // lof is always positive due to floor.
2227   //     hi := fptoi(hif);
2228   //     lo := fptoi(lof);
2229   //
2230   auto Trunc = B.buildIntrinsicTrunc(SrcLT, Src, Flags);
2231   MachineInstrBuilder Sign;
2232   if (Signed && SrcLT == S32) {
2233     // However, a 32-bit floating point number has only 23 bits mantissa and
2234     // it's not enough to hold all the significant bits of `lof` if val is
2235     // negative. To avoid the loss of precision, We need to take the absolute
2236     // value after truncating and flip the result back based on the original
2237     // signedness.
2238     Sign = B.buildAShr(S32, Src, B.buildConstant(S32, 31));
2239     Trunc = B.buildFAbs(S32, Trunc, Flags);
2240   }
2241   MachineInstrBuilder K0, K1;
2242   if (SrcLT == S64) {
2243     K0 = B.buildFConstant(S64,
2244                           BitsToDouble(UINT64_C(/*2^-32*/ 0x3df0000000000000)));
2245     K1 = B.buildFConstant(S64,
2246                           BitsToDouble(UINT64_C(/*-2^32*/ 0xc1f0000000000000)));
2247   } else {
2248     K0 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*2^-32*/ 0x2f800000)));
2249     K1 = B.buildFConstant(S32, BitsToFloat(UINT32_C(/*-2^32*/ 0xcf800000)));
2250   }
2251 
2252   auto Mul = B.buildFMul(SrcLT, Trunc, K0, Flags);
2253   auto FloorMul = B.buildFFloor(SrcLT, Mul, Flags);
2254   auto Fma = B.buildFMA(SrcLT, FloorMul, K1, Trunc, Flags);
2255 
2256   auto Hi = (Signed && SrcLT == S64) ? B.buildFPTOSI(S32, FloorMul)
2257                                      : B.buildFPTOUI(S32, FloorMul);
2258   auto Lo = B.buildFPTOUI(S32, Fma);
2259 
2260   if (Signed && SrcLT == S32) {
2261     // Flip the result based on the signedness, which is either all 0s or 1s.
2262     Sign = B.buildMerge(S64, {Sign, Sign});
2263     // r := xor({lo, hi}, sign) - sign;
2264     B.buildSub(Dst, B.buildXor(S64, B.buildMerge(S64, {Lo, Hi}), Sign), Sign);
2265   } else
2266     B.buildMerge(Dst, {Lo, Hi});
2267   MI.eraseFromParent();
2268 
2269   return true;
2270 }
2271 
2272 bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(LegalizerHelper &Helper,
2273                                                MachineInstr &MI) const {
2274   MachineFunction &MF = Helper.MIRBuilder.getMF();
2275   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2276 
2277   const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
2278                         MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;
2279 
2280   // With ieee_mode disabled, the instructions have the correct behavior
2281   // already for G_FMINNUM/G_FMAXNUM
2282   if (!MFI->getMode().IEEE)
2283     return !IsIEEEOp;
2284 
2285   if (IsIEEEOp)
2286     return true;
2287 
2288   return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
2289 }
2290 
2291 bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
2292   MachineInstr &MI, MachineRegisterInfo &MRI,
2293   MachineIRBuilder &B) const {
2294   // TODO: Should move some of this into LegalizerHelper.
2295 
2296   // TODO: Promote dynamic indexing of s16 to s32
2297 
2298   // FIXME: Artifact combiner probably should have replaced the truncated
2299   // constant before this, so we shouldn't need
2300   // getIConstantVRegValWithLookThrough.
2301   Optional<ValueAndVReg> MaybeIdxVal =
2302       getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
2303   if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
2304     return true;
2305   const int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
2306 
2307   Register Dst = MI.getOperand(0).getReg();
2308   Register Vec = MI.getOperand(1).getReg();
2309 
2310   LLT VecTy = MRI.getType(Vec);
2311   LLT EltTy = VecTy.getElementType();
2312   assert(EltTy == MRI.getType(Dst));
2313 
2314   if (IdxVal < VecTy.getNumElements()) {
2315     auto Unmerge = B.buildUnmerge(EltTy, Vec);
2316     B.buildCopy(Dst, Unmerge.getReg(IdxVal));
2317   } else {
2318     B.buildUndef(Dst);
2319   }
2320 
2321   MI.eraseFromParent();
2322   return true;
2323 }
2324 
2325 bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
2326   MachineInstr &MI, MachineRegisterInfo &MRI,
2327   MachineIRBuilder &B) const {
2328   // TODO: Should move some of this into LegalizerHelper.
2329 
2330   // TODO: Promote dynamic indexing of s16 to s32
2331 
2332   // FIXME: Artifact combiner probably should have replaced the truncated
2333   // constant before this, so we shouldn't need
2334   // getIConstantVRegValWithLookThrough.
2335   Optional<ValueAndVReg> MaybeIdxVal =
2336       getIConstantVRegValWithLookThrough(MI.getOperand(3).getReg(), MRI);
2337   if (!MaybeIdxVal) // Dynamic case will be selected to register indexing.
2338     return true;
2339 
2340   int64_t IdxVal = MaybeIdxVal->Value.getSExtValue();
2341   Register Dst = MI.getOperand(0).getReg();
2342   Register Vec = MI.getOperand(1).getReg();
2343   Register Ins = MI.getOperand(2).getReg();
2344 
2345   LLT VecTy = MRI.getType(Vec);
2346   LLT EltTy = VecTy.getElementType();
2347   assert(EltTy == MRI.getType(Ins));
2348   (void)Ins;
2349 
2350   unsigned NumElts = VecTy.getNumElements();
2351   if (IdxVal < NumElts) {
2352     SmallVector<Register, 8> SrcRegs;
2353     for (unsigned i = 0; i < NumElts; ++i)
2354       SrcRegs.push_back(MRI.createGenericVirtualRegister(EltTy));
2355     B.buildUnmerge(SrcRegs, Vec);
2356 
2357     SrcRegs[IdxVal] = MI.getOperand(2).getReg();
2358     B.buildMerge(Dst, SrcRegs);
2359   } else {
2360     B.buildUndef(Dst);
2361   }
2362 
2363   MI.eraseFromParent();
2364   return true;
2365 }
2366 
2367 bool AMDGPULegalizerInfo::legalizeShuffleVector(
2368   MachineInstr &MI, MachineRegisterInfo &MRI,
2369   MachineIRBuilder &B) const {
2370   const LLT V2S16 = LLT::fixed_vector(2, 16);
2371 
2372   Register Dst = MI.getOperand(0).getReg();
2373   Register Src0 = MI.getOperand(1).getReg();
2374   LLT DstTy = MRI.getType(Dst);
2375   LLT SrcTy = MRI.getType(Src0);
2376 
2377   if (SrcTy == V2S16 && DstTy == V2S16 &&
2378       AMDGPU::isLegalVOP3PShuffleMask(MI.getOperand(3).getShuffleMask()))
2379     return true;
2380 
2381   MachineIRBuilder HelperBuilder(MI);
2382   GISelObserverWrapper DummyObserver;
2383   LegalizerHelper Helper(B.getMF(), DummyObserver, HelperBuilder);
2384   return Helper.lowerShuffleVector(MI) == LegalizerHelper::Legalized;
2385 }
2386 
2387 bool AMDGPULegalizerInfo::legalizeSinCos(
2388   MachineInstr &MI, MachineRegisterInfo &MRI,
2389   MachineIRBuilder &B) const {
2390 
2391   Register DstReg = MI.getOperand(0).getReg();
2392   Register SrcReg = MI.getOperand(1).getReg();
2393   LLT Ty = MRI.getType(DstReg);
2394   unsigned Flags = MI.getFlags();
2395 
2396   Register TrigVal;
2397   auto OneOver2Pi = B.buildFConstant(Ty, 0.5 * numbers::inv_pi);
2398   if (ST.hasTrigReducedRange()) {
2399     auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
2400     TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
2401       .addUse(MulVal.getReg(0))
2402       .setMIFlags(Flags).getReg(0);
2403   } else
2404     TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
2405 
2406   Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
2407     Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
2408   B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
2409     .addUse(TrigVal)
2410     .setMIFlags(Flags);
2411   MI.eraseFromParent();
2412   return true;
2413 }
2414 
2415 bool AMDGPULegalizerInfo::buildPCRelGlobalAddress(Register DstReg, LLT PtrTy,
2416                                                   MachineIRBuilder &B,
2417                                                   const GlobalValue *GV,
2418                                                   int64_t Offset,
2419                                                   unsigned GAFlags) const {
2420   assert(isInt<32>(Offset + 4) && "32-bit offset is expected!");
2421   // In order to support pc-relative addressing, SI_PC_ADD_REL_OFFSET is lowered
2422   // to the following code sequence:
2423   //
2424   // For constant address space:
2425   //   s_getpc_b64 s[0:1]
2426   //   s_add_u32 s0, s0, $symbol
2427   //   s_addc_u32 s1, s1, 0
2428   //
2429   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2430   //   a fixup or relocation is emitted to replace $symbol with a literal
2431   //   constant, which is a pc-relative offset from the encoding of the $symbol
2432   //   operand to the global variable.
2433   //
2434   // For global address space:
2435   //   s_getpc_b64 s[0:1]
2436   //   s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
2437   //   s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
2438   //
2439   //   s_getpc_b64 returns the address of the s_add_u32 instruction and then
2440   //   fixups or relocations are emitted to replace $symbol@*@lo and
2441   //   $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
2442   //   which is a 64-bit pc-relative offset from the encoding of the $symbol
2443   //   operand to the global variable.
2444   //
2445   // What we want here is an offset from the value returned by s_getpc
2446   // (which is the address of the s_add_u32 instruction) to the global
2447   // variable, but since the encoding of $symbol starts 4 bytes after the start
2448   // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
2449   // small. This requires us to add 4 to the global variable offset in order to
2450   // compute the correct address. Similarly for the s_addc_u32 instruction, the
2451   // encoding of $symbol starts 12 bytes after the start of the s_add_u32
2452   // instruction.
2453 
2454   LLT ConstPtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2455 
2456   Register PCReg = PtrTy.getSizeInBits() != 32 ? DstReg :
2457     B.getMRI()->createGenericVirtualRegister(ConstPtrTy);
2458 
2459   MachineInstrBuilder MIB = B.buildInstr(AMDGPU::SI_PC_ADD_REL_OFFSET)
2460     .addDef(PCReg);
2461 
2462   MIB.addGlobalAddress(GV, Offset + 4, GAFlags);
2463   if (GAFlags == SIInstrInfo::MO_NONE)
2464     MIB.addImm(0);
2465   else
2466     MIB.addGlobalAddress(GV, Offset + 12, GAFlags + 1);
2467 
2468   B.getMRI()->setRegClass(PCReg, &AMDGPU::SReg_64RegClass);
2469 
2470   if (PtrTy.getSizeInBits() == 32)
2471     B.buildExtract(DstReg, PCReg, 0);
2472   return true;
2473  }
2474 
2475 bool AMDGPULegalizerInfo::legalizeGlobalValue(
2476   MachineInstr &MI, MachineRegisterInfo &MRI,
2477   MachineIRBuilder &B) const {
2478   Register DstReg = MI.getOperand(0).getReg();
2479   LLT Ty = MRI.getType(DstReg);
2480   unsigned AS = Ty.getAddressSpace();
2481 
2482   const GlobalValue *GV = MI.getOperand(1).getGlobal();
2483   MachineFunction &MF = B.getMF();
2484   SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2485 
2486   if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
2487     if (!MFI->isModuleEntryFunction() &&
2488         !GV->getName().equals("llvm.amdgcn.module.lds")) {
2489       const Function &Fn = MF.getFunction();
2490       DiagnosticInfoUnsupported BadLDSDecl(
2491         Fn, "local memory global used by non-kernel function", MI.getDebugLoc(),
2492         DS_Warning);
2493       Fn.getContext().diagnose(BadLDSDecl);
2494 
2495       // We currently don't have a way to correctly allocate LDS objects that
2496       // aren't directly associated with a kernel. We do force inlining of
2497       // functions that use local objects. However, if these dead functions are
2498       // not eliminated, we don't want a compile time error. Just emit a warning
2499       // and a trap, since there should be no callable path here.
2500       B.buildIntrinsic(Intrinsic::trap, ArrayRef<Register>(), true);
2501       B.buildUndef(DstReg);
2502       MI.eraseFromParent();
2503       return true;
2504     }
2505 
2506     // TODO: We could emit code to handle the initialization somewhere.
2507     // We ignore the initializer for now and legalize it to allow selection.
2508     // The initializer will anyway get errored out during assembly emission.
2509     const SITargetLowering *TLI = ST.getTargetLowering();
2510     if (!TLI->shouldUseLDSConstAddress(GV)) {
2511       MI.getOperand(1).setTargetFlags(SIInstrInfo::MO_ABS32_LO);
2512       return true; // Leave in place;
2513     }
2514 
2515     if (AS == AMDGPUAS::LOCAL_ADDRESS && GV->hasExternalLinkage()) {
2516       Type *Ty = GV->getValueType();
2517       // HIP uses an unsized array `extern __shared__ T s[]` or similar
2518       // zero-sized type in other languages to declare the dynamic shared
2519       // memory which size is not known at the compile time. They will be
2520       // allocated by the runtime and placed directly after the static
2521       // allocated ones. They all share the same offset.
2522       if (B.getDataLayout().getTypeAllocSize(Ty).isZero()) {
2523         // Adjust alignment for that dynamic shared memory array.
2524         MFI->setDynLDSAlign(B.getDataLayout(), *cast<GlobalVariable>(GV));
2525         LLT S32 = LLT::scalar(32);
2526         auto Sz =
2527             B.buildIntrinsic(Intrinsic::amdgcn_groupstaticsize, {S32}, false);
2528         B.buildIntToPtr(DstReg, Sz);
2529         MI.eraseFromParent();
2530         return true;
2531       }
2532     }
2533 
2534     B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(),
2535                                                    *cast<GlobalVariable>(GV)));
2536     MI.eraseFromParent();
2537     return true;
2538   }
2539 
2540   const SITargetLowering *TLI = ST.getTargetLowering();
2541 
2542   if (TLI->shouldEmitFixup(GV)) {
2543     buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0);
2544     MI.eraseFromParent();
2545     return true;
2546   }
2547 
2548   if (TLI->shouldEmitPCReloc(GV)) {
2549     buildPCRelGlobalAddress(DstReg, Ty, B, GV, 0, SIInstrInfo::MO_REL32);
2550     MI.eraseFromParent();
2551     return true;
2552   }
2553 
2554   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2555   Register GOTAddr = MRI.createGenericVirtualRegister(PtrTy);
2556 
2557   LLT LoadTy = Ty.getSizeInBits() == 32 ? PtrTy : Ty;
2558   MachineMemOperand *GOTMMO = MF.getMachineMemOperand(
2559       MachinePointerInfo::getGOT(MF),
2560       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
2561           MachineMemOperand::MOInvariant,
2562       LoadTy, Align(8));
2563 
2564   buildPCRelGlobalAddress(GOTAddr, PtrTy, B, GV, 0, SIInstrInfo::MO_GOTPCREL32);
2565 
2566   if (Ty.getSizeInBits() == 32) {
2567     // Truncate if this is a 32-bit constant address.
2568     auto Load = B.buildLoad(PtrTy, GOTAddr, *GOTMMO);
2569     B.buildExtract(DstReg, Load, 0);
2570   } else
2571     B.buildLoad(DstReg, GOTAddr, *GOTMMO);
2572 
2573   MI.eraseFromParent();
2574   return true;
2575 }
2576 
2577 static LLT widenToNextPowerOf2(LLT Ty) {
2578   if (Ty.isVector())
2579     return Ty.changeElementCount(
2580         ElementCount::getFixed(PowerOf2Ceil(Ty.getNumElements())));
2581   return LLT::scalar(PowerOf2Ceil(Ty.getSizeInBits()));
2582 }
2583 
2584 bool AMDGPULegalizerInfo::legalizeLoad(LegalizerHelper &Helper,
2585                                        MachineInstr &MI) const {
2586   MachineIRBuilder &B = Helper.MIRBuilder;
2587   MachineRegisterInfo &MRI = *B.getMRI();
2588   GISelChangeObserver &Observer = Helper.Observer;
2589 
2590   Register PtrReg = MI.getOperand(1).getReg();
2591   LLT PtrTy = MRI.getType(PtrReg);
2592   unsigned AddrSpace = PtrTy.getAddressSpace();
2593 
2594   if (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
2595     LLT ConstPtr = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
2596     auto Cast = B.buildAddrSpaceCast(ConstPtr, PtrReg);
2597     Observer.changingInstr(MI);
2598     MI.getOperand(1).setReg(Cast.getReg(0));
2599     Observer.changedInstr(MI);
2600     return true;
2601   }
2602 
2603   if (MI.getOpcode() != AMDGPU::G_LOAD)
2604     return false;
2605 
2606   Register ValReg = MI.getOperand(0).getReg();
2607   LLT ValTy = MRI.getType(ValReg);
2608 
2609   MachineMemOperand *MMO = *MI.memoperands_begin();
2610   const unsigned ValSize = ValTy.getSizeInBits();
2611   const LLT MemTy = MMO->getMemoryType();
2612   const Align MemAlign = MMO->getAlign();
2613   const unsigned MemSize = MemTy.getSizeInBits();
2614   const uint64_t AlignInBits = 8 * MemAlign.value();
2615 
2616   // Widen non-power-of-2 loads to the alignment if needed
2617   if (shouldWidenLoad(ST, MemTy, AlignInBits, AddrSpace, MI.getOpcode())) {
2618     const unsigned WideMemSize = PowerOf2Ceil(MemSize);
2619 
2620     // This was already the correct extending load result type, so just adjust
2621     // the memory type.
2622     if (WideMemSize == ValSize) {
2623       MachineFunction &MF = B.getMF();
2624 
2625       MachineMemOperand *WideMMO =
2626           MF.getMachineMemOperand(MMO, 0, WideMemSize / 8);
2627       Observer.changingInstr(MI);
2628       MI.setMemRefs(MF, {WideMMO});
2629       Observer.changedInstr(MI);
2630       return true;
2631     }
2632 
2633     // Don't bother handling edge case that should probably never be produced.
2634     if (ValSize > WideMemSize)
2635       return false;
2636 
2637     LLT WideTy = widenToNextPowerOf2(ValTy);
2638 
2639     Register WideLoad;
2640     if (!WideTy.isVector()) {
2641       WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
2642       B.buildTrunc(ValReg, WideLoad).getReg(0);
2643     } else {
2644       // Extract the subvector.
2645 
2646       if (isRegisterType(ValTy)) {
2647         // If this a case where G_EXTRACT is legal, use it.
2648         // (e.g. <3 x s32> -> <4 x s32>)
2649         WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
2650         B.buildExtract(ValReg, WideLoad, 0);
2651       } else {
2652         // For cases where the widened type isn't a nice register value, unmerge
2653         // from a widened register (e.g. <3 x s16> -> <4 x s16>)
2654         WideLoad = B.buildLoadFromOffset(WideTy, PtrReg, *MMO, 0).getReg(0);
2655         B.buildDeleteTrailingVectorElements(ValReg, WideLoad);
2656       }
2657     }
2658 
2659     MI.eraseFromParent();
2660     return true;
2661   }
2662 
2663   return false;
2664 }
2665 
2666 bool AMDGPULegalizerInfo::legalizeFMad(
2667   MachineInstr &MI, MachineRegisterInfo &MRI,
2668   MachineIRBuilder &B) const {
2669   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
2670   assert(Ty.isScalar());
2671 
2672   MachineFunction &MF = B.getMF();
2673   const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2674 
2675   // TODO: Always legal with future ftz flag.
2676   // FIXME: Do we need just output?
2677   if (Ty == LLT::scalar(32) && !MFI->getMode().allFP32Denormals())
2678     return true;
2679   if (Ty == LLT::scalar(16) && !MFI->getMode().allFP64FP16Denormals())
2680     return true;
2681 
2682   MachineIRBuilder HelperBuilder(MI);
2683   GISelObserverWrapper DummyObserver;
2684   LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
2685   return Helper.lowerFMad(MI) == LegalizerHelper::Legalized;
2686 }
2687 
2688 bool AMDGPULegalizerInfo::legalizeAtomicCmpXChg(
2689   MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
2690   Register DstReg = MI.getOperand(0).getReg();
2691   Register PtrReg = MI.getOperand(1).getReg();
2692   Register CmpVal = MI.getOperand(2).getReg();
2693   Register NewVal = MI.getOperand(3).getReg();
2694 
2695   assert(AMDGPU::isFlatGlobalAddrSpace(MRI.getType(PtrReg).getAddressSpace()) &&
2696          "this should not have been custom lowered");
2697 
2698   LLT ValTy = MRI.getType(CmpVal);
2699   LLT VecTy = LLT::fixed_vector(2, ValTy);
2700 
2701   Register PackedVal = B.buildBuildVector(VecTy, { NewVal, CmpVal }).getReg(0);
2702 
2703   B.buildInstr(AMDGPU::G_AMDGPU_ATOMIC_CMPXCHG)
2704     .addDef(DstReg)
2705     .addUse(PtrReg)
2706     .addUse(PackedVal)
2707     .setMemRefs(MI.memoperands());
2708 
2709   MI.eraseFromParent();
2710   return true;
2711 }
2712 
2713 bool AMDGPULegalizerInfo::legalizeFlog(
2714   MachineInstr &MI, MachineIRBuilder &B, double Log2BaseInverted) const {
2715   Register Dst = MI.getOperand(0).getReg();
2716   Register Src = MI.getOperand(1).getReg();
2717   LLT Ty = B.getMRI()->getType(Dst);
2718   unsigned Flags = MI.getFlags();
2719 
2720   auto Log2Operand = B.buildFLog2(Ty, Src, Flags);
2721   auto Log2BaseInvertedOperand = B.buildFConstant(Ty, Log2BaseInverted);
2722 
2723   B.buildFMul(Dst, Log2Operand, Log2BaseInvertedOperand, Flags);
2724   MI.eraseFromParent();
2725   return true;
2726 }
2727 
2728 bool AMDGPULegalizerInfo::legalizeFExp(MachineInstr &MI,
2729                                        MachineIRBuilder &B) const {
2730   Register Dst = MI.getOperand(0).getReg();
2731   Register Src = MI.getOperand(1).getReg();
2732   unsigned Flags = MI.getFlags();
2733   LLT Ty = B.getMRI()->getType(Dst);
2734 
2735   auto K = B.buildFConstant(Ty, numbers::log2e);
2736   auto Mul = B.buildFMul(Ty, Src, K, Flags);
2737   B.buildFExp2(Dst, Mul, Flags);
2738   MI.eraseFromParent();
2739   return true;
2740 }
2741 
2742 bool AMDGPULegalizerInfo::legalizeFPow(MachineInstr &MI,
2743                                        MachineIRBuilder &B) const {
2744   Register Dst = MI.getOperand(0).getReg();
2745   Register Src0 = MI.getOperand(1).getReg();
2746   Register Src1 = MI.getOperand(2).getReg();
2747   unsigned Flags = MI.getFlags();
2748   LLT Ty = B.getMRI()->getType(Dst);
2749   const LLT S16 = LLT::scalar(16);
2750   const LLT S32 = LLT::scalar(32);
2751 
2752   if (Ty == S32) {
2753     auto Log = B.buildFLog2(S32, Src0, Flags);
2754     auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
2755       .addUse(Log.getReg(0))
2756       .addUse(Src1)
2757       .setMIFlags(Flags);
2758     B.buildFExp2(Dst, Mul, Flags);
2759   } else if (Ty == S16) {
2760     // There's no f16 fmul_legacy, so we need to convert for it.
2761     auto Log = B.buildFLog2(S16, Src0, Flags);
2762     auto Ext0 = B.buildFPExt(S32, Log, Flags);
2763     auto Ext1 = B.buildFPExt(S32, Src1, Flags);
2764     auto Mul = B.buildIntrinsic(Intrinsic::amdgcn_fmul_legacy, {S32}, false)
2765       .addUse(Ext0.getReg(0))
2766       .addUse(Ext1.getReg(0))
2767       .setMIFlags(Flags);
2768 
2769     B.buildFExp2(Dst, B.buildFPTrunc(S16, Mul), Flags);
2770   } else
2771     return false;
2772 
2773   MI.eraseFromParent();
2774   return true;
2775 }
2776 
2777 // Find a source register, ignoring any possible source modifiers.
2778 static Register stripAnySourceMods(Register OrigSrc, MachineRegisterInfo &MRI) {
2779   Register ModSrc = OrigSrc;
2780   if (MachineInstr *SrcFNeg = getOpcodeDef(AMDGPU::G_FNEG, ModSrc, MRI)) {
2781     ModSrc = SrcFNeg->getOperand(1).getReg();
2782     if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
2783       ModSrc = SrcFAbs->getOperand(1).getReg();
2784   } else if (MachineInstr *SrcFAbs = getOpcodeDef(AMDGPU::G_FABS, ModSrc, MRI))
2785     ModSrc = SrcFAbs->getOperand(1).getReg();
2786   return ModSrc;
2787 }
2788 
2789 bool AMDGPULegalizerInfo::legalizeFFloor(MachineInstr &MI,
2790                                          MachineRegisterInfo &MRI,
2791                                          MachineIRBuilder &B) const {
2792 
2793   const LLT S1 = LLT::scalar(1);
2794   const LLT S64 = LLT::scalar(64);
2795   Register Dst = MI.getOperand(0).getReg();
2796   Register OrigSrc = MI.getOperand(1).getReg();
2797   unsigned Flags = MI.getFlags();
2798   assert(ST.hasFractBug() && MRI.getType(Dst) == S64 &&
2799          "this should not have been custom lowered");
2800 
2801   // V_FRACT is buggy on SI, so the F32 version is never used and (x-floor(x))
2802   // is used instead. However, SI doesn't have V_FLOOR_F64, so the most
2803   // efficient way to implement it is using V_FRACT_F64. The workaround for the
2804   // V_FRACT bug is:
2805   //    fract(x) = isnan(x) ? x : min(V_FRACT(x), 0.99999999999999999)
2806   //
2807   // Convert floor(x) to (x - fract(x))
2808 
2809   auto Fract = B.buildIntrinsic(Intrinsic::amdgcn_fract, {S64}, false)
2810     .addUse(OrigSrc)
2811     .setMIFlags(Flags);
2812 
2813   // Give source modifier matching some assistance before obscuring a foldable
2814   // pattern.
2815 
2816   // TODO: We can avoid the neg on the fract? The input sign to fract
2817   // shouldn't matter?
2818   Register ModSrc = stripAnySourceMods(OrigSrc, MRI);
2819 
2820   auto Const = B.buildFConstant(S64, BitsToDouble(0x3fefffffffffffff));
2821 
2822   Register Min = MRI.createGenericVirtualRegister(S64);
2823 
2824   // We don't need to concern ourselves with the snan handling difference, so
2825   // use the one which will directly select.
2826   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2827   if (MFI->getMode().IEEE)
2828     B.buildFMinNumIEEE(Min, Fract, Const, Flags);
2829   else
2830     B.buildFMinNum(Min, Fract, Const, Flags);
2831 
2832   Register CorrectedFract = Min;
2833   if (!MI.getFlag(MachineInstr::FmNoNans)) {
2834     auto IsNan = B.buildFCmp(CmpInst::FCMP_ORD, S1, ModSrc, ModSrc, Flags);
2835     CorrectedFract = B.buildSelect(S64, IsNan, ModSrc, Min, Flags).getReg(0);
2836   }
2837 
2838   auto NegFract = B.buildFNeg(S64, CorrectedFract, Flags);
2839   B.buildFAdd(Dst, OrigSrc, NegFract, Flags);
2840 
2841   MI.eraseFromParent();
2842   return true;
2843 }
2844 
2845 // Turn an illegal packed v2s16 build vector into bit operations.
2846 // TODO: This should probably be a bitcast action in LegalizerHelper.
2847 bool AMDGPULegalizerInfo::legalizeBuildVector(
2848   MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
2849   Register Dst = MI.getOperand(0).getReg();
2850   const LLT S32 = LLT::scalar(32);
2851   assert(MRI.getType(Dst) == LLT::fixed_vector(2, 16));
2852 
2853   Register Src0 = MI.getOperand(1).getReg();
2854   Register Src1 = MI.getOperand(2).getReg();
2855   assert(MRI.getType(Src0) == LLT::scalar(16));
2856 
2857   auto Merge = B.buildMerge(S32, {Src0, Src1});
2858   B.buildBitcast(Dst, Merge);
2859 
2860   MI.eraseFromParent();
2861   return true;
2862 }
2863 
2864 // Legalize ctlz/cttz to ffbh/ffbl instead of the default legalization to
2865 // ctlz/cttz_zero_undef. This allows us to fix up the result for the zero input
2866 // case with a single min instruction instead of a compare+select.
2867 bool AMDGPULegalizerInfo::legalizeCTLZ_CTTZ(MachineInstr &MI,
2868                                             MachineRegisterInfo &MRI,
2869                                             MachineIRBuilder &B) const {
2870   Register Dst = MI.getOperand(0).getReg();
2871   Register Src = MI.getOperand(1).getReg();
2872   LLT DstTy = MRI.getType(Dst);
2873   LLT SrcTy = MRI.getType(Src);
2874 
2875   unsigned NewOpc = MI.getOpcode() == AMDGPU::G_CTLZ
2876                         ? AMDGPU::G_AMDGPU_FFBH_U32
2877                         : AMDGPU::G_AMDGPU_FFBL_B32;
2878   auto Tmp = B.buildInstr(NewOpc, {DstTy}, {Src});
2879   B.buildUMin(Dst, Tmp, B.buildConstant(DstTy, SrcTy.getSizeInBits()));
2880 
2881   MI.eraseFromParent();
2882   return true;
2883 }
2884 
2885 // Check that this is a G_XOR x, -1
2886 static bool isNot(const MachineRegisterInfo &MRI, const MachineInstr &MI) {
2887   if (MI.getOpcode() != TargetOpcode::G_XOR)
2888     return false;
2889   auto ConstVal = getIConstantVRegSExtVal(MI.getOperand(2).getReg(), MRI);
2890   return ConstVal && *ConstVal == -1;
2891 }
2892 
2893 // Return the use branch instruction, otherwise null if the usage is invalid.
2894 static MachineInstr *
2895 verifyCFIntrinsic(MachineInstr &MI, MachineRegisterInfo &MRI, MachineInstr *&Br,
2896                   MachineBasicBlock *&UncondBrTarget, bool &Negated) {
2897   Register CondDef = MI.getOperand(0).getReg();
2898   if (!MRI.hasOneNonDBGUse(CondDef))
2899     return nullptr;
2900 
2901   MachineBasicBlock *Parent = MI.getParent();
2902   MachineInstr *UseMI = &*MRI.use_instr_nodbg_begin(CondDef);
2903 
2904   if (isNot(MRI, *UseMI)) {
2905     Register NegatedCond = UseMI->getOperand(0).getReg();
2906     if (!MRI.hasOneNonDBGUse(NegatedCond))
2907       return nullptr;
2908 
2909     // We're deleting the def of this value, so we need to remove it.
2910     eraseInstr(*UseMI, MRI);
2911 
2912     UseMI = &*MRI.use_instr_nodbg_begin(NegatedCond);
2913     Negated = true;
2914   }
2915 
2916   if (UseMI->getParent() != Parent || UseMI->getOpcode() != AMDGPU::G_BRCOND)
2917     return nullptr;
2918 
2919   // Make sure the cond br is followed by a G_BR, or is the last instruction.
2920   MachineBasicBlock::iterator Next = std::next(UseMI->getIterator());
2921   if (Next == Parent->end()) {
2922     MachineFunction::iterator NextMBB = std::next(Parent->getIterator());
2923     if (NextMBB == Parent->getParent()->end()) // Illegal intrinsic use.
2924       return nullptr;
2925     UncondBrTarget = &*NextMBB;
2926   } else {
2927     if (Next->getOpcode() != AMDGPU::G_BR)
2928       return nullptr;
2929     Br = &*Next;
2930     UncondBrTarget = Br->getOperand(0).getMBB();
2931   }
2932 
2933   return UseMI;
2934 }
2935 
2936 bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
2937                                          const ArgDescriptor *Arg,
2938                                          const TargetRegisterClass *ArgRC,
2939                                          LLT ArgTy) const {
2940   MCRegister SrcReg = Arg->getRegister();
2941   assert(Register::isPhysicalRegister(SrcReg) && "Physical register expected");
2942   assert(DstReg.isVirtual() && "Virtual register expected");
2943 
2944   Register LiveIn = getFunctionLiveInPhysReg(B.getMF(), B.getTII(), SrcReg,
2945                                              *ArgRC, B.getDebugLoc(), ArgTy);
2946   if (Arg->isMasked()) {
2947     // TODO: Should we try to emit this once in the entry block?
2948     const LLT S32 = LLT::scalar(32);
2949     const unsigned Mask = Arg->getMask();
2950     const unsigned Shift = countTrailingZeros<unsigned>(Mask);
2951 
2952     Register AndMaskSrc = LiveIn;
2953 
2954     // TODO: Avoid clearing the high bits if we know workitem id y/z are always
2955     // 0.
2956     if (Shift != 0) {
2957       auto ShiftAmt = B.buildConstant(S32, Shift);
2958       AndMaskSrc = B.buildLShr(S32, LiveIn, ShiftAmt).getReg(0);
2959     }
2960 
2961     B.buildAnd(DstReg, AndMaskSrc, B.buildConstant(S32, Mask >> Shift));
2962   } else {
2963     B.buildCopy(DstReg, LiveIn);
2964   }
2965 
2966   return true;
2967 }
2968 
2969 bool AMDGPULegalizerInfo::loadInputValue(
2970     Register DstReg, MachineIRBuilder &B,
2971     AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
2972   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
2973   const ArgDescriptor *Arg;
2974   const TargetRegisterClass *ArgRC;
2975   LLT ArgTy;
2976   std::tie(Arg, ArgRC, ArgTy) = MFI->getPreloadedValue(ArgType);
2977 
2978   if (!Arg) {
2979     if (ArgType == AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR) {
2980       // The intrinsic may appear when we have a 0 sized kernarg segment, in which
2981       // case the pointer argument may be missing and we use null.
2982       B.buildConstant(DstReg, 0);
2983       return true;
2984     }
2985 
2986     // It's undefined behavior if a function marked with the amdgpu-no-*
2987     // attributes uses the corresponding intrinsic.
2988     B.buildUndef(DstReg);
2989     return true;
2990   }
2991 
2992   if (!Arg->isRegister() || !Arg->getRegister().isValid())
2993     return false; // TODO: Handle these
2994   return loadInputValue(DstReg, B, Arg, ArgRC, ArgTy);
2995 }
2996 
2997 bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
2998     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B,
2999     AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
3000   if (!loadInputValue(MI.getOperand(0).getReg(), B, ArgType))
3001     return false;
3002 
3003   MI.eraseFromParent();
3004   return true;
3005 }
3006 
3007 Register AMDGPULegalizerInfo::getKernargParameterPtr(MachineIRBuilder &B,
3008                                                      int64_t Offset) const {
3009   LLT PtrTy = LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64);
3010   Register KernArgReg = B.getMRI()->createGenericVirtualRegister(PtrTy);
3011 
3012   // TODO: If we passed in the base kernel offset we could have a better
3013   // alignment than 4, but we don't really need it.
3014   if (!loadInputValue(KernArgReg, B,
3015                       AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
3016     llvm_unreachable("failed to find kernarg segment ptr");
3017 
3018   auto COffset = B.buildConstant(LLT::scalar(64), Offset);
3019   // TODO: Should get nuw
3020   return B.buildPtrAdd(PtrTy, KernArgReg, COffset).getReg(0);
3021 }
3022 
3023 /// Legalize a value that's loaded from kernel arguments. This is only used by
3024 /// legacy intrinsics.
3025 bool AMDGPULegalizerInfo::legalizeKernargMemParameter(MachineInstr &MI,
3026                                                       MachineIRBuilder &B,
3027                                                       uint64_t Offset,
3028                                                       Align Alignment) const {
3029   Register DstReg = MI.getOperand(0).getReg();
3030 
3031   assert(B.getMRI()->getType(DstReg) == LLT::scalar(32) &&
3032          "unexpected kernarg parameter type");
3033 
3034   Register Ptr = getKernargParameterPtr(B, Offset);
3035   MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
3036   B.buildLoad(DstReg, Ptr, PtrInfo, Align(4),
3037               MachineMemOperand::MODereferenceable |
3038                   MachineMemOperand::MOInvariant);
3039   MI.eraseFromParent();
3040   return true;
3041 }
3042 
3043 bool AMDGPULegalizerInfo::legalizeFDIV(MachineInstr &MI,
3044                                        MachineRegisterInfo &MRI,
3045                                        MachineIRBuilder &B) const {
3046   Register Dst = MI.getOperand(0).getReg();
3047   LLT DstTy = MRI.getType(Dst);
3048   LLT S16 = LLT::scalar(16);
3049   LLT S32 = LLT::scalar(32);
3050   LLT S64 = LLT::scalar(64);
3051 
3052   if (DstTy == S16)
3053     return legalizeFDIV16(MI, MRI, B);
3054   if (DstTy == S32)
3055     return legalizeFDIV32(MI, MRI, B);
3056   if (DstTy == S64)
3057     return legalizeFDIV64(MI, MRI, B);
3058 
3059   return false;
3060 }
3061 
3062 void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM32Impl(MachineIRBuilder &B,
3063                                                         Register DstDivReg,
3064                                                         Register DstRemReg,
3065                                                         Register X,
3066                                                         Register Y) const {
3067   const LLT S1 = LLT::scalar(1);
3068   const LLT S32 = LLT::scalar(32);
3069 
3070   // See AMDGPUCodeGenPrepare::expandDivRem32 for a description of the
3071   // algorithm used here.
3072 
3073   // Initial estimate of inv(y).
3074   auto FloatY = B.buildUITOFP(S32, Y);
3075   auto RcpIFlag = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {FloatY});
3076   auto Scale = B.buildFConstant(S32, BitsToFloat(0x4f7ffffe));
3077   auto ScaledY = B.buildFMul(S32, RcpIFlag, Scale);
3078   auto Z = B.buildFPTOUI(S32, ScaledY);
3079 
3080   // One round of UNR.
3081   auto NegY = B.buildSub(S32, B.buildConstant(S32, 0), Y);
3082   auto NegYZ = B.buildMul(S32, NegY, Z);
3083   Z = B.buildAdd(S32, Z, B.buildUMulH(S32, Z, NegYZ));
3084 
3085   // Quotient/remainder estimate.
3086   auto Q = B.buildUMulH(S32, X, Z);
3087   auto R = B.buildSub(S32, X, B.buildMul(S32, Q, Y));
3088 
3089   // First quotient/remainder refinement.
3090   auto One = B.buildConstant(S32, 1);
3091   auto Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
3092   if (DstDivReg)
3093     Q = B.buildSelect(S32, Cond, B.buildAdd(S32, Q, One), Q);
3094   R = B.buildSelect(S32, Cond, B.buildSub(S32, R, Y), R);
3095 
3096   // Second quotient/remainder refinement.
3097   Cond = B.buildICmp(CmpInst::ICMP_UGE, S1, R, Y);
3098   if (DstDivReg)
3099     B.buildSelect(DstDivReg, Cond, B.buildAdd(S32, Q, One), Q);
3100 
3101   if (DstRemReg)
3102     B.buildSelect(DstRemReg, Cond, B.buildSub(S32, R, Y), R);
3103 }
3104 
3105 // Build integer reciprocal sequence around V_RCP_IFLAG_F32
3106 //
3107 // Return lo, hi of result
3108 //
3109 // %cvt.lo = G_UITOFP Val.lo
3110 // %cvt.hi = G_UITOFP Val.hi
3111 // %mad = G_FMAD %cvt.hi, 2**32, %cvt.lo
3112 // %rcp = G_AMDGPU_RCP_IFLAG %mad
3113 // %mul1 = G_FMUL %rcp, 0x5f7ffffc
3114 // %mul2 = G_FMUL %mul1, 2**(-32)
3115 // %trunc = G_INTRINSIC_TRUNC %mul2
3116 // %mad2 = G_FMAD %trunc, -(2**32), %mul1
3117 // return {G_FPTOUI %mad2, G_FPTOUI %trunc}
3118 static std::pair<Register, Register> emitReciprocalU64(MachineIRBuilder &B,
3119                                                        Register Val) {
3120   const LLT S32 = LLT::scalar(32);
3121   auto Unmerge = B.buildUnmerge(S32, Val);
3122 
3123   auto CvtLo = B.buildUITOFP(S32, Unmerge.getReg(0));
3124   auto CvtHi = B.buildUITOFP(S32, Unmerge.getReg(1));
3125 
3126   auto Mad = B.buildFMAD(S32, CvtHi, // 2**32
3127                          B.buildFConstant(S32, BitsToFloat(0x4f800000)), CvtLo);
3128 
3129   auto Rcp = B.buildInstr(AMDGPU::G_AMDGPU_RCP_IFLAG, {S32}, {Mad});
3130   auto Mul1 =
3131       B.buildFMul(S32, Rcp, B.buildFConstant(S32, BitsToFloat(0x5f7ffffc)));
3132 
3133   // 2**(-32)
3134   auto Mul2 =
3135       B.buildFMul(S32, Mul1, B.buildFConstant(S32, BitsToFloat(0x2f800000)));
3136   auto Trunc = B.buildIntrinsicTrunc(S32, Mul2);
3137 
3138   // -(2**32)
3139   auto Mad2 = B.buildFMAD(S32, Trunc,
3140                           B.buildFConstant(S32, BitsToFloat(0xcf800000)), Mul1);
3141 
3142   auto ResultLo = B.buildFPTOUI(S32, Mad2);
3143   auto ResultHi = B.buildFPTOUI(S32, Trunc);
3144 
3145   return {ResultLo.getReg(0), ResultHi.getReg(0)};
3146 }
3147 
3148 void AMDGPULegalizerInfo::legalizeUnsignedDIV_REM64Impl(MachineIRBuilder &B,
3149                                                         Register DstDivReg,
3150                                                         Register DstRemReg,
3151                                                         Register Numer,
3152                                                         Register Denom) const {
3153   const LLT S32 = LLT::scalar(32);
3154   const LLT S64 = LLT::scalar(64);
3155   const LLT S1 = LLT::scalar(1);
3156   Register RcpLo, RcpHi;
3157 
3158   std::tie(RcpLo, RcpHi) = emitReciprocalU64(B, Denom);
3159 
3160   auto Rcp = B.buildMerge(S64, {RcpLo, RcpHi});
3161 
3162   auto Zero64 = B.buildConstant(S64, 0);
3163   auto NegDenom = B.buildSub(S64, Zero64, Denom);
3164 
3165   auto MulLo1 = B.buildMul(S64, NegDenom, Rcp);
3166   auto MulHi1 = B.buildUMulH(S64, Rcp, MulLo1);
3167 
3168   auto UnmergeMulHi1 = B.buildUnmerge(S32, MulHi1);
3169   Register MulHi1_Lo = UnmergeMulHi1.getReg(0);
3170   Register MulHi1_Hi = UnmergeMulHi1.getReg(1);
3171 
3172   auto Add1_Lo = B.buildUAddo(S32, S1, RcpLo, MulHi1_Lo);
3173   auto Add1_Hi = B.buildUAdde(S32, S1, RcpHi, MulHi1_Hi, Add1_Lo.getReg(1));
3174   auto Add1 = B.buildMerge(S64, {Add1_Lo, Add1_Hi});
3175 
3176   auto MulLo2 = B.buildMul(S64, NegDenom, Add1);
3177   auto MulHi2 = B.buildUMulH(S64, Add1, MulLo2);
3178   auto UnmergeMulHi2 = B.buildUnmerge(S32, MulHi2);
3179   Register MulHi2_Lo = UnmergeMulHi2.getReg(0);
3180   Register MulHi2_Hi = UnmergeMulHi2.getReg(1);
3181 
3182   auto Zero32 = B.buildConstant(S32, 0);
3183   auto Add2_Lo = B.buildUAddo(S32, S1, Add1_Lo, MulHi2_Lo);
3184   auto Add2_Hi = B.buildUAdde(S32, S1, Add1_Hi, MulHi2_Hi, Add2_Lo.getReg(1));
3185   auto Add2 = B.buildMerge(S64, {Add2_Lo, Add2_Hi});
3186 
3187   auto UnmergeNumer = B.buildUnmerge(S32, Numer);
3188   Register NumerLo = UnmergeNumer.getReg(0);
3189   Register NumerHi = UnmergeNumer.getReg(1);
3190 
3191   auto MulHi3 = B.buildUMulH(S64, Numer, Add2);
3192   auto Mul3 = B.buildMul(S64, Denom, MulHi3);
3193   auto UnmergeMul3 = B.buildUnmerge(S32, Mul3);
3194   Register Mul3_Lo = UnmergeMul3.getReg(0);
3195   Register Mul3_Hi = UnmergeMul3.getReg(1);
3196   auto Sub1_Lo = B.buildUSubo(S32, S1, NumerLo, Mul3_Lo);
3197   auto Sub1_Hi = B.buildUSube(S32, S1, NumerHi, Mul3_Hi, Sub1_Lo.getReg(1));
3198   auto Sub1_Mi = B.buildSub(S32, NumerHi, Mul3_Hi);
3199   auto Sub1 = B.buildMerge(S64, {Sub1_Lo, Sub1_Hi});
3200 
3201   auto UnmergeDenom = B.buildUnmerge(S32, Denom);
3202   Register DenomLo = UnmergeDenom.getReg(0);
3203   Register DenomHi = UnmergeDenom.getReg(1);
3204 
3205   auto CmpHi = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Hi, DenomHi);
3206   auto C1 = B.buildSExt(S32, CmpHi);
3207 
3208   auto CmpLo = B.buildICmp(CmpInst::ICMP_UGE, S1, Sub1_Lo, DenomLo);
3209   auto C2 = B.buildSExt(S32, CmpLo);
3210 
3211   auto CmpEq = B.buildICmp(CmpInst::ICMP_EQ, S1, Sub1_Hi, DenomHi);
3212   auto C3 = B.buildSelect(S32, CmpEq, C2, C1);
3213 
3214   // TODO: Here and below portions of the code can be enclosed into if/endif.
3215   // Currently control flow is unconditional and we have 4 selects after
3216   // potential endif to substitute PHIs.
3217 
3218   // if C3 != 0 ...
3219   auto Sub2_Lo = B.buildUSubo(S32, S1, Sub1_Lo, DenomLo);
3220   auto Sub2_Mi = B.buildUSube(S32, S1, Sub1_Mi, DenomHi, Sub1_Lo.getReg(1));
3221   auto Sub2_Hi = B.buildUSube(S32, S1, Sub2_Mi, Zero32, Sub2_Lo.getReg(1));
3222   auto Sub2 = B.buildMerge(S64, {Sub2_Lo, Sub2_Hi});
3223 
3224   auto One64 = B.buildConstant(S64, 1);
3225   auto Add3 = B.buildAdd(S64, MulHi3, One64);
3226 
3227   auto C4 =
3228       B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Hi, DenomHi));
3229   auto C5 =
3230       B.buildSExt(S32, B.buildICmp(CmpInst::ICMP_UGE, S1, Sub2_Lo, DenomLo));
3231   auto C6 = B.buildSelect(
3232       S32, B.buildICmp(CmpInst::ICMP_EQ, S1, Sub2_Hi, DenomHi), C5, C4);
3233 
3234   // if (C6 != 0)
3235   auto Add4 = B.buildAdd(S64, Add3, One64);
3236   auto Sub3_Lo = B.buildUSubo(S32, S1, Sub2_Lo, DenomLo);
3237 
3238   auto Sub3_Mi = B.buildUSube(S32, S1, Sub2_Mi, DenomHi, Sub2_Lo.getReg(1));
3239   auto Sub3_Hi = B.buildUSube(S32, S1, Sub3_Mi, Zero32, Sub3_Lo.getReg(1));
3240   auto Sub3 = B.buildMerge(S64, {Sub3_Lo, Sub3_Hi});
3241 
3242   // endif C6
3243   // endif C3
3244 
3245   if (DstDivReg) {
3246     auto Sel1 = B.buildSelect(
3247         S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Add4, Add3);
3248     B.buildSelect(DstDivReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32),
3249                   Sel1, MulHi3);
3250   }
3251 
3252   if (DstRemReg) {
3253     auto Sel2 = B.buildSelect(
3254         S64, B.buildICmp(CmpInst::ICMP_NE, S1, C6, Zero32), Sub3, Sub2);
3255     B.buildSelect(DstRemReg, B.buildICmp(CmpInst::ICMP_NE, S1, C3, Zero32),
3256                   Sel2, Sub1);
3257   }
3258 }
3259 
3260 bool AMDGPULegalizerInfo::legalizeUnsignedDIV_REM(MachineInstr &MI,
3261                                                   MachineRegisterInfo &MRI,
3262                                                   MachineIRBuilder &B) const {
3263   Register DstDivReg, DstRemReg;
3264   switch (MI.getOpcode()) {
3265   default:
3266     llvm_unreachable("Unexpected opcode!");
3267   case AMDGPU::G_UDIV: {
3268     DstDivReg = MI.getOperand(0).getReg();
3269     break;
3270   }
3271   case AMDGPU::G_UREM: {
3272     DstRemReg = MI.getOperand(0).getReg();
3273     break;
3274   }
3275   case AMDGPU::G_UDIVREM: {
3276     DstDivReg = MI.getOperand(0).getReg();
3277     DstRemReg = MI.getOperand(1).getReg();
3278     break;
3279   }
3280   }
3281 
3282   const LLT S64 = LLT::scalar(64);
3283   const LLT S32 = LLT::scalar(32);
3284   const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs();
3285   Register Num = MI.getOperand(FirstSrcOpIdx).getReg();
3286   Register Den = MI.getOperand(FirstSrcOpIdx + 1).getReg();
3287   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3288 
3289   if (Ty == S32)
3290     legalizeUnsignedDIV_REM32Impl(B, DstDivReg, DstRemReg, Num, Den);
3291   else if (Ty == S64)
3292     legalizeUnsignedDIV_REM64Impl(B, DstDivReg, DstRemReg, Num, Den);
3293   else
3294     return false;
3295 
3296   MI.eraseFromParent();
3297   return true;
3298 }
3299 
3300 bool AMDGPULegalizerInfo::legalizeSignedDIV_REM(MachineInstr &MI,
3301                                                 MachineRegisterInfo &MRI,
3302                                                 MachineIRBuilder &B) const {
3303   const LLT S64 = LLT::scalar(64);
3304   const LLT S32 = LLT::scalar(32);
3305 
3306   LLT Ty = MRI.getType(MI.getOperand(0).getReg());
3307   if (Ty != S32 && Ty != S64)
3308     return false;
3309 
3310   const unsigned FirstSrcOpIdx = MI.getNumExplicitDefs();
3311   Register LHS = MI.getOperand(FirstSrcOpIdx).getReg();
3312   Register RHS = MI.getOperand(FirstSrcOpIdx + 1).getReg();
3313 
3314   auto SignBitOffset = B.buildConstant(S32, Ty.getSizeInBits() - 1);
3315   auto LHSign = B.buildAShr(Ty, LHS, SignBitOffset);
3316   auto RHSign = B.buildAShr(Ty, RHS, SignBitOffset);
3317 
3318   LHS = B.buildAdd(Ty, LHS, LHSign).getReg(0);
3319   RHS = B.buildAdd(Ty, RHS, RHSign).getReg(0);
3320 
3321   LHS = B.buildXor(Ty, LHS, LHSign).getReg(0);
3322   RHS = B.buildXor(Ty, RHS, RHSign).getReg(0);
3323 
3324   Register DstDivReg, DstRemReg, TmpDivReg, TmpRemReg;
3325   switch (MI.getOpcode()) {
3326   default:
3327     llvm_unreachable("Unexpected opcode!");
3328   case AMDGPU::G_SDIV: {
3329     DstDivReg = MI.getOperand(0).getReg();
3330     TmpDivReg = MRI.createGenericVirtualRegister(Ty);
3331     break;
3332   }
3333   case AMDGPU::G_SREM: {
3334     DstRemReg = MI.getOperand(0).getReg();
3335     TmpRemReg = MRI.createGenericVirtualRegister(Ty);
3336     break;
3337   }
3338   case AMDGPU::G_SDIVREM: {
3339     DstDivReg = MI.getOperand(0).getReg();
3340     DstRemReg = MI.getOperand(1).getReg();
3341     TmpDivReg = MRI.createGenericVirtualRegister(Ty);
3342     TmpRemReg = MRI.createGenericVirtualRegister(Ty);
3343     break;
3344   }
3345   }
3346 
3347   if (Ty == S32)
3348     legalizeUnsignedDIV_REM32Impl(B, TmpDivReg, TmpRemReg, LHS, RHS);
3349   else
3350     legalizeUnsignedDIV_REM64Impl(B, TmpDivReg, TmpRemReg, LHS, RHS);
3351 
3352   if (DstDivReg) {
3353     auto Sign = B.buildXor(Ty, LHSign, RHSign).getReg(0);
3354     auto SignXor = B.buildXor(Ty, TmpDivReg, Sign).getReg(0);
3355     B.buildSub(DstDivReg, SignXor, Sign);
3356   }
3357 
3358   if (DstRemReg) {
3359     auto Sign = LHSign.getReg(0); // Remainder sign is the same as LHS
3360     auto SignXor = B.buildXor(Ty, TmpRemReg, Sign).getReg(0);
3361     B.buildSub(DstRemReg, SignXor, Sign);
3362   }
3363 
3364   MI.eraseFromParent();
3365   return true;
3366 }
3367 
3368 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV(MachineInstr &MI,
3369                                                  MachineRegisterInfo &MRI,
3370                                                  MachineIRBuilder &B) const {
3371   Register Res = MI.getOperand(0).getReg();
3372   Register LHS = MI.getOperand(1).getReg();
3373   Register RHS = MI.getOperand(2).getReg();
3374   uint16_t Flags = MI.getFlags();
3375   LLT ResTy = MRI.getType(Res);
3376 
3377   const MachineFunction &MF = B.getMF();
3378   bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
3379                             MI.getFlag(MachineInstr::FmAfn);
3380 
3381   if (!AllowInaccurateRcp)
3382     return false;
3383 
3384   if (auto CLHS = getConstantFPVRegVal(LHS, MRI)) {
3385     // 1 / x -> RCP(x)
3386     if (CLHS->isExactlyValue(1.0)) {
3387       B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
3388         .addUse(RHS)
3389         .setMIFlags(Flags);
3390 
3391       MI.eraseFromParent();
3392       return true;
3393     }
3394 
3395     // -1 / x -> RCP( FNEG(x) )
3396     if (CLHS->isExactlyValue(-1.0)) {
3397       auto FNeg = B.buildFNeg(ResTy, RHS, Flags);
3398       B.buildIntrinsic(Intrinsic::amdgcn_rcp, Res, false)
3399         .addUse(FNeg.getReg(0))
3400         .setMIFlags(Flags);
3401 
3402       MI.eraseFromParent();
3403       return true;
3404     }
3405   }
3406 
3407   // x / y -> x * (1.0 / y)
3408   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
3409     .addUse(RHS)
3410     .setMIFlags(Flags);
3411   B.buildFMul(Res, LHS, RCP, Flags);
3412 
3413   MI.eraseFromParent();
3414   return true;
3415 }
3416 
3417 bool AMDGPULegalizerInfo::legalizeFastUnsafeFDIV64(MachineInstr &MI,
3418                                                    MachineRegisterInfo &MRI,
3419                                                    MachineIRBuilder &B) const {
3420   Register Res = MI.getOperand(0).getReg();
3421   Register X = MI.getOperand(1).getReg();
3422   Register Y = MI.getOperand(2).getReg();
3423   uint16_t Flags = MI.getFlags();
3424   LLT ResTy = MRI.getType(Res);
3425 
3426   const MachineFunction &MF = B.getMF();
3427   bool AllowInaccurateRcp = MF.getTarget().Options.UnsafeFPMath ||
3428                             MI.getFlag(MachineInstr::FmAfn);
3429 
3430   if (!AllowInaccurateRcp)
3431     return false;
3432 
3433   auto NegY = B.buildFNeg(ResTy, Y);
3434   auto One = B.buildFConstant(ResTy, 1.0);
3435 
3436   auto R = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {ResTy}, false)
3437     .addUse(Y)
3438     .setMIFlags(Flags);
3439 
3440   auto Tmp0 = B.buildFMA(ResTy, NegY, R, One);
3441   R = B.buildFMA(ResTy, Tmp0, R, R);
3442 
3443   auto Tmp1 = B.buildFMA(ResTy, NegY, R, One);
3444   R = B.buildFMA(ResTy, Tmp1, R, R);
3445 
3446   auto Ret = B.buildFMul(ResTy, X, R);
3447   auto Tmp2 = B.buildFMA(ResTy, NegY, Ret, X);
3448 
3449   B.buildFMA(Res, Tmp2, R, Ret);
3450   MI.eraseFromParent();
3451   return true;
3452 }
3453 
3454 bool AMDGPULegalizerInfo::legalizeFDIV16(MachineInstr &MI,
3455                                          MachineRegisterInfo &MRI,
3456                                          MachineIRBuilder &B) const {
3457   if (legalizeFastUnsafeFDIV(MI, MRI, B))
3458     return true;
3459 
3460   Register Res = MI.getOperand(0).getReg();
3461   Register LHS = MI.getOperand(1).getReg();
3462   Register RHS = MI.getOperand(2).getReg();
3463 
3464   uint16_t Flags = MI.getFlags();
3465 
3466   LLT S16 = LLT::scalar(16);
3467   LLT S32 = LLT::scalar(32);
3468 
3469   auto LHSExt = B.buildFPExt(S32, LHS, Flags);
3470   auto RHSExt = B.buildFPExt(S32, RHS, Flags);
3471 
3472   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3473     .addUse(RHSExt.getReg(0))
3474     .setMIFlags(Flags);
3475 
3476   auto QUOT = B.buildFMul(S32, LHSExt, RCP, Flags);
3477   auto RDst = B.buildFPTrunc(S16, QUOT, Flags);
3478 
3479   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
3480     .addUse(RDst.getReg(0))
3481     .addUse(RHS)
3482     .addUse(LHS)
3483     .setMIFlags(Flags);
3484 
3485   MI.eraseFromParent();
3486   return true;
3487 }
3488 
3489 // Enable or disable FP32 denorm mode. When 'Enable' is true, emit instructions
3490 // to enable denorm mode. When 'Enable' is false, disable denorm mode.
3491 static void toggleSPDenormMode(bool Enable,
3492                                MachineIRBuilder &B,
3493                                const GCNSubtarget &ST,
3494                                AMDGPU::SIModeRegisterDefaults Mode) {
3495   // Set SP denorm mode to this value.
3496   unsigned SPDenormMode =
3497     Enable ? FP_DENORM_FLUSH_NONE : Mode.fpDenormModeSPValue();
3498 
3499   if (ST.hasDenormModeInst()) {
3500     // Preserve default FP64FP16 denorm mode while updating FP32 mode.
3501     uint32_t DPDenormModeDefault = Mode.fpDenormModeDPValue();
3502 
3503     uint32_t NewDenormModeValue = SPDenormMode | (DPDenormModeDefault << 2);
3504     B.buildInstr(AMDGPU::S_DENORM_MODE)
3505       .addImm(NewDenormModeValue);
3506 
3507   } else {
3508     // Select FP32 bit field in mode register.
3509     unsigned SPDenormModeBitField = AMDGPU::Hwreg::ID_MODE |
3510                                     (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
3511                                     (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
3512 
3513     B.buildInstr(AMDGPU::S_SETREG_IMM32_B32)
3514       .addImm(SPDenormMode)
3515       .addImm(SPDenormModeBitField);
3516   }
3517 }
3518 
3519 bool AMDGPULegalizerInfo::legalizeFDIV32(MachineInstr &MI,
3520                                          MachineRegisterInfo &MRI,
3521                                          MachineIRBuilder &B) const {
3522   if (legalizeFastUnsafeFDIV(MI, MRI, B))
3523     return true;
3524 
3525   Register Res = MI.getOperand(0).getReg();
3526   Register LHS = MI.getOperand(1).getReg();
3527   Register RHS = MI.getOperand(2).getReg();
3528   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3529   AMDGPU::SIModeRegisterDefaults Mode = MFI->getMode();
3530 
3531   uint16_t Flags = MI.getFlags();
3532 
3533   LLT S32 = LLT::scalar(32);
3534   LLT S1 = LLT::scalar(1);
3535 
3536   auto One = B.buildFConstant(S32, 1.0f);
3537 
3538   auto DenominatorScaled =
3539     B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
3540       .addUse(LHS)
3541       .addUse(RHS)
3542       .addImm(0)
3543       .setMIFlags(Flags);
3544   auto NumeratorScaled =
3545     B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S32, S1}, false)
3546       .addUse(LHS)
3547       .addUse(RHS)
3548       .addImm(1)
3549       .setMIFlags(Flags);
3550 
3551   auto ApproxRcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3552     .addUse(DenominatorScaled.getReg(0))
3553     .setMIFlags(Flags);
3554   auto NegDivScale0 = B.buildFNeg(S32, DenominatorScaled, Flags);
3555 
3556   // FIXME: Doesn't correctly model the FP mode switch, and the FP operations
3557   // aren't modeled as reading it.
3558   if (!Mode.allFP32Denormals())
3559     toggleSPDenormMode(true, B, ST, Mode);
3560 
3561   auto Fma0 = B.buildFMA(S32, NegDivScale0, ApproxRcp, One, Flags);
3562   auto Fma1 = B.buildFMA(S32, Fma0, ApproxRcp, ApproxRcp, Flags);
3563   auto Mul = B.buildFMul(S32, NumeratorScaled, Fma1, Flags);
3564   auto Fma2 = B.buildFMA(S32, NegDivScale0, Mul, NumeratorScaled, Flags);
3565   auto Fma3 = B.buildFMA(S32, Fma2, Fma1, Mul, Flags);
3566   auto Fma4 = B.buildFMA(S32, NegDivScale0, Fma3, NumeratorScaled, Flags);
3567 
3568   if (!Mode.allFP32Denormals())
3569     toggleSPDenormMode(false, B, ST, Mode);
3570 
3571   auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S32}, false)
3572     .addUse(Fma4.getReg(0))
3573     .addUse(Fma1.getReg(0))
3574     .addUse(Fma3.getReg(0))
3575     .addUse(NumeratorScaled.getReg(1))
3576     .setMIFlags(Flags);
3577 
3578   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, Res, false)
3579     .addUse(Fmas.getReg(0))
3580     .addUse(RHS)
3581     .addUse(LHS)
3582     .setMIFlags(Flags);
3583 
3584   MI.eraseFromParent();
3585   return true;
3586 }
3587 
3588 bool AMDGPULegalizerInfo::legalizeFDIV64(MachineInstr &MI,
3589                                          MachineRegisterInfo &MRI,
3590                                          MachineIRBuilder &B) const {
3591   if (legalizeFastUnsafeFDIV64(MI, MRI, B))
3592     return true;
3593 
3594   Register Res = MI.getOperand(0).getReg();
3595   Register LHS = MI.getOperand(1).getReg();
3596   Register RHS = MI.getOperand(2).getReg();
3597 
3598   uint16_t Flags = MI.getFlags();
3599 
3600   LLT S64 = LLT::scalar(64);
3601   LLT S1 = LLT::scalar(1);
3602 
3603   auto One = B.buildFConstant(S64, 1.0);
3604 
3605   auto DivScale0 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
3606     .addUse(LHS)
3607     .addUse(RHS)
3608     .addImm(0)
3609     .setMIFlags(Flags);
3610 
3611   auto NegDivScale0 = B.buildFNeg(S64, DivScale0.getReg(0), Flags);
3612 
3613   auto Rcp = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S64}, false)
3614     .addUse(DivScale0.getReg(0))
3615     .setMIFlags(Flags);
3616 
3617   auto Fma0 = B.buildFMA(S64, NegDivScale0, Rcp, One, Flags);
3618   auto Fma1 = B.buildFMA(S64, Rcp, Fma0, Rcp, Flags);
3619   auto Fma2 = B.buildFMA(S64, NegDivScale0, Fma1, One, Flags);
3620 
3621   auto DivScale1 = B.buildIntrinsic(Intrinsic::amdgcn_div_scale, {S64, S1}, false)
3622     .addUse(LHS)
3623     .addUse(RHS)
3624     .addImm(1)
3625     .setMIFlags(Flags);
3626 
3627   auto Fma3 = B.buildFMA(S64, Fma1, Fma2, Fma1, Flags);
3628   auto Mul = B.buildFMul(S64, DivScale1.getReg(0), Fma3, Flags);
3629   auto Fma4 = B.buildFMA(S64, NegDivScale0, Mul, DivScale1.getReg(0), Flags);
3630 
3631   Register Scale;
3632   if (!ST.hasUsableDivScaleConditionOutput()) {
3633     // Workaround a hardware bug on SI where the condition output from div_scale
3634     // is not usable.
3635 
3636     LLT S32 = LLT::scalar(32);
3637 
3638     auto NumUnmerge = B.buildUnmerge(S32, LHS);
3639     auto DenUnmerge = B.buildUnmerge(S32, RHS);
3640     auto Scale0Unmerge = B.buildUnmerge(S32, DivScale0);
3641     auto Scale1Unmerge = B.buildUnmerge(S32, DivScale1);
3642 
3643     auto CmpNum = B.buildICmp(ICmpInst::ICMP_EQ, S1, NumUnmerge.getReg(1),
3644                               Scale1Unmerge.getReg(1));
3645     auto CmpDen = B.buildICmp(ICmpInst::ICMP_EQ, S1, DenUnmerge.getReg(1),
3646                               Scale0Unmerge.getReg(1));
3647     Scale = B.buildXor(S1, CmpNum, CmpDen).getReg(0);
3648   } else {
3649     Scale = DivScale1.getReg(1);
3650   }
3651 
3652   auto Fmas = B.buildIntrinsic(Intrinsic::amdgcn_div_fmas, {S64}, false)
3653     .addUse(Fma4.getReg(0))
3654     .addUse(Fma3.getReg(0))
3655     .addUse(Mul.getReg(0))
3656     .addUse(Scale)
3657     .setMIFlags(Flags);
3658 
3659   B.buildIntrinsic(Intrinsic::amdgcn_div_fixup, makeArrayRef(Res), false)
3660     .addUse(Fmas.getReg(0))
3661     .addUse(RHS)
3662     .addUse(LHS)
3663     .setMIFlags(Flags);
3664 
3665   MI.eraseFromParent();
3666   return true;
3667 }
3668 
3669 bool AMDGPULegalizerInfo::legalizeFDIVFastIntrin(MachineInstr &MI,
3670                                                  MachineRegisterInfo &MRI,
3671                                                  MachineIRBuilder &B) const {
3672   Register Res = MI.getOperand(0).getReg();
3673   Register LHS = MI.getOperand(2).getReg();
3674   Register RHS = MI.getOperand(3).getReg();
3675   uint16_t Flags = MI.getFlags();
3676 
3677   LLT S32 = LLT::scalar(32);
3678   LLT S1 = LLT::scalar(1);
3679 
3680   auto Abs = B.buildFAbs(S32, RHS, Flags);
3681   const APFloat C0Val(1.0f);
3682 
3683   auto C0 = B.buildConstant(S32, 0x6f800000);
3684   auto C1 = B.buildConstant(S32, 0x2f800000);
3685   auto C2 = B.buildConstant(S32, FloatToBits(1.0f));
3686 
3687   auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
3688   auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);
3689 
3690   auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);
3691 
3692   auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
3693     .addUse(Mul0.getReg(0))
3694     .setMIFlags(Flags);
3695 
3696   auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);
3697 
3698   B.buildFMul(Res, Sel, Mul1, Flags);
3699 
3700   MI.eraseFromParent();
3701   return true;
3702 }
3703 
3704 // Expand llvm.amdgcn.rsq.clamp on targets that don't support the instruction.
3705 // FIXME: Why do we handle this one but not other removed instructions?
3706 //
3707 // Reciprocal square root.  The clamp prevents infinite results, clamping
3708 // infinities to max_float.  D.f = 1.0 / sqrt(S0.f), result clamped to
3709 // +-max_float.
3710 bool AMDGPULegalizerInfo::legalizeRsqClampIntrinsic(MachineInstr &MI,
3711                                                     MachineRegisterInfo &MRI,
3712                                                     MachineIRBuilder &B) const {
3713   if (ST.getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
3714     return true;
3715 
3716   Register Dst = MI.getOperand(0).getReg();
3717   Register Src = MI.getOperand(2).getReg();
3718   auto Flags = MI.getFlags();
3719 
3720   LLT Ty = MRI.getType(Dst);
3721 
3722   const fltSemantics *FltSemantics;
3723   if (Ty == LLT::scalar(32))
3724     FltSemantics = &APFloat::IEEEsingle();
3725   else if (Ty == LLT::scalar(64))
3726     FltSemantics = &APFloat::IEEEdouble();
3727   else
3728     return false;
3729 
3730   auto Rsq = B.buildIntrinsic(Intrinsic::amdgcn_rsq, {Ty}, false)
3731     .addUse(Src)
3732     .setMIFlags(Flags);
3733 
3734   // We don't need to concern ourselves with the snan handling difference, since
3735   // the rsq quieted (or not) so use the one which will directly select.
3736   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3737   const bool UseIEEE = MFI->getMode().IEEE;
3738 
3739   auto MaxFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics));
3740   auto ClampMax = UseIEEE ? B.buildFMinNumIEEE(Ty, Rsq, MaxFlt, Flags) :
3741                             B.buildFMinNum(Ty, Rsq, MaxFlt, Flags);
3742 
3743   auto MinFlt = B.buildFConstant(Ty, APFloat::getLargest(*FltSemantics, true));
3744 
3745   if (UseIEEE)
3746     B.buildFMaxNumIEEE(Dst, ClampMax, MinFlt, Flags);
3747   else
3748     B.buildFMaxNum(Dst, ClampMax, MinFlt, Flags);
3749   MI.eraseFromParent();
3750   return true;
3751 }
3752 
3753 static unsigned getDSFPAtomicOpcode(Intrinsic::ID IID) {
3754   switch (IID) {
3755   case Intrinsic::amdgcn_ds_fadd:
3756     return AMDGPU::G_ATOMICRMW_FADD;
3757   case Intrinsic::amdgcn_ds_fmin:
3758     return AMDGPU::G_AMDGPU_ATOMIC_FMIN;
3759   case Intrinsic::amdgcn_ds_fmax:
3760     return AMDGPU::G_AMDGPU_ATOMIC_FMAX;
3761   default:
3762     llvm_unreachable("not a DS FP intrinsic");
3763   }
3764 }
3765 
3766 bool AMDGPULegalizerInfo::legalizeDSAtomicFPIntrinsic(LegalizerHelper &Helper,
3767                                                       MachineInstr &MI,
3768                                                       Intrinsic::ID IID) const {
3769   GISelChangeObserver &Observer = Helper.Observer;
3770   Observer.changingInstr(MI);
3771 
3772   MI.setDesc(ST.getInstrInfo()->get(getDSFPAtomicOpcode(IID)));
3773 
3774   // The remaining operands were used to set fields in the MemOperand on
3775   // construction.
3776   for (int I = 6; I > 3; --I)
3777     MI.removeOperand(I);
3778 
3779   MI.removeOperand(1); // Remove the intrinsic ID.
3780   Observer.changedInstr(MI);
3781   return true;
3782 }
3783 
3784 bool AMDGPULegalizerInfo::getImplicitArgPtr(Register DstReg,
3785                                             MachineRegisterInfo &MRI,
3786                                             MachineIRBuilder &B) const {
3787   uint64_t Offset =
3788     ST.getTargetLowering()->getImplicitParameterOffset(
3789       B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
3790   LLT DstTy = MRI.getType(DstReg);
3791   LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());
3792 
3793   Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
3794   if (!loadInputValue(KernargPtrReg, B,
3795                       AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
3796     return false;
3797 
3798   // FIXME: This should be nuw
3799   B.buildPtrAdd(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
3800   return true;
3801 }
3802 
3803 bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
3804                                                  MachineRegisterInfo &MRI,
3805                                                  MachineIRBuilder &B) const {
3806   const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
3807   if (!MFI->isEntryFunction()) {
3808     return legalizePreloadedArgIntrin(MI, MRI, B,
3809                                       AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
3810   }
3811 
3812   Register DstReg = MI.getOperand(0).getReg();
3813   if (!getImplicitArgPtr(DstReg, MRI, B))
3814     return false;
3815 
3816   MI.eraseFromParent();
3817   return true;
3818 }
3819 
3820 bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
3821                                               MachineRegisterInfo &MRI,
3822                                               MachineIRBuilder &B,
3823                                               unsigned AddrSpace) const {
3824   Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
3825   auto Unmerge = B.buildUnmerge(LLT::scalar(32), MI.getOperand(2).getReg());
3826   Register Hi32 = Unmerge.getReg(1);
3827 
3828   B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
3829   MI.eraseFromParent();
3830   return true;
3831 }
3832 
3833 // The raw.(t)buffer and struct.(t)buffer intrinsics have two offset args:
3834 // offset (the offset that is included in bounds checking and swizzling, to be
3835 // split between the instruction's voffset and immoffset fields) and soffset
3836 // (the offset that is excluded from bounds checking and swizzling, to go in
3837 // the instruction's soffset field).  This function takes the first kind of
3838 // offset and figures out how to split it between voffset and immoffset.
3839 std::pair<Register, unsigned>
3840 AMDGPULegalizerInfo::splitBufferOffsets(MachineIRBuilder &B,
3841                                         Register OrigOffset) const {
3842   const unsigned MaxImm = 4095;
3843   Register BaseReg;
3844   unsigned ImmOffset;
3845   const LLT S32 = LLT::scalar(32);
3846   MachineRegisterInfo &MRI = *B.getMRI();
3847 
3848   std::tie(BaseReg, ImmOffset) =
3849       AMDGPU::getBaseWithConstantOffset(MRI, OrigOffset);
3850 
3851   // If BaseReg is a pointer, convert it to int.
3852   if (MRI.getType(BaseReg).isPointer())
3853     BaseReg = B.buildPtrToInt(MRI.getType(OrigOffset), BaseReg).getReg(0);
3854 
3855   // If the immediate value is too big for the immoffset field, put the value
3856   // and -4096 into the immoffset field so that the value that is copied/added
3857   // for the voffset field is a multiple of 4096, and it stands more chance
3858   // of being CSEd with the copy/add for another similar load/store.
3859   // However, do not do that rounding down to a multiple of 4096 if that is a
3860   // negative number, as it appears to be illegal to have a negative offset
3861   // in the vgpr, even if adding the immediate offset makes it positive.
3862   unsigned Overflow = ImmOffset & ~MaxImm;
3863   ImmOffset -= Overflow;
3864   if ((int32_t)Overflow < 0) {
3865     Overflow += ImmOffset;
3866     ImmOffset = 0;
3867   }
3868 
3869   if (Overflow != 0) {
3870     if (!BaseReg) {
3871       BaseReg = B.buildConstant(S32, Overflow).getReg(0);
3872     } else {
3873       auto OverflowVal = B.buildConstant(S32, Overflow);
3874       BaseReg = B.buildAdd(S32, BaseReg, OverflowVal).getReg(0);
3875     }
3876   }
3877 
3878   if (!BaseReg)
3879     BaseReg = B.buildConstant(S32, 0).getReg(0);
3880 
3881   return std::make_pair(BaseReg, ImmOffset);
3882 }
3883 
3884 /// Update \p MMO based on the offset inputs to a raw/struct buffer intrinsic.
3885 void AMDGPULegalizerInfo::updateBufferMMO(MachineMemOperand *MMO,
3886                                           Register VOffset, Register SOffset,
3887                                           unsigned ImmOffset, Register VIndex,
3888                                           MachineRegisterInfo &MRI) const {
3889   Optional<ValueAndVReg> MaybeVOffsetVal =
3890       getIConstantVRegValWithLookThrough(VOffset, MRI);
3891   Optional<ValueAndVReg> MaybeSOffsetVal =
3892       getIConstantVRegValWithLookThrough(SOffset, MRI);
3893   Optional<ValueAndVReg> MaybeVIndexVal =
3894       getIConstantVRegValWithLookThrough(VIndex, MRI);
3895   // If the combined VOffset + SOffset + ImmOffset + strided VIndex is constant,
3896   // update the MMO with that offset. The stride is unknown so we can only do
3897   // this if VIndex is constant 0.
3898   if (MaybeVOffsetVal && MaybeSOffsetVal && MaybeVIndexVal &&
3899       MaybeVIndexVal->Value == 0) {
3900     uint64_t TotalOffset = MaybeVOffsetVal->Value.getZExtValue() +
3901                            MaybeSOffsetVal->Value.getZExtValue() + ImmOffset;
3902     MMO->setOffset(TotalOffset);
3903   } else {
3904     // We don't have a constant combined offset to use in the MMO. Give up.
3905     MMO->setValue((Value *)nullptr);
3906   }
3907 }
3908 
3909 /// Handle register layout difference for f16 images for some subtargets.
3910 Register AMDGPULegalizerInfo::handleD16VData(MachineIRBuilder &B,
3911                                              MachineRegisterInfo &MRI,
3912                                              Register Reg,
3913                                              bool ImageStore) const {
3914   const LLT S16 = LLT::scalar(16);
3915   const LLT S32 = LLT::scalar(32);
3916   LLT StoreVT = MRI.getType(Reg);
3917   assert(StoreVT.isVector() && StoreVT.getElementType() == S16);
3918 
3919   if (ST.hasUnpackedD16VMem()) {
3920     auto Unmerge = B.buildUnmerge(S16, Reg);
3921 
3922     SmallVector<Register, 4> WideRegs;
3923     for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3924       WideRegs.push_back(B.buildAnyExt(S32, Unmerge.getReg(I)).getReg(0));
3925 
3926     int NumElts = StoreVT.getNumElements();
3927 
3928     return B.buildBuildVector(LLT::fixed_vector(NumElts, S32), WideRegs)
3929         .getReg(0);
3930   }
3931 
3932   if (ImageStore && ST.hasImageStoreD16Bug()) {
3933     if (StoreVT.getNumElements() == 2) {
3934       SmallVector<Register, 4> PackedRegs;
3935       Reg = B.buildBitcast(S32, Reg).getReg(0);
3936       PackedRegs.push_back(Reg);
3937       PackedRegs.resize(2, B.buildUndef(S32).getReg(0));
3938       return B.buildBuildVector(LLT::fixed_vector(2, S32), PackedRegs)
3939           .getReg(0);
3940     }
3941 
3942     if (StoreVT.getNumElements() == 3) {
3943       SmallVector<Register, 4> PackedRegs;
3944       auto Unmerge = B.buildUnmerge(S16, Reg);
3945       for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3946         PackedRegs.push_back(Unmerge.getReg(I));
3947       PackedRegs.resize(6, B.buildUndef(S16).getReg(0));
3948       Reg = B.buildBuildVector(LLT::fixed_vector(6, S16), PackedRegs).getReg(0);
3949       return B.buildBitcast(LLT::fixed_vector(3, S32), Reg).getReg(0);
3950     }
3951 
3952     if (StoreVT.getNumElements() == 4) {
3953       SmallVector<Register, 4> PackedRegs;
3954       Reg = B.buildBitcast(LLT::fixed_vector(2, S32), Reg).getReg(0);
3955       auto Unmerge = B.buildUnmerge(S32, Reg);
3956       for (int I = 0, E = Unmerge->getNumOperands() - 1; I != E; ++I)
3957         PackedRegs.push_back(Unmerge.getReg(I));
3958       PackedRegs.resize(4, B.buildUndef(S32).getReg(0));
3959       return B.buildBuildVector(LLT::fixed_vector(4, S32), PackedRegs)
3960           .getReg(0);
3961     }
3962 
3963     llvm_unreachable("invalid data type");
3964   }
3965 
3966   if (StoreVT == LLT::fixed_vector(3, S16)) {
3967     Reg = B.buildPadVectorWithUndefElements(LLT::fixed_vector(4, S16), Reg)
3968               .getReg(0);
3969   }
3970   return Reg;
3971 }
3972 
3973 Register AMDGPULegalizerInfo::fixStoreSourceType(
3974   MachineIRBuilder &B, Register VData, bool IsFormat) const {
3975   MachineRegisterInfo *MRI = B.getMRI();
3976   LLT Ty = MRI->getType(VData);
3977 
3978   const LLT S16 = LLT::scalar(16);
3979 
3980   // Fixup illegal register types for i8 stores.
3981   if (Ty == LLT::scalar(8) || Ty == S16) {
3982     Register AnyExt = B.buildAnyExt(LLT::scalar(32), VData).getReg(0);
3983     return AnyExt;
3984   }
3985 
3986   if (Ty.isVector()) {
3987     if (Ty.getElementType() == S16 && Ty.getNumElements() <= 4) {
3988       if (IsFormat)
3989         return handleD16VData(B, *MRI, VData);
3990     }
3991   }
3992 
3993   return VData;
3994 }
3995 
3996 bool AMDGPULegalizerInfo::legalizeBufferStore(MachineInstr &MI,
3997                                               MachineRegisterInfo &MRI,
3998                                               MachineIRBuilder &B,
3999                                               bool IsTyped,
4000                                               bool IsFormat) const {
4001   Register VData = MI.getOperand(1).getReg();
4002   LLT Ty = MRI.getType(VData);
4003   LLT EltTy = Ty.getScalarType();
4004   const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
4005   const LLT S32 = LLT::scalar(32);
4006 
4007   VData = fixStoreSourceType(B, VData, IsFormat);
4008   Register RSrc = MI.getOperand(2).getReg();
4009 
4010   MachineMemOperand *MMO = *MI.memoperands_begin();
4011   const int MemSize = MMO->getSize();
4012 
4013   unsigned ImmOffset;
4014 
4015   // The typed intrinsics add an immediate after the registers.
4016   const unsigned NumVIndexOps = IsTyped ? 8 : 7;
4017 
4018   // The struct intrinsic variants add one additional operand over raw.
4019   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
4020   Register VIndex;
4021   int OpOffset = 0;
4022   if (HasVIndex) {
4023     VIndex = MI.getOperand(3).getReg();
4024     OpOffset = 1;
4025   } else {
4026     VIndex = B.buildConstant(S32, 0).getReg(0);
4027   }
4028 
4029   Register VOffset = MI.getOperand(3 + OpOffset).getReg();
4030   Register SOffset = MI.getOperand(4 + OpOffset).getReg();
4031 
4032   unsigned Format = 0;
4033   if (IsTyped) {
4034     Format = MI.getOperand(5 + OpOffset).getImm();
4035     ++OpOffset;
4036   }
4037 
4038   unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
4039 
4040   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
4041   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI);
4042 
4043   unsigned Opc;
4044   if (IsTyped) {
4045     Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT_D16 :
4046                   AMDGPU::G_AMDGPU_TBUFFER_STORE_FORMAT;
4047   } else if (IsFormat) {
4048     Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT_D16 :
4049                   AMDGPU::G_AMDGPU_BUFFER_STORE_FORMAT;
4050   } else {
4051     switch (MemSize) {
4052     case 1:
4053       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_BYTE;
4054       break;
4055     case 2:
4056       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE_SHORT;
4057       break;
4058     default:
4059       Opc = AMDGPU::G_AMDGPU_BUFFER_STORE;
4060       break;
4061     }
4062   }
4063 
4064   auto MIB = B.buildInstr(Opc)
4065     .addUse(VData)              // vdata
4066     .addUse(RSrc)               // rsrc
4067     .addUse(VIndex)             // vindex
4068     .addUse(VOffset)            // voffset
4069     .addUse(SOffset)            // soffset
4070     .addImm(ImmOffset);         // offset(imm)
4071 
4072   if (IsTyped)
4073     MIB.addImm(Format);
4074 
4075   MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
4076      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
4077      .addMemOperand(MMO);
4078 
4079   MI.eraseFromParent();
4080   return true;
4081 }
4082 
4083 bool AMDGPULegalizerInfo::legalizeBufferLoad(MachineInstr &MI,
4084                                              MachineRegisterInfo &MRI,
4085                                              MachineIRBuilder &B,
4086                                              bool IsFormat,
4087                                              bool IsTyped) const {
4088   // FIXME: Verifier should enforce 1 MMO for these intrinsics.
4089   MachineMemOperand *MMO = *MI.memoperands_begin();
4090   const LLT MemTy = MMO->getMemoryType();
4091   const LLT S32 = LLT::scalar(32);
4092 
4093   Register Dst = MI.getOperand(0).getReg();
4094   Register RSrc = MI.getOperand(2).getReg();
4095 
4096   // The typed intrinsics add an immediate after the registers.
4097   const unsigned NumVIndexOps = IsTyped ? 8 : 7;
4098 
4099   // The struct intrinsic variants add one additional operand over raw.
4100   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
4101   Register VIndex;
4102   int OpOffset = 0;
4103   if (HasVIndex) {
4104     VIndex = MI.getOperand(3).getReg();
4105     OpOffset = 1;
4106   } else {
4107     VIndex = B.buildConstant(S32, 0).getReg(0);
4108   }
4109 
4110   Register VOffset = MI.getOperand(3 + OpOffset).getReg();
4111   Register SOffset = MI.getOperand(4 + OpOffset).getReg();
4112 
4113   unsigned Format = 0;
4114   if (IsTyped) {
4115     Format = MI.getOperand(5 + OpOffset).getImm();
4116     ++OpOffset;
4117   }
4118 
4119   unsigned AuxiliaryData = MI.getOperand(5 + OpOffset).getImm();
4120   unsigned ImmOffset;
4121 
4122   LLT Ty = MRI.getType(Dst);
4123   LLT EltTy = Ty.getScalarType();
4124   const bool IsD16 = IsFormat && (EltTy.getSizeInBits() == 16);
4125   const bool Unpacked = ST.hasUnpackedD16VMem();
4126 
4127   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
4128   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, MRI);
4129 
4130   unsigned Opc;
4131 
4132   if (IsTyped) {
4133     Opc = IsD16 ? AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT_D16 :
4134                   AMDGPU::G_AMDGPU_TBUFFER_LOAD_FORMAT;
4135   } else if (IsFormat) {
4136     Opc = IsD16 ? AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT_D16 :
4137                   AMDGPU::G_AMDGPU_BUFFER_LOAD_FORMAT;
4138   } else {
4139     switch (MemTy.getSizeInBits()) {
4140     case 8:
4141       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_UBYTE;
4142       break;
4143     case 16:
4144       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD_USHORT;
4145       break;
4146     default:
4147       Opc = AMDGPU::G_AMDGPU_BUFFER_LOAD;
4148       break;
4149     }
4150   }
4151 
4152   Register LoadDstReg;
4153 
4154   bool IsExtLoad =
4155       (!IsD16 && MemTy.getSizeInBits() < 32) || (IsD16 && !Ty.isVector());
4156   LLT UnpackedTy = Ty.changeElementSize(32);
4157 
4158   if (IsExtLoad)
4159     LoadDstReg = B.getMRI()->createGenericVirtualRegister(S32);
4160   else if (Unpacked && IsD16 && Ty.isVector())
4161     LoadDstReg = B.getMRI()->createGenericVirtualRegister(UnpackedTy);
4162   else
4163     LoadDstReg = Dst;
4164 
4165   auto MIB = B.buildInstr(Opc)
4166     .addDef(LoadDstReg)         // vdata
4167     .addUse(RSrc)               // rsrc
4168     .addUse(VIndex)             // vindex
4169     .addUse(VOffset)            // voffset
4170     .addUse(SOffset)            // soffset
4171     .addImm(ImmOffset);         // offset(imm)
4172 
4173   if (IsTyped)
4174     MIB.addImm(Format);
4175 
4176   MIB.addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
4177      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
4178      .addMemOperand(MMO);
4179 
4180   if (LoadDstReg != Dst) {
4181     B.setInsertPt(B.getMBB(), ++B.getInsertPt());
4182 
4183     // Widen result for extending loads was widened.
4184     if (IsExtLoad)
4185       B.buildTrunc(Dst, LoadDstReg);
4186     else {
4187       // Repack to original 16-bit vector result
4188       // FIXME: G_TRUNC should work, but legalization currently fails
4189       auto Unmerge = B.buildUnmerge(S32, LoadDstReg);
4190       SmallVector<Register, 4> Repack;
4191       for (unsigned I = 0, N = Unmerge->getNumOperands() - 1; I != N; ++I)
4192         Repack.push_back(B.buildTrunc(EltTy, Unmerge.getReg(I)).getReg(0));
4193       B.buildMerge(Dst, Repack);
4194     }
4195   }
4196 
4197   MI.eraseFromParent();
4198   return true;
4199 }
4200 
4201 bool AMDGPULegalizerInfo::legalizeAtomicIncDec(MachineInstr &MI,
4202                                                MachineIRBuilder &B,
4203                                                bool IsInc) const {
4204   unsigned Opc = IsInc ? AMDGPU::G_AMDGPU_ATOMIC_INC :
4205                          AMDGPU::G_AMDGPU_ATOMIC_DEC;
4206   B.buildInstr(Opc)
4207     .addDef(MI.getOperand(0).getReg())
4208     .addUse(MI.getOperand(2).getReg())
4209     .addUse(MI.getOperand(3).getReg())
4210     .cloneMemRefs(MI);
4211   MI.eraseFromParent();
4212   return true;
4213 }
4214 
4215 static unsigned getBufferAtomicPseudo(Intrinsic::ID IntrID) {
4216   switch (IntrID) {
4217   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
4218   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
4219     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SWAP;
4220   case Intrinsic::amdgcn_raw_buffer_atomic_add:
4221   case Intrinsic::amdgcn_struct_buffer_atomic_add:
4222     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_ADD;
4223   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
4224   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
4225     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SUB;
4226   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
4227   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
4228     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMIN;
4229   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
4230   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
4231     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMIN;
4232   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
4233   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
4234     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_SMAX;
4235   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
4236   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
4237     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_UMAX;
4238   case Intrinsic::amdgcn_raw_buffer_atomic_and:
4239   case Intrinsic::amdgcn_struct_buffer_atomic_and:
4240     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_AND;
4241   case Intrinsic::amdgcn_raw_buffer_atomic_or:
4242   case Intrinsic::amdgcn_struct_buffer_atomic_or:
4243     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_OR;
4244   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
4245   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
4246     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_XOR;
4247   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
4248   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
4249     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_INC;
4250   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
4251   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
4252     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_DEC;
4253   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
4254   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
4255     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_CMPSWAP;
4256   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
4257   case Intrinsic::amdgcn_struct_buffer_atomic_fadd:
4258     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FADD;
4259   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
4260   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
4261     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMIN;
4262   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
4263   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
4264     return AMDGPU::G_AMDGPU_BUFFER_ATOMIC_FMAX;
4265   default:
4266     llvm_unreachable("unhandled atomic opcode");
4267   }
4268 }
4269 
4270 bool AMDGPULegalizerInfo::legalizeBufferAtomic(MachineInstr &MI,
4271                                                MachineIRBuilder &B,
4272                                                Intrinsic::ID IID) const {
4273   const bool IsCmpSwap = IID == Intrinsic::amdgcn_raw_buffer_atomic_cmpswap ||
4274                          IID == Intrinsic::amdgcn_struct_buffer_atomic_cmpswap;
4275   const bool HasReturn = MI.getNumExplicitDefs() != 0;
4276 
4277   Register Dst;
4278 
4279   int OpOffset = 0;
4280   if (HasReturn) {
4281     // A few FP atomics do not support return values.
4282     Dst = MI.getOperand(0).getReg();
4283   } else {
4284     OpOffset = -1;
4285   }
4286 
4287   Register VData = MI.getOperand(2 + OpOffset).getReg();
4288   Register CmpVal;
4289 
4290   if (IsCmpSwap) {
4291     CmpVal = MI.getOperand(3 + OpOffset).getReg();
4292     ++OpOffset;
4293   }
4294 
4295   Register RSrc = MI.getOperand(3 + OpOffset).getReg();
4296   const unsigned NumVIndexOps = (IsCmpSwap ? 8 : 7) + HasReturn;
4297 
4298   // The struct intrinsic variants add one additional operand over raw.
4299   const bool HasVIndex = MI.getNumOperands() == NumVIndexOps;
4300   Register VIndex;
4301   if (HasVIndex) {
4302     VIndex = MI.getOperand(4 + OpOffset).getReg();
4303     ++OpOffset;
4304   } else {
4305     VIndex = B.buildConstant(LLT::scalar(32), 0).getReg(0);
4306   }
4307 
4308   Register VOffset = MI.getOperand(4 + OpOffset).getReg();
4309   Register SOffset = MI.getOperand(5 + OpOffset).getReg();
4310   unsigned AuxiliaryData = MI.getOperand(6 + OpOffset).getImm();
4311 
4312   MachineMemOperand *MMO = *MI.memoperands_begin();
4313 
4314   unsigned ImmOffset;
4315   std::tie(VOffset, ImmOffset) = splitBufferOffsets(B, VOffset);
4316   updateBufferMMO(MMO, VOffset, SOffset, ImmOffset, VIndex, *B.getMRI());
4317 
4318   auto MIB = B.buildInstr(getBufferAtomicPseudo(IID));
4319 
4320   if (HasReturn)
4321     MIB.addDef(Dst);
4322 
4323   MIB.addUse(VData); // vdata
4324 
4325   if (IsCmpSwap)
4326     MIB.addReg(CmpVal);
4327 
4328   MIB.addUse(RSrc)               // rsrc
4329      .addUse(VIndex)             // vindex
4330      .addUse(VOffset)            // voffset
4331      .addUse(SOffset)            // soffset
4332      .addImm(ImmOffset)          // offset(imm)
4333      .addImm(AuxiliaryData)      // cachepolicy, swizzled buffer(imm)
4334      .addImm(HasVIndex ? -1 : 0) // idxen(imm)
4335      .addMemOperand(MMO);
4336 
4337   MI.eraseFromParent();
4338   return true;
4339 }
4340 
4341 /// Turn a set of s16 typed registers in \p AddrRegs into a dword sized
4342 /// vector with s16 typed elements.
4343 static void packImage16bitOpsToDwords(MachineIRBuilder &B, MachineInstr &MI,
4344                                       SmallVectorImpl<Register> &PackedAddrs,
4345                                       unsigned ArgOffset,
4346                                       const AMDGPU::ImageDimIntrinsicInfo *Intr,
4347                                       bool IsA16, bool IsG16) {
4348   const LLT S16 = LLT::scalar(16);
4349   const LLT V2S16 = LLT::fixed_vector(2, 16);
4350   auto EndIdx = Intr->VAddrEnd;
4351 
4352   for (unsigned I = Intr->VAddrStart; I < EndIdx; I++) {
4353     MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
4354     if (!SrcOp.isReg())
4355       continue; // _L to _LZ may have eliminated this.
4356 
4357     Register AddrReg = SrcOp.getReg();
4358 
4359     if ((I < Intr->GradientStart) ||
4360         (I >= Intr->GradientStart && I < Intr->CoordStart && !IsG16) ||
4361         (I >= Intr->CoordStart && !IsA16)) {
4362       if ((I < Intr->GradientStart) && IsA16 &&
4363           (B.getMRI()->getType(AddrReg) == S16)) {
4364         assert(I == Intr->BiasIndex && "Got unexpected 16-bit extra argument");
4365         // Special handling of bias when A16 is on. Bias is of type half but
4366         // occupies full 32-bit.
4367         PackedAddrs.push_back(
4368             B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
4369                 .getReg(0));
4370       } else {
4371         assert((!IsA16 || Intr->NumBiasArgs == 0 || I != Intr->BiasIndex) &&
4372                "Bias needs to be converted to 16 bit in A16 mode");
4373         // Handle any gradient or coordinate operands that should not be packed
4374         AddrReg = B.buildBitcast(V2S16, AddrReg).getReg(0);
4375         PackedAddrs.push_back(AddrReg);
4376       }
4377     } else {
4378       // Dz/dh, dz/dv and the last odd coord are packed with undef. Also, in 1D,
4379       // derivatives dx/dh and dx/dv are packed with undef.
4380       if (((I + 1) >= EndIdx) ||
4381           ((Intr->NumGradients / 2) % 2 == 1 &&
4382            (I == static_cast<unsigned>(Intr->GradientStart +
4383                                        (Intr->NumGradients / 2) - 1) ||
4384             I == static_cast<unsigned>(Intr->GradientStart +
4385                                        Intr->NumGradients - 1))) ||
4386           // Check for _L to _LZ optimization
4387           !MI.getOperand(ArgOffset + I + 1).isReg()) {
4388         PackedAddrs.push_back(
4389             B.buildBuildVector(V2S16, {AddrReg, B.buildUndef(S16).getReg(0)})
4390                 .getReg(0));
4391       } else {
4392         PackedAddrs.push_back(
4393             B.buildBuildVector(
4394                  V2S16, {AddrReg, MI.getOperand(ArgOffset + I + 1).getReg()})
4395                 .getReg(0));
4396         ++I;
4397       }
4398     }
4399   }
4400 }
4401 
4402 /// Convert from separate vaddr components to a single vector address register,
4403 /// and replace the remaining operands with $noreg.
4404 static void convertImageAddrToPacked(MachineIRBuilder &B, MachineInstr &MI,
4405                                      int DimIdx, int NumVAddrs) {
4406   const LLT S32 = LLT::scalar(32);
4407 
4408   SmallVector<Register, 8> AddrRegs;
4409   for (int I = 0; I != NumVAddrs; ++I) {
4410     MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
4411     if (SrcOp.isReg()) {
4412       AddrRegs.push_back(SrcOp.getReg());
4413       assert(B.getMRI()->getType(SrcOp.getReg()) == S32);
4414     }
4415   }
4416 
4417   int NumAddrRegs = AddrRegs.size();
4418   if (NumAddrRegs != 1) {
4419     // Above 8 elements round up to next power of 2 (i.e. 16).
4420     if (NumAddrRegs > 8 && !isPowerOf2_32(NumAddrRegs)) {
4421       const int RoundedNumRegs = NextPowerOf2(NumAddrRegs);
4422       auto Undef = B.buildUndef(S32);
4423       AddrRegs.append(RoundedNumRegs - NumAddrRegs, Undef.getReg(0));
4424       NumAddrRegs = RoundedNumRegs;
4425     }
4426 
4427     auto VAddr =
4428         B.buildBuildVector(LLT::fixed_vector(NumAddrRegs, 32), AddrRegs);
4429     MI.getOperand(DimIdx).setReg(VAddr.getReg(0));
4430   }
4431 
4432   for (int I = 1; I != NumVAddrs; ++I) {
4433     MachineOperand &SrcOp = MI.getOperand(DimIdx + I);
4434     if (SrcOp.isReg())
4435       MI.getOperand(DimIdx + I).setReg(AMDGPU::NoRegister);
4436   }
4437 }
4438 
4439 /// Rewrite image intrinsics to use register layouts expected by the subtarget.
4440 ///
4441 /// Depending on the subtarget, load/store with 16-bit element data need to be
4442 /// rewritten to use the low half of 32-bit registers, or directly use a packed
4443 /// layout. 16-bit addresses should also sometimes be packed into 32-bit
4444 /// registers.
4445 ///
4446 /// We don't want to directly select image instructions just yet, but also want
4447 /// to exposes all register repacking to the legalizer/combiners. We also don't
4448 /// want a selected instruction entering RegBankSelect. In order to avoid
4449 /// defining a multitude of intermediate image instructions, directly hack on
4450 /// the intrinsic's arguments. In cases like a16 addresses, this requires
4451 /// padding now unnecessary arguments with $noreg.
4452 bool AMDGPULegalizerInfo::legalizeImageIntrinsic(
4453     MachineInstr &MI, MachineIRBuilder &B, GISelChangeObserver &Observer,
4454     const AMDGPU::ImageDimIntrinsicInfo *Intr) const {
4455 
4456   const unsigned NumDefs = MI.getNumExplicitDefs();
4457   const unsigned ArgOffset = NumDefs + 1;
4458   bool IsTFE = NumDefs == 2;
4459   // We are only processing the operands of d16 image operations on subtargets
4460   // that use the unpacked register layout, or need to repack the TFE result.
4461 
4462   // TODO: Do we need to guard against already legalized intrinsics?
4463   const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
4464       AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
4465 
4466   MachineRegisterInfo *MRI = B.getMRI();
4467   const LLT S32 = LLT::scalar(32);
4468   const LLT S16 = LLT::scalar(16);
4469   const LLT V2S16 = LLT::fixed_vector(2, 16);
4470 
4471   unsigned DMask = 0;
4472   Register VData = MI.getOperand(NumDefs == 0 ? 1 : 0).getReg();
4473   LLT Ty = MRI->getType(VData);
4474 
4475   // Check for 16 bit addresses and pack if true.
4476   LLT GradTy =
4477       MRI->getType(MI.getOperand(ArgOffset + Intr->GradientStart).getReg());
4478   LLT AddrTy =
4479       MRI->getType(MI.getOperand(ArgOffset + Intr->CoordStart).getReg());
4480   const bool IsG16 = GradTy == S16;
4481   const bool IsA16 = AddrTy == S16;
4482   const bool IsD16 = Ty.getScalarType() == S16;
4483 
4484   int DMaskLanes = 0;
4485   if (!BaseOpcode->Atomic) {
4486     DMask = MI.getOperand(ArgOffset + Intr->DMaskIndex).getImm();
4487     if (BaseOpcode->Gather4) {
4488       DMaskLanes = 4;
4489     } else if (DMask != 0) {
4490       DMaskLanes = countPopulation(DMask);
4491     } else if (!IsTFE && !BaseOpcode->Store) {
4492       // If dmask is 0, this is a no-op load. This can be eliminated.
4493       B.buildUndef(MI.getOperand(0));
4494       MI.eraseFromParent();
4495       return true;
4496     }
4497   }
4498 
4499   Observer.changingInstr(MI);
4500   auto ChangedInstr = make_scope_exit([&] { Observer.changedInstr(MI); });
4501 
4502   const unsigned StoreOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE_D16
4503                                      : AMDGPU::G_AMDGPU_INTRIN_IMAGE_STORE;
4504   const unsigned LoadOpcode = IsD16 ? AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD_D16
4505                                     : AMDGPU::G_AMDGPU_INTRIN_IMAGE_LOAD;
4506   unsigned NewOpcode = NumDefs == 0 ? StoreOpcode : LoadOpcode;
4507 
4508   // Track that we legalized this
4509   MI.setDesc(B.getTII().get(NewOpcode));
4510 
4511   // Expecting to get an error flag since TFC is on - and dmask is 0 Force
4512   // dmask to be at least 1 otherwise the instruction will fail
4513   if (IsTFE && DMask == 0) {
4514     DMask = 0x1;
4515     DMaskLanes = 1;
4516     MI.getOperand(ArgOffset + Intr->DMaskIndex).setImm(DMask);
4517   }
4518 
4519   if (BaseOpcode->Atomic) {
4520     Register VData0 = MI.getOperand(2).getReg();
4521     LLT Ty = MRI->getType(VData0);
4522 
4523     // TODO: Allow atomic swap and bit ops for v2s16/v4s16
4524     if (Ty.isVector())
4525       return false;
4526 
4527     if (BaseOpcode->AtomicX2) {
4528       Register VData1 = MI.getOperand(3).getReg();
4529       // The two values are packed in one register.
4530       LLT PackedTy = LLT::fixed_vector(2, Ty);
4531       auto Concat = B.buildBuildVector(PackedTy, {VData0, VData1});
4532       MI.getOperand(2).setReg(Concat.getReg(0));
4533       MI.getOperand(3).setReg(AMDGPU::NoRegister);
4534     }
4535   }
4536 
4537   unsigned CorrectedNumVAddrs = Intr->NumVAddrs;
4538 
4539   // Rewrite the addressing register layout before doing anything else.
4540   if (BaseOpcode->Gradients && !ST.hasG16() && (IsA16 != IsG16)) {
4541     // 16 bit gradients are supported, but are tied to the A16 control
4542     // so both gradients and addresses must be 16 bit
4543     return false;
4544   }
4545 
4546   if (IsA16 && !ST.hasA16()) {
4547     // A16 not supported
4548     return false;
4549   }
4550 
4551   if (IsA16 || IsG16) {
4552     if (Intr->NumVAddrs > 1) {
4553       SmallVector<Register, 4> PackedRegs;
4554 
4555       packImage16bitOpsToDwords(B, MI, PackedRegs, ArgOffset, Intr, IsA16,
4556                                 IsG16);
4557 
4558       // See also below in the non-a16 branch
4559       const bool UseNSA = ST.hasNSAEncoding() && PackedRegs.size() >= 3 &&
4560                           PackedRegs.size() <= ST.getNSAMaxSize();
4561 
4562       if (!UseNSA && PackedRegs.size() > 1) {
4563         LLT PackedAddrTy = LLT::fixed_vector(2 * PackedRegs.size(), 16);
4564         auto Concat = B.buildConcatVectors(PackedAddrTy, PackedRegs);
4565         PackedRegs[0] = Concat.getReg(0);
4566         PackedRegs.resize(1);
4567       }
4568 
4569       const unsigned NumPacked = PackedRegs.size();
4570       for (unsigned I = Intr->VAddrStart; I < Intr->VAddrEnd; I++) {
4571         MachineOperand &SrcOp = MI.getOperand(ArgOffset + I);
4572         if (!SrcOp.isReg()) {
4573           assert(SrcOp.isImm() && SrcOp.getImm() == 0);
4574           continue;
4575         }
4576 
4577         assert(SrcOp.getReg() != AMDGPU::NoRegister);
4578 
4579         if (I - Intr->VAddrStart < NumPacked)
4580           SrcOp.setReg(PackedRegs[I - Intr->VAddrStart]);
4581         else
4582           SrcOp.setReg(AMDGPU::NoRegister);
4583       }
4584     }
4585   } else {
4586     // If the register allocator cannot place the address registers contiguously
4587     // without introducing moves, then using the non-sequential address encoding
4588     // is always preferable, since it saves VALU instructions and is usually a
4589     // wash in terms of code size or even better.
4590     //
4591     // However, we currently have no way of hinting to the register allocator
4592     // that MIMG addresses should be placed contiguously when it is possible to
4593     // do so, so force non-NSA for the common 2-address case as a heuristic.
4594     //
4595     // SIShrinkInstructions will convert NSA encodings to non-NSA after register
4596     // allocation when possible.
4597     const bool UseNSA = ST.hasNSAEncoding() && CorrectedNumVAddrs >= 3 &&
4598                         CorrectedNumVAddrs <= ST.getNSAMaxSize();
4599 
4600     if (!UseNSA && Intr->NumVAddrs > 1)
4601       convertImageAddrToPacked(B, MI, ArgOffset + Intr->VAddrStart,
4602                                Intr->NumVAddrs);
4603   }
4604 
4605   int Flags = 0;
4606   if (IsA16)
4607     Flags |= 1;
4608   if (IsG16)
4609     Flags |= 2;
4610   MI.addOperand(MachineOperand::CreateImm(Flags));
4611 
4612   if (BaseOpcode->Store) { // No TFE for stores?
4613     // TODO: Handle dmask trim
4614     if (!Ty.isVector() || !IsD16)
4615       return true;
4616 
4617     Register RepackedReg = handleD16VData(B, *MRI, VData, true);
4618     if (RepackedReg != VData) {
4619       MI.getOperand(1).setReg(RepackedReg);
4620     }
4621 
4622     return true;
4623   }
4624 
4625   Register DstReg = MI.getOperand(0).getReg();
4626   const LLT EltTy = Ty.getScalarType();
4627   const int NumElts = Ty.isVector() ? Ty.getNumElements() : 1;
4628 
4629   // Confirm that the return type is large enough for the dmask specified
4630   if (NumElts < DMaskLanes)
4631     return false;
4632 
4633   if (NumElts > 4 || DMaskLanes > 4)
4634     return false;
4635 
4636   const unsigned AdjustedNumElts = DMaskLanes == 0 ? 1 : DMaskLanes;
4637   const LLT AdjustedTy =
4638       Ty.changeElementCount(ElementCount::getFixed(AdjustedNumElts));
4639 
4640   // The raw dword aligned data component of the load. The only legal cases
4641   // where this matters should be when using the packed D16 format, for
4642   // s16 -> <2 x s16>, and <3 x s16> -> <4 x s16>,
4643   LLT RoundedTy;
4644 
4645   // S32 vector to to cover all data, plus TFE result element.
4646   LLT TFETy;
4647 
4648   // Register type to use for each loaded component. Will be S32 or V2S16.
4649   LLT RegTy;
4650 
4651   if (IsD16 && ST.hasUnpackedD16VMem()) {
4652     RoundedTy =
4653         LLT::scalarOrVector(ElementCount::getFixed(AdjustedNumElts), 32);
4654     TFETy = LLT::fixed_vector(AdjustedNumElts + 1, 32);
4655     RegTy = S32;
4656   } else {
4657     unsigned EltSize = EltTy.getSizeInBits();
4658     unsigned RoundedElts = (AdjustedTy.getSizeInBits() + 31) / 32;
4659     unsigned RoundedSize = 32 * RoundedElts;
4660     RoundedTy = LLT::scalarOrVector(
4661         ElementCount::getFixed(RoundedSize / EltSize), EltSize);
4662     TFETy = LLT::fixed_vector(RoundedSize / 32 + 1, S32);
4663     RegTy = !IsTFE && EltSize == 16 ? V2S16 : S32;
4664   }
4665 
4666   // The return type does not need adjustment.
4667   // TODO: Should we change s16 case to s32 or <2 x s16>?
4668   if (!IsTFE && (RoundedTy == Ty || !Ty.isVector()))
4669     return true;
4670 
4671   Register Dst1Reg;
4672 
4673   // Insert after the instruction.
4674   B.setInsertPt(*MI.getParent(), ++MI.getIterator());
4675 
4676   // TODO: For TFE with d16, if we used a TFE type that was a multiple of <2 x
4677   // s16> instead of s32, we would only need 1 bitcast instead of multiple.
4678   const LLT LoadResultTy = IsTFE ? TFETy : RoundedTy;
4679   const int ResultNumRegs = LoadResultTy.getSizeInBits() / 32;
4680 
4681   Register NewResultReg = MRI->createGenericVirtualRegister(LoadResultTy);
4682 
4683   MI.getOperand(0).setReg(NewResultReg);
4684 
4685   // In the IR, TFE is supposed to be used with a 2 element struct return
4686   // type. The instruction really returns these two values in one contiguous
4687   // register, with one additional dword beyond the loaded data. Rewrite the
4688   // return type to use a single register result.
4689 
4690   if (IsTFE) {
4691     Dst1Reg = MI.getOperand(1).getReg();
4692     if (MRI->getType(Dst1Reg) != S32)
4693       return false;
4694 
4695     // TODO: Make sure the TFE operand bit is set.
4696     MI.removeOperand(1);
4697 
4698     // Handle the easy case that requires no repack instructions.
4699     if (Ty == S32) {
4700       B.buildUnmerge({DstReg, Dst1Reg}, NewResultReg);
4701       return true;
4702     }
4703   }
4704 
4705   // Now figure out how to copy the new result register back into the old
4706   // result.
4707   SmallVector<Register, 5> ResultRegs(ResultNumRegs, Dst1Reg);
4708 
4709   const int NumDataRegs = IsTFE ? ResultNumRegs - 1  : ResultNumRegs;
4710 
4711   if (ResultNumRegs == 1) {
4712     assert(!IsTFE);
4713     ResultRegs[0] = NewResultReg;
4714   } else {
4715     // We have to repack into a new vector of some kind.
4716     for (int I = 0; I != NumDataRegs; ++I)
4717       ResultRegs[I] = MRI->createGenericVirtualRegister(RegTy);
4718     B.buildUnmerge(ResultRegs, NewResultReg);
4719 
4720     // Drop the final TFE element to get the data part. The TFE result is
4721     // directly written to the right place already.
4722     if (IsTFE)
4723       ResultRegs.resize(NumDataRegs);
4724   }
4725 
4726   // For an s16 scalar result, we form an s32 result with a truncate regardless
4727   // of packed vs. unpacked.
4728   if (IsD16 && !Ty.isVector()) {
4729     B.buildTrunc(DstReg, ResultRegs[0]);
4730     return true;
4731   }
4732 
4733   // Avoid a build/concat_vector of 1 entry.
4734   if (Ty == V2S16 && NumDataRegs == 1 && !ST.hasUnpackedD16VMem()) {
4735     B.buildBitcast(DstReg, ResultRegs[0]);
4736     return true;
4737   }
4738 
4739   assert(Ty.isVector());
4740 
4741   if (IsD16) {
4742     // For packed D16 results with TFE enabled, all the data components are
4743     // S32. Cast back to the expected type.
4744     //
4745     // TODO: We don't really need to use load s32 elements. We would only need one
4746     // cast for the TFE result if a multiple of v2s16 was used.
4747     if (RegTy != V2S16 && !ST.hasUnpackedD16VMem()) {
4748       for (Register &Reg : ResultRegs)
4749         Reg = B.buildBitcast(V2S16, Reg).getReg(0);
4750     } else if (ST.hasUnpackedD16VMem()) {
4751       for (Register &Reg : ResultRegs)
4752         Reg = B.buildTrunc(S16, Reg).getReg(0);
4753     }
4754   }
4755 
4756   auto padWithUndef = [&](LLT Ty, int NumElts) {
4757     if (NumElts == 0)
4758       return;
4759     Register Undef = B.buildUndef(Ty).getReg(0);
4760     for (int I = 0; I != NumElts; ++I)
4761       ResultRegs.push_back(Undef);
4762   };
4763 
4764   // Pad out any elements eliminated due to the dmask.
4765   LLT ResTy = MRI->getType(ResultRegs[0]);
4766   if (!ResTy.isVector()) {
4767     padWithUndef(ResTy, NumElts - ResultRegs.size());
4768     B.buildBuildVector(DstReg, ResultRegs);
4769     return true;
4770   }
4771 
4772   assert(!ST.hasUnpackedD16VMem() && ResTy == V2S16);
4773   const int RegsToCover = (Ty.getSizeInBits() + 31) / 32;
4774 
4775   // Deal with the one annoying legal case.
4776   const LLT V3S16 = LLT::fixed_vector(3, 16);
4777   if (Ty == V3S16) {
4778     if (IsTFE) {
4779       if (ResultRegs.size() == 1) {
4780         NewResultReg = ResultRegs[0];
4781       } else if (ResultRegs.size() == 2) {
4782         LLT V4S16 = LLT::fixed_vector(4, 16);
4783         NewResultReg = B.buildConcatVectors(V4S16, ResultRegs).getReg(0);
4784       } else {
4785         return false;
4786       }
4787     }
4788 
4789     if (MRI->getType(DstReg).getNumElements() <
4790         MRI->getType(NewResultReg).getNumElements()) {
4791       B.buildDeleteTrailingVectorElements(DstReg, NewResultReg);
4792     } else {
4793       B.buildPadVectorWithUndefElements(DstReg, NewResultReg);
4794     }
4795     return true;
4796   }
4797 
4798   padWithUndef(ResTy, RegsToCover - ResultRegs.size());
4799   B.buildConcatVectors(DstReg, ResultRegs);
4800   return true;
4801 }
4802 
4803 bool AMDGPULegalizerInfo::legalizeSBufferLoad(
4804   LegalizerHelper &Helper, MachineInstr &MI) const {
4805   MachineIRBuilder &B = Helper.MIRBuilder;
4806   GISelChangeObserver &Observer = Helper.Observer;
4807 
4808   Register Dst = MI.getOperand(0).getReg();
4809   LLT Ty = B.getMRI()->getType(Dst);
4810   unsigned Size = Ty.getSizeInBits();
4811   MachineFunction &MF = B.getMF();
4812 
4813   Observer.changingInstr(MI);
4814 
4815   if (shouldBitcastLoadStoreType(ST, Ty, LLT::scalar(Size))) {
4816     Ty = getBitcastRegisterType(Ty);
4817     Helper.bitcastDst(MI, Ty, 0);
4818     Dst = MI.getOperand(0).getReg();
4819     B.setInsertPt(B.getMBB(), MI);
4820   }
4821 
4822   // FIXME: We don't really need this intermediate instruction. The intrinsic
4823   // should be fixed to have a memory operand. Since it's readnone, we're not
4824   // allowed to add one.
4825   MI.setDesc(B.getTII().get(AMDGPU::G_AMDGPU_S_BUFFER_LOAD));
4826   MI.removeOperand(1); // Remove intrinsic ID
4827 
4828   // FIXME: When intrinsic definition is fixed, this should have an MMO already.
4829   // TODO: Should this use datalayout alignment?
4830   const unsigned MemSize = (Size + 7) / 8;
4831   const Align MemAlign(4);
4832   MachineMemOperand *MMO = MF.getMachineMemOperand(
4833       MachinePointerInfo(),
4834       MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4835           MachineMemOperand::MOInvariant,
4836       MemSize, MemAlign);
4837   MI.addMemOperand(MF, MMO);
4838 
4839   // There are no 96-bit result scalar loads, but widening to 128-bit should
4840   // always be legal. We may need to restore this to a 96-bit result if it turns
4841   // out this needs to be converted to a vector load during RegBankSelect.
4842   if (!isPowerOf2_32(Size)) {
4843     if (Ty.isVector())
4844       Helper.moreElementsVectorDst(MI, getPow2VectorType(Ty), 0);
4845     else
4846       Helper.widenScalarDst(MI, getPow2ScalarType(Ty), 0);
4847   }
4848 
4849   Observer.changedInstr(MI);
4850   return true;
4851 }
4852 
4853 // TODO: Move to selection
4854 bool AMDGPULegalizerInfo::legalizeTrapIntrinsic(MachineInstr &MI,
4855                                                 MachineRegisterInfo &MRI,
4856                                                 MachineIRBuilder &B) const {
4857   if (!ST.isTrapHandlerEnabled() ||
4858       ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA)
4859     return legalizeTrapEndpgm(MI, MRI, B);
4860 
4861   if (Optional<uint8_t> HsaAbiVer = AMDGPU::getHsaAbiVersion(&ST)) {
4862     switch (*HsaAbiVer) {
4863     case ELF::ELFABIVERSION_AMDGPU_HSA_V2:
4864     case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
4865       return legalizeTrapHsaQueuePtr(MI, MRI, B);
4866     case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
4867     case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
4868       return ST.supportsGetDoorbellID() ?
4869           legalizeTrapHsa(MI, MRI, B) :
4870           legalizeTrapHsaQueuePtr(MI, MRI, B);
4871     }
4872   }
4873 
4874   llvm_unreachable("Unknown trap handler");
4875 }
4876 
4877 bool AMDGPULegalizerInfo::legalizeTrapEndpgm(
4878     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4879   B.buildInstr(AMDGPU::S_ENDPGM).addImm(0);
4880   MI.eraseFromParent();
4881   return true;
4882 }
4883 
4884 bool AMDGPULegalizerInfo::legalizeTrapHsaQueuePtr(
4885     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4886   MachineFunction &MF = B.getMF();
4887   const LLT S64 = LLT::scalar(64);
4888 
4889   Register SGPR01(AMDGPU::SGPR0_SGPR1);
4890   // For code object version 5, queue_ptr is passed through implicit kernarg.
4891   if (AMDGPU::getAmdhsaCodeObjectVersion() == 5) {
4892     AMDGPUTargetLowering::ImplicitParameter Param =
4893         AMDGPUTargetLowering::QUEUE_PTR;
4894     uint64_t Offset =
4895         ST.getTargetLowering()->getImplicitParameterOffset(B.getMF(), Param);
4896 
4897     Register KernargPtrReg = MRI.createGenericVirtualRegister(
4898         LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
4899 
4900     if (!loadInputValue(KernargPtrReg, B,
4901                         AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR))
4902       return false;
4903 
4904     // TODO: can we be smarter about machine pointer info?
4905     MachinePointerInfo PtrInfo(AMDGPUAS::CONSTANT_ADDRESS);
4906     MachineMemOperand *MMO = MF.getMachineMemOperand(
4907         PtrInfo,
4908         MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
4909             MachineMemOperand::MOInvariant,
4910         LLT::scalar(64), commonAlignment(Align(64), Offset));
4911 
4912     // Pointer address
4913     Register LoadAddr = MRI.createGenericVirtualRegister(
4914         LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
4915     B.buildPtrAdd(LoadAddr, KernargPtrReg,
4916                   B.buildConstant(LLT::scalar(64), Offset).getReg(0));
4917     // Load address
4918     Register Temp = B.buildLoad(S64, LoadAddr, *MMO).getReg(0);
4919     B.buildCopy(SGPR01, Temp);
4920     B.buildInstr(AMDGPU::S_TRAP)
4921         .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap))
4922         .addReg(SGPR01, RegState::Implicit);
4923     MI.eraseFromParent();
4924     return true;
4925   }
4926 
4927   // Pass queue pointer to trap handler as input, and insert trap instruction
4928   // Reference: https://llvm.org/docs/AMDGPUUsage.html#trap-handler-abi
4929   Register LiveIn =
4930     MRI.createGenericVirtualRegister(LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
4931   if (!loadInputValue(LiveIn, B, AMDGPUFunctionArgInfo::QUEUE_PTR))
4932     return false;
4933 
4934   B.buildCopy(SGPR01, LiveIn);
4935   B.buildInstr(AMDGPU::S_TRAP)
4936       .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap))
4937       .addReg(SGPR01, RegState::Implicit);
4938 
4939   MI.eraseFromParent();
4940   return true;
4941 }
4942 
4943 bool AMDGPULegalizerInfo::legalizeTrapHsa(
4944     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4945   B.buildInstr(AMDGPU::S_TRAP)
4946       .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSATrap));
4947   MI.eraseFromParent();
4948   return true;
4949 }
4950 
4951 bool AMDGPULegalizerInfo::legalizeDebugTrapIntrinsic(
4952     MachineInstr &MI, MachineRegisterInfo &MRI, MachineIRBuilder &B) const {
4953   // Is non-HSA path or trap-handler disabled? Then, report a warning
4954   // accordingly
4955   if (!ST.isTrapHandlerEnabled() ||
4956       ST.getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbi::AMDHSA) {
4957     DiagnosticInfoUnsupported NoTrap(B.getMF().getFunction(),
4958                                      "debugtrap handler not supported",
4959                                      MI.getDebugLoc(), DS_Warning);
4960     LLVMContext &Ctx = B.getMF().getFunction().getContext();
4961     Ctx.diagnose(NoTrap);
4962   } else {
4963     // Insert debug-trap instruction
4964     B.buildInstr(AMDGPU::S_TRAP)
4965         .addImm(static_cast<unsigned>(GCNSubtarget::TrapID::LLVMAMDHSADebugTrap));
4966   }
4967 
4968   MI.eraseFromParent();
4969   return true;
4970 }
4971 
4972 bool AMDGPULegalizerInfo::legalizeBVHIntrinsic(MachineInstr &MI,
4973                                                MachineIRBuilder &B) const {
4974   MachineRegisterInfo &MRI = *B.getMRI();
4975   const LLT S16 = LLT::scalar(16);
4976   const LLT S32 = LLT::scalar(32);
4977 
4978   Register DstReg = MI.getOperand(0).getReg();
4979   Register NodePtr = MI.getOperand(2).getReg();
4980   Register RayExtent = MI.getOperand(3).getReg();
4981   Register RayOrigin = MI.getOperand(4).getReg();
4982   Register RayDir = MI.getOperand(5).getReg();
4983   Register RayInvDir = MI.getOperand(6).getReg();
4984   Register TDescr = MI.getOperand(7).getReg();
4985 
4986   if (!ST.hasGFX10_AEncoding()) {
4987     DiagnosticInfoUnsupported BadIntrin(B.getMF().getFunction(),
4988                                         "intrinsic not supported on subtarget",
4989                                         MI.getDebugLoc());
4990     B.getMF().getFunction().getContext().diagnose(BadIntrin);
4991     return false;
4992   }
4993 
4994   const bool IsA16 = MRI.getType(RayDir).getElementType().getSizeInBits() == 16;
4995   const bool Is64 = MRI.getType(NodePtr).getSizeInBits() == 64;
4996   const unsigned NumVDataDwords = 4;
4997   const unsigned NumVAddrDwords = IsA16 ? (Is64 ? 9 : 8) : (Is64 ? 12 : 11);
4998   const bool UseNSA =
4999       ST.hasNSAEncoding() && NumVAddrDwords <= ST.getNSAMaxSize();
5000   const unsigned BaseOpcodes[2][2] = {
5001       {AMDGPU::IMAGE_BVH_INTERSECT_RAY, AMDGPU::IMAGE_BVH_INTERSECT_RAY_a16},
5002       {AMDGPU::IMAGE_BVH64_INTERSECT_RAY,
5003        AMDGPU::IMAGE_BVH64_INTERSECT_RAY_a16}};
5004   int Opcode;
5005   if (UseNSA) {
5006     Opcode =
5007         AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16], AMDGPU::MIMGEncGfx10NSA,
5008                               NumVDataDwords, NumVAddrDwords);
5009   } else {
5010     Opcode = AMDGPU::getMIMGOpcode(BaseOpcodes[Is64][IsA16],
5011                                    AMDGPU::MIMGEncGfx10Default, NumVDataDwords,
5012                                    PowerOf2Ceil(NumVAddrDwords));
5013   }
5014   assert(Opcode != -1);
5015 
5016   SmallVector<Register, 12> Ops;
5017   if (Is64) {
5018     auto Unmerge = B.buildUnmerge({S32, S32}, NodePtr);
5019     Ops.push_back(Unmerge.getReg(0));
5020     Ops.push_back(Unmerge.getReg(1));
5021   } else {
5022     Ops.push_back(NodePtr);
5023   }
5024   Ops.push_back(RayExtent);
5025 
5026   auto packLanes = [&Ops, &S32, &B](Register Src) {
5027     auto Unmerge = B.buildUnmerge({S32, S32, S32}, Src);
5028     Ops.push_back(Unmerge.getReg(0));
5029     Ops.push_back(Unmerge.getReg(1));
5030     Ops.push_back(Unmerge.getReg(2));
5031   };
5032 
5033   packLanes(RayOrigin);
5034   if (IsA16) {
5035     auto UnmergeRayDir = B.buildUnmerge({S16, S16, S16}, RayDir);
5036     auto UnmergeRayInvDir = B.buildUnmerge({S16, S16, S16}, RayInvDir);
5037     Register R1 = MRI.createGenericVirtualRegister(S32);
5038     Register R2 = MRI.createGenericVirtualRegister(S32);
5039     Register R3 = MRI.createGenericVirtualRegister(S32);
5040     B.buildMerge(R1, {UnmergeRayDir.getReg(0), UnmergeRayDir.getReg(1)});
5041     B.buildMerge(R2, {UnmergeRayDir.getReg(2), UnmergeRayInvDir.getReg(0)});
5042     B.buildMerge(R3, {UnmergeRayInvDir.getReg(1), UnmergeRayInvDir.getReg(2)});
5043     Ops.push_back(R1);
5044     Ops.push_back(R2);
5045     Ops.push_back(R3);
5046   } else {
5047     packLanes(RayDir);
5048     packLanes(RayInvDir);
5049   }
5050 
5051   if (!UseNSA) {
5052     // Build a single vector containing all the operands so far prepared.
5053     LLT OpTy = LLT::fixed_vector(Ops.size(), 32);
5054     Register MergedOps = B.buildMerge(OpTy, Ops).getReg(0);
5055     Ops.clear();
5056     Ops.push_back(MergedOps);
5057   }
5058 
5059   auto MIB = B.buildInstr(AMDGPU::G_AMDGPU_INTRIN_BVH_INTERSECT_RAY)
5060     .addDef(DstReg)
5061     .addImm(Opcode);
5062 
5063   for (Register R : Ops) {
5064     MIB.addUse(R);
5065   }
5066 
5067   MIB.addUse(TDescr)
5068      .addImm(IsA16 ? 1 : 0)
5069      .cloneMemRefs(MI);
5070 
5071   MI.eraseFromParent();
5072   return true;
5073 }
5074 
5075 static bool replaceWithConstant(MachineIRBuilder &B, MachineInstr &MI, int64_t C) {
5076   B.buildConstant(MI.getOperand(0).getReg(), C);
5077   MI.eraseFromParent();
5078   return true;
5079 }
5080 
5081 bool AMDGPULegalizerInfo::legalizeFPTruncRound(MachineInstr &MI,
5082                                                MachineIRBuilder &B) const {
5083   unsigned Opc;
5084   int RoundMode = MI.getOperand(2).getImm();
5085 
5086   if (RoundMode == (int)RoundingMode::TowardPositive)
5087     Opc = AMDGPU::G_FPTRUNC_ROUND_UPWARD;
5088   else if (RoundMode == (int)RoundingMode::TowardNegative)
5089     Opc = AMDGPU::G_FPTRUNC_ROUND_DOWNWARD;
5090   else
5091     return false;
5092 
5093   B.buildInstr(Opc)
5094       .addDef(MI.getOperand(0).getReg())
5095       .addUse(MI.getOperand(1).getReg());
5096 
5097   MI.eraseFromParent();
5098 
5099   return true;
5100 }
5101 
5102 bool AMDGPULegalizerInfo::legalizeIntrinsic(LegalizerHelper &Helper,
5103                                             MachineInstr &MI) const {
5104   MachineIRBuilder &B = Helper.MIRBuilder;
5105   MachineRegisterInfo &MRI = *B.getMRI();
5106 
5107   // Replace the use G_BRCOND with the exec manipulate and branch pseudos.
5108   auto IntrID = MI.getIntrinsicID();
5109   switch (IntrID) {
5110   case Intrinsic::amdgcn_if:
5111   case Intrinsic::amdgcn_else: {
5112     MachineInstr *Br = nullptr;
5113     MachineBasicBlock *UncondBrTarget = nullptr;
5114     bool Negated = false;
5115     if (MachineInstr *BrCond =
5116             verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
5117       const SIRegisterInfo *TRI
5118         = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
5119 
5120       Register Def = MI.getOperand(1).getReg();
5121       Register Use = MI.getOperand(3).getReg();
5122 
5123       MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
5124 
5125       if (Negated)
5126         std::swap(CondBrTarget, UncondBrTarget);
5127 
5128       B.setInsertPt(B.getMBB(), BrCond->getIterator());
5129       if (IntrID == Intrinsic::amdgcn_if) {
5130         B.buildInstr(AMDGPU::SI_IF)
5131           .addDef(Def)
5132           .addUse(Use)
5133           .addMBB(UncondBrTarget);
5134       } else {
5135         B.buildInstr(AMDGPU::SI_ELSE)
5136             .addDef(Def)
5137             .addUse(Use)
5138             .addMBB(UncondBrTarget);
5139       }
5140 
5141       if (Br) {
5142         Br->getOperand(0).setMBB(CondBrTarget);
5143       } else {
5144         // The IRTranslator skips inserting the G_BR for fallthrough cases, but
5145         // since we're swapping branch targets it needs to be reinserted.
5146         // FIXME: IRTranslator should probably not do this
5147         B.buildBr(*CondBrTarget);
5148       }
5149 
5150       MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
5151       MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
5152       MI.eraseFromParent();
5153       BrCond->eraseFromParent();
5154       return true;
5155     }
5156 
5157     return false;
5158   }
5159   case Intrinsic::amdgcn_loop: {
5160     MachineInstr *Br = nullptr;
5161     MachineBasicBlock *UncondBrTarget = nullptr;
5162     bool Negated = false;
5163     if (MachineInstr *BrCond =
5164             verifyCFIntrinsic(MI, MRI, Br, UncondBrTarget, Negated)) {
5165       const SIRegisterInfo *TRI
5166         = static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
5167 
5168       MachineBasicBlock *CondBrTarget = BrCond->getOperand(1).getMBB();
5169       Register Reg = MI.getOperand(2).getReg();
5170 
5171       if (Negated)
5172         std::swap(CondBrTarget, UncondBrTarget);
5173 
5174       B.setInsertPt(B.getMBB(), BrCond->getIterator());
5175       B.buildInstr(AMDGPU::SI_LOOP)
5176         .addUse(Reg)
5177         .addMBB(UncondBrTarget);
5178 
5179       if (Br)
5180         Br->getOperand(0).setMBB(CondBrTarget);
5181       else
5182         B.buildBr(*CondBrTarget);
5183 
5184       MI.eraseFromParent();
5185       BrCond->eraseFromParent();
5186       MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
5187       return true;
5188     }
5189 
5190     return false;
5191   }
5192   case Intrinsic::amdgcn_kernarg_segment_ptr:
5193     if (!AMDGPU::isKernel(B.getMF().getFunction().getCallingConv())) {
5194       // This only makes sense to call in a kernel, so just lower to null.
5195       B.buildConstant(MI.getOperand(0).getReg(), 0);
5196       MI.eraseFromParent();
5197       return true;
5198     }
5199 
5200     return legalizePreloadedArgIntrin(
5201       MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5202   case Intrinsic::amdgcn_implicitarg_ptr:
5203     return legalizeImplicitArgPtr(MI, MRI, B);
5204   case Intrinsic::amdgcn_workitem_id_x:
5205     if (ST.getMaxWorkitemID(B.getMF().getFunction(), 0) == 0)
5206       return replaceWithConstant(B, MI, 0);
5207     return legalizePreloadedArgIntrin(MI, MRI, B,
5208                                       AMDGPUFunctionArgInfo::WORKITEM_ID_X);
5209   case Intrinsic::amdgcn_workitem_id_y:
5210     if (ST.getMaxWorkitemID(B.getMF().getFunction(), 1) == 0)
5211       return replaceWithConstant(B, MI, 0);
5212 
5213     return legalizePreloadedArgIntrin(MI, MRI, B,
5214                                       AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
5215   case Intrinsic::amdgcn_workitem_id_z:
5216     if (ST.getMaxWorkitemID(B.getMF().getFunction(), 2) == 0)
5217       return replaceWithConstant(B, MI, 0);
5218 
5219     return legalizePreloadedArgIntrin(MI, MRI, B,
5220                                       AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
5221   case Intrinsic::amdgcn_workgroup_id_x:
5222     return legalizePreloadedArgIntrin(MI, MRI, B,
5223                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5224   case Intrinsic::amdgcn_workgroup_id_y:
5225     return legalizePreloadedArgIntrin(MI, MRI, B,
5226                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5227   case Intrinsic::amdgcn_workgroup_id_z:
5228     return legalizePreloadedArgIntrin(MI, MRI, B,
5229                                       AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5230   case Intrinsic::amdgcn_dispatch_ptr:
5231     return legalizePreloadedArgIntrin(MI, MRI, B,
5232                                       AMDGPUFunctionArgInfo::DISPATCH_PTR);
5233   case Intrinsic::amdgcn_queue_ptr:
5234     return legalizePreloadedArgIntrin(MI, MRI, B,
5235                                       AMDGPUFunctionArgInfo::QUEUE_PTR);
5236   case Intrinsic::amdgcn_implicit_buffer_ptr:
5237     return legalizePreloadedArgIntrin(
5238       MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5239   case Intrinsic::amdgcn_dispatch_id:
5240     return legalizePreloadedArgIntrin(MI, MRI, B,
5241                                       AMDGPUFunctionArgInfo::DISPATCH_ID);
5242   case Intrinsic::r600_read_ngroups_x:
5243     // TODO: Emit error for hsa
5244     return legalizeKernargMemParameter(MI, B,
5245                                        SI::KernelInputOffsets::NGROUPS_X);
5246   case Intrinsic::r600_read_ngroups_y:
5247     return legalizeKernargMemParameter(MI, B,
5248                                        SI::KernelInputOffsets::NGROUPS_Y);
5249   case Intrinsic::r600_read_ngroups_z:
5250     return legalizeKernargMemParameter(MI, B,
5251                                        SI::KernelInputOffsets::NGROUPS_Z);
5252   case Intrinsic::r600_read_local_size_x:
5253     // TODO: Could insert G_ASSERT_ZEXT from s16
5254     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::LOCAL_SIZE_X);
5255   case Intrinsic::r600_read_local_size_y:
5256     // TODO: Could insert G_ASSERT_ZEXT from s16
5257     return legalizeKernargMemParameter(MI, B,  SI::KernelInputOffsets::LOCAL_SIZE_Y);
5258     // TODO: Could insert G_ASSERT_ZEXT from s16
5259   case Intrinsic::r600_read_local_size_z:
5260     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::LOCAL_SIZE_Z);
5261   case Intrinsic::r600_read_global_size_x:
5262     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::GLOBAL_SIZE_X);
5263   case Intrinsic::r600_read_global_size_y:
5264     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::GLOBAL_SIZE_Y);
5265   case Intrinsic::r600_read_global_size_z:
5266     return legalizeKernargMemParameter(MI, B, SI::KernelInputOffsets::GLOBAL_SIZE_Z);
5267   case Intrinsic::amdgcn_fdiv_fast:
5268     return legalizeFDIVFastIntrin(MI, MRI, B);
5269   case Intrinsic::amdgcn_is_shared:
5270     return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
5271   case Intrinsic::amdgcn_is_private:
5272     return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
5273   case Intrinsic::amdgcn_wavefrontsize: {
5274     B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
5275     MI.eraseFromParent();
5276     return true;
5277   }
5278   case Intrinsic::amdgcn_s_buffer_load:
5279     return legalizeSBufferLoad(Helper, MI);
5280   case Intrinsic::amdgcn_raw_buffer_store:
5281   case Intrinsic::amdgcn_struct_buffer_store:
5282     return legalizeBufferStore(MI, MRI, B, false, false);
5283   case Intrinsic::amdgcn_raw_buffer_store_format:
5284   case Intrinsic::amdgcn_struct_buffer_store_format:
5285     return legalizeBufferStore(MI, MRI, B, false, true);
5286   case Intrinsic::amdgcn_raw_tbuffer_store:
5287   case Intrinsic::amdgcn_struct_tbuffer_store:
5288     return legalizeBufferStore(MI, MRI, B, true, true);
5289   case Intrinsic::amdgcn_raw_buffer_load:
5290   case Intrinsic::amdgcn_struct_buffer_load:
5291     return legalizeBufferLoad(MI, MRI, B, false, false);
5292   case Intrinsic::amdgcn_raw_buffer_load_format:
5293   case Intrinsic::amdgcn_struct_buffer_load_format:
5294     return legalizeBufferLoad(MI, MRI, B, true, false);
5295   case Intrinsic::amdgcn_raw_tbuffer_load:
5296   case Intrinsic::amdgcn_struct_tbuffer_load:
5297     return legalizeBufferLoad(MI, MRI, B, true, true);
5298   case Intrinsic::amdgcn_raw_buffer_atomic_swap:
5299   case Intrinsic::amdgcn_struct_buffer_atomic_swap:
5300   case Intrinsic::amdgcn_raw_buffer_atomic_add:
5301   case Intrinsic::amdgcn_struct_buffer_atomic_add:
5302   case Intrinsic::amdgcn_raw_buffer_atomic_sub:
5303   case Intrinsic::amdgcn_struct_buffer_atomic_sub:
5304   case Intrinsic::amdgcn_raw_buffer_atomic_smin:
5305   case Intrinsic::amdgcn_struct_buffer_atomic_smin:
5306   case Intrinsic::amdgcn_raw_buffer_atomic_umin:
5307   case Intrinsic::amdgcn_struct_buffer_atomic_umin:
5308   case Intrinsic::amdgcn_raw_buffer_atomic_smax:
5309   case Intrinsic::amdgcn_struct_buffer_atomic_smax:
5310   case Intrinsic::amdgcn_raw_buffer_atomic_umax:
5311   case Intrinsic::amdgcn_struct_buffer_atomic_umax:
5312   case Intrinsic::amdgcn_raw_buffer_atomic_and:
5313   case Intrinsic::amdgcn_struct_buffer_atomic_and:
5314   case Intrinsic::amdgcn_raw_buffer_atomic_or:
5315   case Intrinsic::amdgcn_struct_buffer_atomic_or:
5316   case Intrinsic::amdgcn_raw_buffer_atomic_xor:
5317   case Intrinsic::amdgcn_struct_buffer_atomic_xor:
5318   case Intrinsic::amdgcn_raw_buffer_atomic_inc:
5319   case Intrinsic::amdgcn_struct_buffer_atomic_inc:
5320   case Intrinsic::amdgcn_raw_buffer_atomic_dec:
5321   case Intrinsic::amdgcn_struct_buffer_atomic_dec:
5322   case Intrinsic::amdgcn_raw_buffer_atomic_cmpswap:
5323   case Intrinsic::amdgcn_struct_buffer_atomic_cmpswap:
5324   case Intrinsic::amdgcn_raw_buffer_atomic_fmin:
5325   case Intrinsic::amdgcn_struct_buffer_atomic_fmin:
5326   case Intrinsic::amdgcn_raw_buffer_atomic_fmax:
5327   case Intrinsic::amdgcn_struct_buffer_atomic_fmax:
5328     return legalizeBufferAtomic(MI, B, IntrID);
5329   case Intrinsic::amdgcn_raw_buffer_atomic_fadd:
5330   case Intrinsic::amdgcn_struct_buffer_atomic_fadd: {
5331     Register DstReg = MI.getOperand(0).getReg();
5332     if (!MRI.use_empty(DstReg) && !ST.hasGFX90AInsts()) {
5333       Function &F = B.getMF().getFunction();
5334       DiagnosticInfoUnsupported NoFpRet(
5335           F, "return versions of fp atomics not supported", B.getDebugLoc(),
5336           DS_Error);
5337       F.getContext().diagnose(NoFpRet);
5338       B.buildUndef(DstReg);
5339       MI.eraseFromParent();
5340       return true;
5341     }
5342 
5343     return legalizeBufferAtomic(MI, B, IntrID);
5344   }
5345   case Intrinsic::amdgcn_atomic_inc:
5346     return legalizeAtomicIncDec(MI, B, true);
5347   case Intrinsic::amdgcn_atomic_dec:
5348     return legalizeAtomicIncDec(MI, B, false);
5349   case Intrinsic::trap:
5350     return legalizeTrapIntrinsic(MI, MRI, B);
5351   case Intrinsic::debugtrap:
5352     return legalizeDebugTrapIntrinsic(MI, MRI, B);
5353   case Intrinsic::amdgcn_rsq_clamp:
5354     return legalizeRsqClampIntrinsic(MI, MRI, B);
5355   case Intrinsic::amdgcn_ds_fadd:
5356   case Intrinsic::amdgcn_ds_fmin:
5357   case Intrinsic::amdgcn_ds_fmax:
5358     return legalizeDSAtomicFPIntrinsic(Helper, MI, IntrID);
5359   case Intrinsic::amdgcn_image_bvh_intersect_ray:
5360     return legalizeBVHIntrinsic(MI, B);
5361   default: {
5362     if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
5363             AMDGPU::getImageDimIntrinsicInfo(IntrID))
5364       return legalizeImageIntrinsic(MI, B, Helper.Observer, ImageDimIntr);
5365     return true;
5366   }
5367   }
5368 
5369   return true;
5370 }
5371